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AZUMAYA ALGEBRAS WHICH ARE NOT
SMASH PRODUCTS

LINDSAY N. CHILDS

Let R be a commutative ring, let H be an R-Hopf algebra (always
with antipode), finitely generated and projective as an R-module, and
let H* = Hom r(H, R) be the dual Hopf algebra. Let Gal(H) denote
the set of isomorphism classes (as R-algebras and H-modules) of Galois
H-extensions (that is, Galois H*-objects, in the sense of [3, §7]).
Let Az(R) denote the set of isomorphism classes (as R-algebras) of
Azumaya R-algebras. Gamst and Hoechsmann [15] showed that if S
is a Galois H-extension and T a Galois H *-extension, then the smash
product S # T is an Azumaya R-algebra, so yields a map

# : Gal(H) x Gal(H*) — Az(R)

given by [S] x [T] — [S # T).

The smash product generalizes the cyclic crossed product. As we will
show in §2 below, for rank 2 Hopf algebras, Sweedler’s crossed product
based on Hopf algebra cohomology also is a special case of the smash
product.

Let Br(R) be the Brauer group of R, and { } denote the class
map, Az(R) — Br(R). If H is commutative and cocommutative, then
Gal(H) and Gal(H*) are abelian groups, and { # } is bilinear. (See [15]
for an interpretation of { # } as a cup product map.) In the special case

where R is a field containing 1/n and a primitive nth root of unity and
H = RG, G cyclic of order n, then H =2 H*, Gal(H) = U(R)/U(R)"
and the smash product map { # } specializes to the norm residue map
which Merkurjev and Suslin showed maps onto the n-torsion part of
the Brauer group.

Thus, over number fields, every Azumaya algebra is isomorphic to a
smash product, and over many fields every Azumaya algebra is at least
similar to a product of smash products.
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Over commutative rings the smash product is a much less effective
construction. The purpose of this paper, a sequel to [7], is to indicate
how inadequate the smash product is for describing Azumaya algebras
over number rings.

Let K be a number field with ring of integers R. Consider the smash
product maps
Gal(H) x Gal(H*) — Azy(R)

for all possible Hopf R-algebras H of rank 2, where Azy(R) is the set
of isomorphism classes of rank four Azumaya R-algebras. We show

THEOREM 4.1. Let n be an even integer. With at most finitely
many exceptions, for every totally real number field K of dimension
n = [K : Q], there exists an isomorphism class of rank 4 Azumaya
algebras over the ring of integers of K which is not representable by a
smash product.

Theorem 4.1 applies in particular to real quadratic fields. However,
for R the ring of integers of K = Q(/p), p a prime, we obtain a precise
count of the number of isomorphism classes of Azumaya algebras of
rank 4 which are smash products (there are at most 3 such), and show
that there are rank 4 Azumaya algebras which are not isomorphic to
smash products for all primes p > 3. In particular, if p = 1(mod4),
there are no non-trivial smash products.

DeMeyer and Ford [9] have found commutative rings arising in a
geometric context for which the Merkurjev-Suslin theorem fails. Our
results for the ring of integers of Q(\/p),p = 1(mod4) show that
the analogue of the Merkurjev-Suslin theorem for smash products over
these rings is not valid.

2. Crossed products and smash products. The term “smash
product” is used in two different contexts in the literature.

If S is a Galois H-extension and T a Galois H*-extension, then the
smash product S # T is the R-module S ® g T" with multiplication

(5 # t) . (s/ # t’) = Z 851(1) # <t(2),8/(2)>t(1)t’,
(s")(2)



AZUMAYA ALGEBRAS 77

where the map S — S ® H* induced from the H-action on S is given
by s+ 375 5(1) ® 8(s) (Sweedler’s notation) and similarly for the map
T —T®H, and (, ) is the evaluation map from H ® H* to R. See
15, 2].

On the other hand, Sweedler in [27] considers the analogue for Hopf
algebra cohomology of the crossed product map in group cohomology,
and calls it a smash product, namely S #¢H, where S is an H-Galois
extension and f: H @ H — S is a 2-cocycle. Here S #;H = S® H as
R-module, with multiplication

(1) (s0h) (s o) = 3 stha)$)f(hey ) © hohiy,
(h),(h")
We will call this the crossed product associated to the cocycle f.

If H = RG, G a finite cyclic group, then, as is well known, every 2-
cocycle f: GXG — U(S), U(S) = group of units of S, is cohomologous
to a cocycle with image in R, from which it follows that any crossed
product S #;RG is isomorphic to a smash product S # T, T' a Galois
RG*-extension. We show that the same is true for rank 2 Hopf algebras.
The result for rank p Hopf algebras, p an odd prime, if true, appears
to be more difficult, and is not needed below.

Notation. If 2 = ab in R, Hy is the free rank 2 Hopf R-algebra of
the form H, = R|z], where 22 = br and A(z) = z2® 1+ 1@z —
a(z @ z) (= X T(1) @ z(2), by definition) [21, 28]. In particular,
H, = RG* = Hom g(RG, R), and Hy = RG.

THEOREM 2.2. Let R be an integrally closed Noetherian domain and
let H be a Hopf R-algebra which is projective of rank 2 as R-module, S
a Galois H-extension of R, and f : H® H — S a Sweedler 2-cocycle.
Then there exists a Galois H*-extension T' so that S #;H = S # T as
R-algebras.

PROOF. Let f : Hx H — S be a 2-cocycle. If f is normalized, that is,
f(y, z) = e(y)e(z) if either y or z is in R, then, we claim f must have its
values in R. Since R is the intersection of its localizations at the prime
ideals of R, it suffices to show that the image of f is in R assuming that
R is local. In that case, H is a free R-module, H = Hy, = R[z],z? = bx
for some b in R.
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If f: H® H — S is a normalized 2-cocycle, then, since ¢(z) = 0, we
have f(1,1) =1, f(1,z) = f(z,1) = 0, and f is completely determined
by f(z,z).

Now f is a cocycle if, for all y, z,w in H, we have

D way - 2y, w)) (U 2@ we)
=D Flyazay ) f (Y 22)-

Explicitly computing this equation with y, z, and w all equal to z, it
can be verified that x - f(z,z) = 0, which means that f(z,z) is in the
fixed ring SH = R.

We now rewrite the multiplication in S #7H.

The action of H on S may be described in terms of the H*-comodule

structure on S by
h-s= Z 3(1)<h, 8(2)>.
(s)
Thus, since the cocycle f has values in R, we may rewrite formula (2.1)
above as

(s@h)-(s'®h)
— Z 881(1) ® <h(1), 5(2)>f(h(2), hl(l))h(g)h/(2)

It remains to identify H with multiplication

h-h' = Z F(hry, By Yhayhi
(h)(h')

as a Galois H*-extension. But this is exactly how Galois H*-extensions
(= H-Galois algebras, in the terminology of [11]) with normal basis are
defined in Proposition 1.6 of Early and Kreimer [11]. If we call H with
multiplication altered by f by H¢, then S #¢H = S # Hy, the smash
product of S and the Galois H*-extension Hy. O

As a consequence of this theorem, an upper bound on the number of
isomorphism classes of smash products is also an upper bound on the
number of isomorphism classes of crossed products.
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3. Bounding the number of smash products.

THEOREM 3.1. Let R be the ring of integers of a number field K.
Then the number of isomorphism classes of rank 4 Azumaya R-algebras
which are smash products is bounded by a constant depending only on
n = [K : Q] and the size of the 2-torsion part of the class group of R.

PROOF. From Corollary 17.6 of [5], if S is a Galois H-extension, there
is a unique Galois Hi-extension S; contained in S, and, given a Galois
H;-extension S; and a rank 2 Hopf algebra H, there is at most one H-
Galois extension S containing S;. The number of isomorphism classes
of Galois Hj-extensions of R is given by |[U(R)/U(R)?| - |Cly(R)| = f,
where U(R) denotes the units of R and Cly(R) the elements of the
class group of R of order 2. The number of rank 2 Hopf algebras is
bounded by e = [[{_, (e; + 1), where the factorization of the ideal 2R
into primes is given by 2R = PB$* - -PBy°, by Proposition 3.3 of [5].
Thus the number of isomorphism classes of smash products is bounded
above by e- f2. By the Dirichlet Units Theorem, the order of the group
of units |[U(R)/U(R)?| is bounded above by 2”1 and e is bounded
(rather crudely) by (n+1)". O

COROLLARY 3.2. Let R be the ring of integers of Q(v/m). Then
the number s of tsomorphism classes of rank 4 smash products over R
satisfies s < 64 - 22" = 22716 where r is the number of primes dividing
m.

For |U(R)/U(R)?| = 4,
3, if m =2 or 3(mod4),
e=< 4, if m=1(mod8),
2, if m = 5(mod8),
and (c.f, [8, 14]) |Clz(R)| < 2".

In certain cases this bound can be much improved, as we shall see in

§5.
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4. Applying the Eichler class number formula.

THEOREM 4.1. Let n be an even integer. With finitely many
exceptions, for every totally real number field K of dimension n = [K :
Q|, there exists an isomorphism class of rank 4 Azumaya algebras over
the ring of integers of K which is not representable by a smash product.

PROOF. For any number field K with ring of integers R, the number
s of smash products is bounded by & - |Clz(R)|? where s depends only
on n. Let |Cla(R)| = ha. Then hy < h,, the class number of K.
Any class in the class group of K has an integral ideal with norm
< (2/n)? -v/D = Dy, where D is the discriminant of K [1, p. 222].
So h, is < the number of integral ideals with norm < D;. Now the
number of ideals with norm < D; is bounded by ZaD:ll d(a)™, where
d(a) is the number of divisors of a [1, p. 220], and, for any ¢ > 0, there
exists some ¢ so that, for all a, d(a) < ca® [17, Theorem 315]. So

D,
Zd(a)” < d(b)" - Dy, for some b < Dy,
a=1

S CnbsnDl
1+
< c"DyTen.

Thus s < khZ < k(c"DiT™)2 = kc®*D'**" for some constants k, k,
and, so, for fixed n and any € > 0,5 < O(D'*¢).

Now let H(K) be a totally definite quaternion algebra over K with
invariants 1/2 at all the infinite primes of K and 0 at all the finite
primes [23, p. 293]. Then H(K) is in the image of the 1-1 map from
Br(R) to Br(K) [22, p. 78]. Let ¢t be the number of isomorphism types
of maximal orders, all Azumaya R-algebras, in H(K).

To investigate ¢, we use Eichler’s class number formula [12]:

3/2
MH(NJJ— 1) = Z%u

(4.2) Gy

p|d
(note a misprint in the formula as reproduced in [26]), where

0 = the discriminant ideal of H(K)
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(that is, the discriminant of a maximal order of H(K), which is 1 since
the maximal orders in H(K) are Azumaya)

ho = class number of K

D = discriminant of K

n = degree of K over Q, which equals 2
Ck(s) = Dedekind zeta function of K.

Let A be a maximal order in H(K), J1,...,J, be a set of representa-
tives of the h isomorphism classes of left ideals of A, and A,,..., A, be
the right orders of Jy,...,J, (all maximal by [10; page 75, Satz 12]).
Then w, = [U(A4,) : U(R)] forv=1,...,h.

We may simplify the right side of (4.2) as follows. If h is the class
number of H(K), then

t
hY " |Pr(B
=1

where B; runs through a set of representatives for the t isomorphism
classes of maximal orders of H(K) and Pg(B) is the group of isomor-
phism classes of projective left B-modules P with Hom g(P, P)°PP =
B [6].

We have the short exact sequence
(4.3) 1 — Out(B) — CI(R) — Pgr(B) — 1 [24]
where Out(B) is the group of R-algebra automorphisms of B modulo

inner automorphisms. Hence |Pg(B)| < hg for each B, and the right
side of (4.2) may be written as

v=1 Y  i=1|Pg( i=1

hoq ¢ 1 ‘1
do—=> Z)ES Z;
B;

where w; = [U(B;) : U(R)]. Thus (4.2) becomes

20k (2)| DI
(27r)2" =
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Now, for all K,
1
2) = E —
(x(2) — N(a)?’

(where the sum runs over all integral ideals of R)
- 1 1 1

> N .

= ;2 N(aR)?2 ZZ a2~ gn

Hence, for n fixed, t > O(D3/2). Thus, for all sufficiently large
discriminants D, t > s. Since (Hermite [1, page 129]) there exist only
a finite number of fields K, [K : Q] = n, with given discriminant D, it
follows that, for each n, we have ¢ > s for all but a finite number of
totally real fields K with [K : Q] =n. O

5. Smash products over Z[,/p]. The bound of §3 for the number of
isomorphism classes of smash products can be much improved in certain
cases. In this section we will compute the number of such classes in
case R = Z[\/p], K = Q(/p), where p is a prime. For such R, the
bound of §3 is 32, 48 or 64, depending on whether p = 5(mod38), = 2
or 3(mod4), or = 1(mod38) (i.e., depending on whether the ideal (2)
remains prime, ramifies or splits in R), since the class group of R is
odd [8, 14]. In fact, however, we have

THEOREM 5.1. Let R be the ring of integers of K = Q(\/p),p prime.
The number of isomorphism classes of Azumaya R-algebras of rank 4
which are smash products is

3, if p=3(mod4)
2, ifp=2
1, ifp=1(mod4).

PROOF. First, there is, up to isomorphism, a unique maximal order
(which is Azumaya) in Endg(K?), the trivial rank 4 Azumaya K-
algebra. This follows, since the class number h is odd, by results
of Eichler and Schilling (e.g., [25] or [6, page 48]), or by a direct
argument. This maximal order is represented by the trivial smash
product RG* # RG = Endg(RG*).
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We now determine the number of smash products which are maximal
orders in the quaternion algebra H(K') which is the image in Br(K) of
the non-trivial class in Br(R). If K = Q[v/m],m squarefree, and m #
1(mod 8), H(K) is the usual quaternion algebra; if m # 1(mod 8), H(K)
is the algebra generated by u and v with uv = —vu,u? = —1,v% = —q,
where ¢ is a prime = 3(mod 4) such that (%) =-1 [13].

The Hopf R-algebras of rank 2 correspond to the ideal factors of the
ideal 2R [5, Proposition 3.3]. If b is an ideal dividing 2R, denote by
Hy, the corresponding Hopf R-algebra. If bc = 2R, then Hy, and H, are
dual (i.e., H. = H{}). If b = bR, write H, = Hp.

There are four isomorphism classes of H;-Galois extensions. These
are orders over R in L = K|z] where 22 = 1,—1,cor —¢, ¢ the
fundamental unit of R. These four elements of R generate the group
U(R)/U(R)? which classifies Galois Hj-extensions with normal basis
[21, 19]. Since R has odd class number, every Galois H;-extension
has normal basis [3]. Denote the Galois Hj-extension contained in
L = K|z],2? = w, by Si(w).

If S is a Galois Hy-extension, then there exists a unique Galois H;-
extension S; contained in S [5, Theorem 17.5]). Thus any Galois Hp-
extension S must be an order over R in L = K|z],22 = 1,-1,¢, —¢,
as before. If there exists such a Galois Hy-extension contained in
L = K|z],2? = w, denote it by Sp(w).

If A = Sb(w) # Sb/(w') then Hbl = HE:, SO bl = 2R - b_l. If
A® K 2 H(K), we must have w,w’ < 0; otherwise, A® K is split (c.f.
[7]). Thus w and w' must be in the set {—1,—¢}. O

LEMMA 5.2. [5; Propositions 12.2, 13.4]. Let p be a prime divisor of
2R, R, be the localization of R at p,pR, = wR,, and b be a divisor of
2,b, =pR,. If w is in U(R), then there exists a Galois Hy-extension
Sp(w) if and only if ws® = 14 7Tty for some u in Ry and some s in
K.

We now consider various cases, depending on p.

p = 3(mod4). In this case, 2R = b?R, the square of a principal ideal.
Thus we have three Hopf R-algebras of rank 2, Hy, H, and Hy. We
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may choose b so that b? = 2¢, ¢ the fundamental unit of R (see Lemma
6.3 below). H; and Hy are dual (i.e., Hy = Hy) and Hy is self-dual.

Since the extension K[i]/K is unramified at all finite primes, the ring
of integers of K[i] is a Galois Hs-extension, hence is Sp(—1). Thus,
by Lemma 5.2, —s?> = 1 + b%u for some v in Rp,s in K, and so,
again by Lemma 5.2, there are three Galois H-extensions contained in
K|[2],2% = —1, namely S1(—1),Ss(—1) and Sa(—1). There is a unique
Galois H-extension in K|[z],2? = —¢, namely the Galois Hj-extension
S1(—€) = R[z],22 = —e. One sees this by utilizing the fact that b
may be chosen with b = 2¢ to show that ¢ = \/p(mod2R) (hence
—& = 14+(1—/p)+2u for some u) and bRy = (1—,/p)Ry. If —¢ = 1+bu,
w a unit, then there exists no s in K such that —es? = 1+b29+1y for v in
Ry, q > 0. Thus there are at most three different possibilities for smash
products inside H(K) : A = S1(—1)#S2(—1), A’ = Sp(—1)#Sp(—1)
and A" = S1(—e)#S2(-1).

These algebras are subalgebras of the usual quaternion algebra H(K)
with the following R-bases (c.f., [7]):

A= (1,(1+4)/be™, (1 +75)/b,(1+i+j+k)/2).

In [4] we showed, by computing the groups of norm one units of A
and A”, that A and A” are not isomorphic. On the other hand, one can
verify that A’ = A”. Thus there are exactly two non-isomorphic smash
products inside H(XK). That completes the proof for p = 3 (mod 4).

p = 2. The three rank 2 Hopf R-algebras are Hi, H s, and Hs. Since
(1+v2)%(—1) = 1+(v/2)*(~1—+/2), using Lemma 5.2 there are Galois
extensions S;(—1) and S, 5(—1) but not Sz(—1) (which corresponds to
the fact that K has no non-trivial unramified extensions). On the other
hand, —& = —(1 + /2), hence the only Galois H-extension contained
in K|[z],2% = —¢, is S1(—¢). Thus the only smash product in H(K) is
Sa(=1) # S 5(-1).

p =1 (mod4). In this case the fundamental unit ¢ satisfies N(g) =
—1, and, since p is prime, the narrow Hilbert class field has odd degree
over K, so that K has no quadratic extensions which are unramified
at all finite primes [14, Chapter 2]. Hence there are no non-trivial
quadratic Galois extensions of R.

If p = 5 (mod8), then 2R is prime, so the only possible Galois H-
extensions of rank 2 are either Hi-extensions or Hs-extensions. But
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the latter are Galois extensions with group G cyclic of order 2, and
those are all trivial. Thus there are no non-trivial smash products.

If p = 1 (mod8), the same argument shows that there are no non-
trivial smash products of the form A = S;(w) # Sa(w’). Now 2R = bb
where b is the conjugate of b, and R/b = Z/2Z,R/b* = Z/4Z,
so the fundamental unit ¢ = 1 or —1(modb?R). If w is a unit
= —1 (mod b?R), then there is no Galois extension S(w). Hence there
is no Galois extension S, (—1), nor SE(_I)' If —e = 1 (mod b?R), then
—& = ¢ = —1 (modb2R). Hence, if there exists a Galois extension
Sp(—¢), there does not exist a Galois extension SE(—E), and vice versa.
So we do not have a pair of Galois extensions, one for Hy, one for HE’
which will yield a non-trivial smash product. O

COROLLARY 5.3. Let p = 1 (mod4) be prime, R = ring of integers
of K = Q(\/p). Then, for any rank 2 Hopf R-algebra H, the smash
product map { # } : Gal(H) x Gal(H*) — Bry(R) is trivial.

Since Bry(R) has order 2, Corollary 5.3 may be viewed as describing
a collection of counterexamples to the analogue of Merkurjev’s theorem
in this context.

6. Isomorphism types of non-trivial Azumaya algebras.
Under the assumption that R = Z[,/p],p = 3(mod4), prime, we can
refine the class number formula of §4 to prove:

THEOREM 6.1. For every prime p = 3(mod4),p > 3, there exists a
rank 4 Azumaya R-algebra, R = Z[,/p|, which is not a smash product.

The corresponding result for p = 1 (mod 4) is obvious from Corollary
5.3.

PROOF. It is appropriate to be more precise about the Eichler class
number formula (4.2).
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First, Knus and Ojanguren [20] have shown that if B is a rank 4
Azumaya R-algebra, then Out(B) is 2-torsion. Since R has odd class
number, it follows from (4.3) that C1(R) = Pgr(B). Thus

1 1
ZEV:hOZE/

where w; = [U(B;) : U(R)] and By,...,B; are representatives for
the t isomorphism types of maximal orders of H(K). Two of these
representatives are A and A" (defined in the proof of Theorem 5.1).

Thus (4.2) becomes

3/2 t
(62 H— -y

i=1

We compute wp = [U(B) : U(R)] for B = A, A”, the two non-
isomorphic orders found in §5.

The norm map n yields a short exact sequence
1 — B;/{£1} — U(B)/U(R) = U(R)/U(R)?,

where Bj = the group of units of B with norm 1. Now U(R)/U(R)? =
(—1)x(e). Since n is positive, —1 cannot be in the image of n. However,
we have

LEMMA 6.3. For any prime p = 3 (mod4),e is a norm from A and
from A" so, for B= A or A", wp = |Bj|.

PROOF. We first note that we may choose b in R so that b? = 2¢,¢
the fundamental unit of R. For if 2R = b2R, then b?> = 2" for some h.
If b is odd, h = 2k + 1, replacing b by be~* yields b* = 2¢. If h is even,
h = 2k, then replacing b by be ¥ gives b?> = 2. But one sees easily that
no b in Z[,/p] can satisfy b* = 2.

Now ¢ = n(7), where 7 = (b — b\/p)/2 + b((/p + 1)/2) is an element
of A; while ¢ = n(o), where o = (1 +14)/b is an element of A”. O
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From Lemma 6.3 and [4], A and A" contribute to the right side of
(6.2) as follows:

forp=3, 1/24+1/24=1/12;

6.4
(6.4) forp>3, 1/24+1/8=1/6.
Since 1/wp <1 for all B, using (6.4) when p > 3, (6.2) becomes

20k (2)8p®/2

1
60t =g " (t-2).

Now we need a good lower bound for (x(2). We have

Ck(s) =¢(s) Z (%)m*s [18; p. 218, Example 2],

where (%) is the Jacobi symbol and D is the discriminant of K. Thus
2

@ ="(1+(3)3+(5)5+ )

Since (%) =0 or 1, this is

72 <1
> (1= _
- 6 (1 mz:SmZ)
72 5 72
> —(14+-—-—
= 6( ty 6)’
SO
(x(2) > Tn?/72.
Hence 32
Tp 11
t> —.
- 7272 + 6

Thus t > 2 for p > 7, and goes to co with p. That completes the proof
of Theorem 6.1. O

Using the formula of [16, p. 40] for (x(2), one can explicitly compute
Ck(2) for p = 3, and, using (6.4), show that ¢ = 2. Thus the exception
of Theorem 6.1 is genuine:
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PROPOSITION 6.5. Every rank 4 Azumaya Z[\/3]-algebra is isomor-
phic to a smash product.
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