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ALGEBRAIC VECTOR BUNDLES ON THE 2-SPHERE

RICHARD G. SWAN

Barge and Ojanguren [1] have recently shown that there is a 1-1
correspondence between algebraic and topological vector bundles on
the 2-sphere. This raises the problem of whether it is possible to give
a purely algebraic classification of these bundles. I will give here an
affirmative answer to this question. In particular, this gives a new
algebraic proof that the tangent bundle of S? is nontrivial. An algebraic
proof of this was previously given by Kong [7]. The present proof is
considerably simpler but applies only to the 2-sphere whereas Kong’s
method applies to all even dimensional spheres.

Ideally, one would expect such an algebraic proof to apply to all
real closed ground fields without the need to appeal to the Tarski
principle (cf. [8]). While the present proof is purely algebraic, it does
not meet this criterion since (in Section 2) it makes use of the fact
that the additive and multiplicative groups of the real numbers have
Archimedean orderings. I do not know if there is any easy way to avoid
this difficulty.

I have included a number of remarks pointing out connections with
topological results. These are not essential for the algebraic results
presented here. I have also included an exposition of the theory of
symplectic modules in an appendix for the convenience of those readers
not familiar with this theory.

I do not know if there is a quaternionic analog of these results. See
[14] for more information on this case.

I would like to thank Hongnian Li for pointing out a number of
misprints in an earlier version of this paper. I would also like to thank
the referee for suggesting a number of improvements in the exposition.

1. Known results. If R is a commutative ring we let P, (R) be the
set of isomorphism classes of finitely generated projective modules of
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rank n. Define P,(R) — P,4+1(R) by sending (P) to (P® R). If R is
noetherian, the stability theorems of Bass and Serre (see Theorems A.5
and A.6) show that this map is onto for n > dim R and an isomorphism
for n > dimR, so that P,(R) — Ky(R) is an isomorphisms for
n > dim R. Therefore, if R is a noetherian domain of dimension 2,
it is enough to give P;(R) = PicR, Ko(R), and Py(R) in order to
classify all finitely generated projective R-modules. If R is also an
affine domain over C, P,(R) = Ky(R) for n > 2 by [10, Theorem 1]
s0 it is enough to give Pic R and Ky(R).

Now let A = R[z,y,2]/(2®> + y?> + 22 — 1), and let B = C ®gr A. By
results of Claborn, Fossum, and Murthy [13, Part II] we have Pic A = 0,
Ko(A) = Z/2Z, and Pic B = K(B) = Z where Pic B is generated by
the invertible ideal p = (x + iy, 2z — 1) of B (see Section 3). This ideal,
considered as an A-module, also generates Ky (A). The sequence

Py(R) = P,(R) = P»(R) — P5(R) — --- = Ko(R)
thus takes the form

Z

L

052525 -
for R = B and the form
00— Py(A) »Z/2Z = --- > Z)2Z

for R = A. Therefore the following completes the classification of
algebraic vector bundles on S2.

Theorem 1.1 [1]. P(A) = {A%,p,p?,p3,...}, the given elements
being distinct.

In [1] it is shown by algebraic methods that P>(A)={A%,p,p2,p>,... }.
The distinctness follows by topological methods. The main result of the
present paper will be an algebraic proof of the following.

Theorem 1.2. p™ = p™ as A-modules if and only if m = £n.

This will be proved in Section 5 by reducing it to the following weaker
result.
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Theorem 1.3. Ifn # 0, then p™ is not free as an A-module.

As a consequence of this we get an algebraic proof of the nontriviality
of the tangent bundle of S2.

Corollary 1.4. Let T be the projective A-module defined by the
unimodular row (z,y,z). Then T is not free.

This follows from the well-known fact that T' ~ p? (see Lemma 4.9).

Following a suggestion of the referee, I will begin with a proof of
Theorem 1.3. This will make the proof of Corollary 1.4 more accessible
to those not familiar with the results and methods of [1]. T have also
included in Section 6 a brief account of the results needed from [1] to
complete the proof of Theorem 1.1. In Section 7 I will show that the
above results also hold for the localized ring Ag where S is the set of
elements of A with no zeros on S2.

2. Rouché’s theorem. Let f(t) € C(t) be a rational function of
t. Write f(t) = a[[(t — o) [1(t — B;)~*. If f has no zeros or poles on
St ={z€ C||z| =1}, we let §(f) = N — P where N is the number of
f with |a;| < 1 and P is the number of j with |5;| < 1.

Remark. §(f) is just the degree of the map f: S' — C*.

The following special case of Rouché’s theorem can be proved in a
purely algebraic way.

Theorem 2.1. Let f(s,t) € C(s,t) be a rational function of 2
variables. For any a € C write fo(t) = f(a,t). Suppose f(s,t) is
defined, finite, and nonzero on the set I x S* = {(s,t) e R x C |0 <
s < 1,|t| = 1}. Then 6(fo) = 6(f1).

Remark. This follows immediately from Cauchy’s theorem since

5(fa) = (2mi) ! / 1) fadt
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is an integer and varies continuously with a.

The usual version of Rouché’s theorem (for rational functions on the
unit disc) follows immediately: If f,g € C(t) are defined on S and
lg(t)| < |f(t)] on S, then §(f + g) = 6(f). We need only consider
ft) +s9(t).

The proof of Theorem 2.1 will be an algebraic version of the analytic
proof described above. Define S,,(f) = n~'Ef(¢) with the sum taken
over all n-th roots of unity.

Lemma 2.2. Let f € C(t) have no zeros or poles on S'. Let ¢ > 0
be given. Then there is an integer N such that |S,(tf'/f) —6(f)| < e
foralln > N.

Proof. Let f(t) = al[(t — ;) [1(t — B;)" L. Then f'/f = X(t —
a;) "t = X(t — B;) L. Therefore it will suffice to show that, for large n,
S, (t(t —a)™!) is arbitrarily close to 0 if |a| < 1 and arbitrarily close to
Lif o] > 1. But (1—a™)S,(t(t—a)™) =n"1E(("—a™)/((—a)) =
n 1B + al™ 4+ oo+ + Ca™ ) = 1. Therefore S, (t(t — o)1) =
(1 — a™)~! which clearly has the required properties. o

Remark. We are using here the fact that the ordering of the mul-
tiplicative group R* is Archimedean so that |a|™ becomes arbitrarily
large if || > 1 and arbitrarily small if |o| < 1.

Lemma 2.3. Let g(s,t) € C(s,t) be a rational function which is
defined and finite on I x S'. Then there is a constant M € R such that
lg(r,t) — g(s,t)| < M|r —s| for all 7,s € I and t € S*.

Proof. We can write g(r,t)—g(s,t) = h(r, s, t)(r—s) where h(r, s,t) €
C(r, s, t) is finite on I x I x S1. Write h(r, s,t) = p(r,s,t)/q(r, s,t) where
p and ¢ are polynomials with no common factor. Then ¢ is never 0 on
I x I x S' so there is a constant 7 > 0 such that |q(r,s,t)| > n for
(r,s,t) € I x I x St. For a purely algebraic proof of this, see [4,
9.2] (see also the remark following Corollary 2.4). Since I x I x St is
bounded, we can find a constant C' with |p(r,s,t)| < C on I x I x S*.
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Therefore, we can take M = Cnp~'. O

Proof of Theorem 2.1. Lemma 2.3 applies to g(s,t) = tf10f/ot.
Let € > 0. Since the ordering of the additive group R is Archimedean,
we can find an integer n such that 0 <7 < s<1land|s—7| <n7!
imply |g(r,t) — g(s,t)| < e for all ¢ in S*. Fix such r and s, and choose
N by Lemma 2.2 so that |S,(g4.) — d(fa)| < € for a = r or s, and all
n > N. Then |§(f;) — 6(fs)| < 26 + |Sn(9r — gs)] < 3e < 1if we
choose € < 1/3. Since 6(f,) and d(fs) are integers, this implies that
6(fr) = 0(fs). Therefore, 6(fo) = 6(f1/n) = 5(f2/n) = 6(fn/n) =46(f1)-

O

In the applications given in this paper, we will only need the following
special case of Theorem 2.1.

Corollary 2.4. Let f(z,y) € Clz,y] be a polynomial in two
variables. Assume that f divides a polynomial of the form 1+Xg;(z,y)?
where the g;(z,y) € Rlz,y]. Lett = z+ iy and w = z — iy and
write f(z,y) = h(t,w) with respect to these new variables. Then
o(t) = h(t,t7") € C(t) has §(p) = 0.

Remark. Note that h(t,w) = f((t+w)/2, (t —w)/2i). In the analytic
case we could put ¢t = exp(if) getting ¢(exp(if)) = f(cosf,sinf). Thus
the substitution used in Corollary 2.4 is just an algebraic version of the
classical substitution z = cosf, y = sinf used to integrate a function
along the unit circle.

Proof. We have h(t,w)H (t,w) = 1+ Xg;(x,y)? for some H. If t € C
and w = ¢, the corresponding values of z and y are real, so h(t,) # 0
for all t in C. Define (s,t) = h(st,st™!). If s € R and [t| = 1,
then st~! = st so 9(s,t) = h(st,st) # 0. Therefore, by Theorem 2.1,
0(p) = d(h1) = 6(¢po) = 0 since 9 is a nonzero constant. o

Remark. For Corollary 2.4 we can avoid the use of [4, 9.2] in the proof
of Theorem 2.1. We must apply Lemma 2.3 to g(s,t) = tp=19¢ /0t so,
in the proof of Lemma 2.3, we can take ¢(r,s,t) = t™(r,t)1(s,t)
for some m. Now, for (s,t) € I x S, we have (s, t)H(st,st™ 1) =
1 + Zgi(x,y)? > 1 since z and y are real. If |H(st,st™ )] < D for
(s,t) € I x S, we have |(s,t)| > D~! for (s,t) € I x S* and we can
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choose 7 = D2 in the proof of Lemma 2.3.

3. The Picard group. Let A = Rz, v, 2]/(2?+y*>+2%—1), and let
B = CQ®gRA. It is well known [13, Section 9] that Pic B = Z generated
by the invertible ideal p = (x + iy,z — 1). It will give another proof
of this here which will then be modified to give the main result of this
section. Let u =1 — 2z and v = 1 4 z. Since A = Au + Av, we have
localization squares

A——A, B——B,

L

AU — Auv Bv e Buv

The following is an observation of Murthy. It is essentially an
algebraic version of stereographic projection.

Lemma 3.1. A, = RI[{,n]11¢24,2 where § = x/u and n = y/u.

Proof. We have A, = Rlz,y,u,ut]/(2® + y*> + (1 — u)? — 1).
The relation is equivalent to z? + y? + u?> = 2u. Therefore u=! =
(1/2)(1 + € + 7).

Note that = = 2£(1 + €2 + n?)71, y = 2n(1 + €% + n*)~!, and
2=+ 1A+ +n*)"h

Similarly, A, = R[¢',n']i1e24y2 where ¢ = /v and ' = y/v.
The image of 1 + &2 + 12 in Ay, is 2(€2 + 2?)(1 + €2 + n?)~1 s0
Auo = RIE M @1e2 4n2) €2 4m2)-

The same results hold for B,, B,, and B,, with R replaced by C.
O

We recall the following standard fact for the reader’s convenience.

Lemma 3.2 [2, Chapter IX, Theorem 6.8].If R is a regular com-
mutative ring and S is a multiplicative set, then the natural map
Pic R — Pic Rg 1s onto.
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It follows that Pic B, = Pic B, = 0 so the Mayer-Vietoris sequence
for Pic B reduces to

U(By) ® U(By) — U(Buy) 3 Pic B — 0.

Now U(B,) = C* x Z where the Z term is generated by v = 2(1 +
€2 +»?)~. Similarly, U(B,) = C* x Z generated by v and U(By,) =
C* x Z* where the three Z factors are generated by ¢ + in, £ — in, and
1+ €2 +n?. Since v = u(£? + n?), it follows that Pic B = Z generated
by (¢ + in).

The same argument applied to A shows that Pic A = 0 since £2 + n?
is irreducible over R.

Remark. Tt is easy to see that (£ +in) = p = (z+iy,1 — z). In fact,
pu = By since u € p and p, = B,(z + ty) since (z + iy)(z — iy) = wv
and u = 1 — 2. Therefore, we obtain p by patching B, and B, via the
isomorphism (z + iy) : Buy & By, so 0(z + iy) = p. Since d(u) = 0
and (£ 4+ in)u = z + iy, we have 9(£ +in) = p.

Now let S be the multiplicative subset of A consisting of all elements
of the form 1+ fZ + f2 + --- + f2. The following is the main result of
this section.

Theorem 3.3. Pic B — Pic Bg is an isomorphism.

Remark. This would follow immediately from topological consider-
ations since B C Bg C C(S5?%) gives Pic B — Pic Bs — PicC(5?%) =
H?(S?%,Z) and the composition is known to be an isomorphism.

Remark. If T = {f € A | fis never 0 on S?} then Ag = Az and
Bg = Br by [16, Theorem 10.1]. This fact will not be needed here.

To prove Theorem 3.3, we consider the natural map of localization
squares

B ——— B, Bs ———— Bsu

-

B, —— By, Bsy ———— Bgsuy
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which gives us a commutative diagram

U(B.) ®U(By) — U(By,) —2 - PicB 0

|| I

U(Bsu)&U (Bs,) —— U(Bsyy) —2— Pic By —— 0.

The element & + in of U(B,,) maps to a generator of Pic B = Z.
Since Pic B — Pic Bg is onto by Lemma 3.2, it will suffice to find a
map U(Bsyy) — Z sending £ + in to 1, and annihilating the images of
U(Bsy) and U(Bgy)-

Let C = A/(z) = R[z,y]/(z% + y®> — 1). The natural map A — C
extends to Ay, — C. This sends v and v to 1, £ and &' to z, and 7
andn’ toy. Itsends Sto 7T ={14+¢?+g5+---+g2 | g; € C}. Let
D = C®gr C = CJ[t,t7!] where t = z + iy. The elements of 7" are
never 0on S' = {t e C| |t| =1} = {(z,y) € R? | 22 + y® = 1} s0
the map 0 of Section 2 defines a homomorphism ¢ : U(Dr) — Z. The
composition U(Bgyy) = U(Dr) — Z sends £ + in to 1, so it is enough
to check that it annihilates the images of U(Bg,) and U(Bgy).

Let V.={14+¢; +9g5+---+g2 | g € R[{,n]} with the notation
of Lemma 3.1. The image of S in A, consists of elements of the
form w = 1+ hi(z,y,2)* + ha(z,y,2)2 + -+ + ho(z,y,2)%. Recalling
that z = 26(1 + & +n2) L, y = 2n(1 + &2 + 7?1, and 2z =
(€2 4+ 1% —1)(1 + €% +n?)~ 1, we see that w can be written in the form
w = (1+&2+7*) "M (1+62+7*) Y +91(€, 1) +92(§,m)*+ - +9m (6, 1)}
and so lies in the multiplicative group generated by V. Therefore
C[¢,n]v is a localization of Bg,. Since V clearly maps to T in D,
it will suffice to show that the composition U(C[{,n]yv) — U(Dr) — Z
is 0 and similarly for the other map U(C[¢',n']v/) — U(Dr) — Z
corresponding to U(B,). In fact, these two maps are the same since ¢
and £’ both map to x, and 1 and 1’ both map to y in D.

An element of U(CI[E,n]y) has the form f/g where g € V and f
divides an element of V. We must therefore show that a polynomial
f dividing an element of V' maps to an element ¢ of Dp such that
5(p) = 0. If we write f(&,n) = h(€ +in, & — in), then ¢(t) = h(t,t™1)
so the required result follows from Corollary 2.4.
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Corollary 3.4. p% is not principal for n # 0.

Remark. Theorem 3.3 is equivalent to the following elementary fact
about the ring A: If f,g € A and f2 + g*> = (1 — 2)"t with n > 0,
where ¢t € A divides an element of S, then 1 — z divides f and g. To
see this, observe that, since (1 — z) = pp, (f + ig)B = p*p®a where
as = Bs. Since (f —ig)B = p°p®a, we see that n = a + b. Now pa~°
becomes principal in Bg so a = b # 0 and pp = (1 — z) divides f + ig.
Conversely, if p% = (f +ig)Bs, then (f>+¢%)Bs = (1—2)"Bgso 1—z
divides f and g giving the contradiction that pg, which divides 1 — z,
divides p%.

4. The main theorem. Let A be a commutative R-algebra which
is a domain. We begin by studying the endomorphism ring over A of
an invertible ideal I of B=C ®gr A. If f € End 4(I), we can write f
uniquely as f = g+h where g is B-linear and h is B-antilinear. For such
a decomposition, we necessarily have g(z) = (1/2){f(z) — if(iz)} and
h(z) = (1/2){f(z) +if(iz)} and it is easily checked that the functions
g and h so defined have the required properties. Since [ is an invertible
ideal of B, End g(I) = B and we can write g(z) = ax for some o € B.

We can also factor h as I — T i; I where the first map is complex
conjugation and k' is B-linear. Therefore h' € Hom g(I,I) ~ I~
and we can write h'(z) = yx so that h(z) = yZ. The following lemma
summarizes this discussion.

Lemma 4.1. IfI is an invertible ideal of B, there is an isomorphism
B@® T 3 End 4(I) sending (o, %) to f where f(z) = ax + .

If P is a finitely generated projective module and f is an endomor-
phism of P one can define the determinant of f to be that of f @ 1¢g
where P @ @ is free [6]. Similarly, the trace of f is that of f @ Og.
These definitions are easily checked to be independent of the choice of

Q.

Lemma 4.2. In Lemma 4.1 let « = a + ib and v = ¢ + id with
a,b,c,d € A. Then det (f) = a® +b% — 2 — d? and tr (f) = 2a.
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Proof. 1t is sufficient to calculate det (f) and tr(f) after tensoring
with the quotient field K of A. Note that K@ 2B = COr K = KQKi.
The endomorphism of this induced by f is still given by the formula
f(z) = az + yZ. With respect to the base 1,7 over K, this is given by

the matrix
at+c d—b
d+b a-c

which clearly has the stated properties. ]

Lemma 4.3. Let I be an invertible ideal of B. Suppose some
f € End o(I) has det f = —1. Then there are elements a and b of
A such that (I "11)1, 42442 is principal over By g2 2.

Proof. With the notation of Lemma 4.2 we have a®>+b%—c?—d? = —1
so that ¢ +d*> = 1+a?>+b%. Nowry =c+id € J = I ' and
¥y=c—1id € J=I1T=J1 Let A = Atiiazip2, B' = Biigzipe,
J' = J11a212, and apply the following lemma. u]

Lemma 4.4. Let J' be an invertible ideal of B' with J' = J'~'. If
there is an element v of J' with vy = u € B'*, then J' = B'~y.

Proof. Clearly J' O B'y. Conversely, if z € J’, then 2y € J'J =
J'J'=1 = B'. Therefore y = u~lz7y € B" and = = yy. O

Corollary 4.5. If an invertible ideal I of B is decomposable as an
A-module, then there are elements a and b of A such that (I7'1); 42442
15 principal over By a2 p2.

Proof. Suppose I = P ® @ over A with P and @ nonzero. Then P
and @ have rank 1. The endomorphism f =1, ® (—1)g of P & Q has
det (f) = —-1. O

Remark. Since this f has tr (f) = 0, we have a = 0 so there is even
an element b of A such that (I 1I); ;2 is principal over By .

Lemma 4.6. Let S = {1+ ff+ f3+---+ f2| fi€ A,n>0}. Then



ALGEBRAIC VECTOR BUNDLES ON THE 2-SPHERE 1453

in Ag, all elements of the form 1+ g% + g2 + - + g2,, gi € Ag are
units.

Proof. Write g; = h;/s where s = 1+ ff + f3+---+ f2 isin S. Then
14+g2+g5+-+g2 =s %t wheret =s>+h?+hi+ --+h2. By
multiplying out s? we see that ¢t € S. ]

We can now give an algebraic proof of Theorem 1.1. Here A =
Rlz,y,2]/(@®> +y*+22—1) and p = (z +iy,z — 1) in B= C®R A as
in Sections 1 and 3. As in Section 3, let S = {1+ fZ+ f2+---+ f2 |
fi € A,n>0}.

Theorem 4.7. Ifn # 0, there is no automorphism f of p'& over Ag
with det (f) = —1. The same is therefore true for p™ over A.

Proof. If there is such an f, then (p%) 'p% becomes principal over
Bs by Lemmas 4.3 and 4.6. Since p ~ p~!, (p%)~'p2 ~ p%* which, by
Corollary 3.4, is not principal unless n = 0.

Corollary 4.8. The modules p’ are not free over Ag for n # 0.

It follows that p™ is not free over A for n # 0 which proves Theorem
1.3.

Recall that the tangent bundle to S? corresponds to the projective
A-module T defined by the unimodular row (z,y, z). The following is
well known from topology.

Lemma 4.9. T ~ p>.

Proof. The module T has 3 generators «, 3,7y with the relation
za +yB + 2y = 0. Set u = x + iy and define f : T — p?
by fla) = (1/2){u? — (= — 1%}, £(8) = (1/2){u? + (= — 1%},
and f(v) = u(z — 1). Define a complex structure on T by setting
i =yy — 20, i = za — a7, iy = ¢ — ya. This is the usual complex
structure on the tangent bundle of S? obtained by identifying S? with
the complex projective line. It is easy to check that f is a map of
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B = C®gr A-modules, from which it follows by inspection that f is onto.
Since T and p? are B-modules of rank 1, f must be an isomorphism.
O

Corollary 4.10. T is not free.

Remark. Murthy has given a very simple algebraic proof that the
unimodular row z, y, z is not completable over the ring Rz, y, z|s where
s = (22 +y? + 22)(1 + 2% + y? + 22). However, there seems to be no
easy way to derive Corollary 4.10 from this.

5. Symplectic modules. The proof of Theorem 1.2 will make use
of symplectic methods. For the reader’s convenience, I have included
an exposition of the required results in the appendix to this paper. Any
unfamiliar notation or terminology used here can be found there.

Lemma 5.1. Let A be an R-algebra, and let B=C®gr A. If M is
a B-module, then S : Hom g(M, B) 5 Hom 4 (M, A).

If p € Hom g(M, B), write p(z) = f(z) + ig(z) with f(z),g(x) € A.
The map is given by I(¢) = g.

Proof. Since ¢(iz) = ip(z), we see that f(z) = g(iz). The
inverse of our map is then easily seen to be given by g +— 1 with
P(z) = g(iz) +ig(z). O

We now consider the case A = R|z,y, z]/(z? + y* + 22 — 1) and let
p=(r+iy,1—2) C B=CQnr A as in Sections 1, 3, and 4. Let
p = (z — iy,1 — z) be its complex conjugate. Then pp = (1 — z)
so p"p™ = (1 — 2)". Since Hom g(p™,B) = p ™ = (1 — 2) "p", we
can define an A-isomorphism p” = Hom 4(p", A) = Hom p(p™, B) by
sending a to (1—2z) "a@. This in turn defines a nondegenerate A-bilinear
form (, ), on p™ with (a, b), = S[(1—2) "ab]. Clearly, (a,a), = 0 since
aa lies in A so (, ), defines a symplectic structure on p". Let P, be p”
considered as an A-module with this symplectic structure.
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Remark. Note that (ia,ib), = (a,b),. It is well known [17, Chapter
1, No. 2] that giving such a form is equivalent to giving a Hermitian
form (,): M x M — B where (a,b) = (ia,b) + i{a,b). It is easily seen,
using Lemma 5.1, that (,) is nondegenerate if and only if (,) is.

Since Py = B has base 1,4 as an A-module with (1,7)o = 1, we see that
Py = H, the rank 2 hyperbolic A-module. Also, the A-isomorphism
p" 2 p~" by a— (1 — 2)"a is easily checked to give an isomorphism
PY = P, where PY = (Pp,—{,)n)-

Lemma 5.2. P,y L P, = P, 1 P, as symplectic A-modules for
alln € Z.

Proof. Let L be the quotient field of B, and let 6 : L& L 2rLeL by
6(a,b) = (a,b)M where M is the matrix given by

z+1 —1
M=(1N§)<1_zy (x—z’y)/(l—z)>'

An easy calculation shows that det M = 1 so the inverse is given by

-1 (@ —iy)/(1-2) 1
M _(1/\/§)< —-1+=z z+iy )’
Since z + iy, 1 —z € p and 1,(z — iy)/(1 — 2) € p~! we see that
a(pn @ pn) C pn+1 o) pnfl and 071(pn+1 o) pnfl) C pn @pn Therefore
6 restricts to an isomorphism 6 : p” @ p™ S p"tl @ pnl,
From the formula for M~! we see immediately that M ' =DpMmT
where M7 is the transpose of M and D is the diagonal matrix

b= <(1_0Z)_1 1Ez>

If (a,b)M = (c,d) and (a/,b')M = (c/,d'), then (¢,d)D(c,d" )’ =
(@,b)MDMT (a',b")T = (@,b)(a’,b')T = a@a’ + bb’ showing that aa’ +
bt = &' (1—2z)~1+dd' (1—z). Multiplying this by (1—2)~" and taking
imaginary parts gives {(a,a’), + (b,b'),, = (¢, ¢V n+1+(d,d'),,_1 showing
that 6 preserves the symplectic structure.
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Now let p, = [P,] — [Py] € KSpo(A). Then pni1 + Pni = Pn + Pn
and pg = 0 so we conclude that p,, = np; for all n.

Since Pic A = 0, we have an isomorphism ¢ : A2P ~ A for any rank 2
projective A-module P. Therefore we can give P a symplectic structure
by taking (p, ¢) = @(pAgq). It is easy to check that this is nondegenerate
by localizing to make P free. It also follows from the fact that A2P = A
that if (,) is one symplectic form on P, any other one must have the
form (,) = w(,) where u € A* = R*. If r € R*, the isomorphism
P — P sending z to r~!z transforms (,) to r%(,). Therefore, there are
at most two symplectic structures on P up to isomorphism, namely,
(P,(,)) and (P,{,))Y = (P,—{(,)). In particular, the two symplectic
structures on the A-module p™ are P, and P_,,. O

We can now prove Theorem 1.2. If p™ =~ p”, then P,, = P, or
P, = P_,. Replacing n by —n if necessary we can assume that
P,, = P,. Therefore, p,, = pn in KSpO(A) so that py—n = pm—pn = 0.
By Corollary A.11, it follows that P, ,, = Py = H and so p™ " is free
over A. This contradicts Theorem 1.3.

6. Results of Barge and Ojanguren. I will recall here some
results from [1] in order to give more explicit versions of certain
arguments for the case of S2. The results we need do not involve
the group W'/ (A) used in [1] and, in particular, we can avoid the use
of [1, Proposition 2.1] here. As in [1] we let W~ (A) be the Witt group
of symplectic A-modules. The definition of this is recalled at the end
of the appendix.

Remark. The arguments of [1] seem to require that 1/2 lies in A and
that all maximal ideals of A have height 2. These conditions are clearly
satisfied for two-dimensional affine domains over R.

The following lemma contains the results we need from [1].

Lemma 6.1. Let A be a smooth affine domain over R of dimension
two. Let P be a set of symplectic A-modules of rank 2 such that for any
mazimal ideal M of A there is an epimorphism P — 9N with P € P.
Then W~ (A) is generated by the classes [P] for P € P.
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Proof. We refer to [1, Section 3, Theorem 3.6] for the definition of
p(M,n) € W~(A) where M has finite length and  : M 5 M =
Ext? (M, A) is symmetric. The argument of [1, p. 626, last paragraph)]
shows that W~ (A) is generated by the elements p(A/9M,n) where I
runs over the maximal ideals of A. Let 91 be such an ideal. Find P € P
with an epimorphism f : P — 9. Since rk P = 2, the alternating form
on P gives an isomorphism AZ2P — A (easily seen by localizing). Form
the Koszul complex

05 AP 5P A A/m—0
where g(p A q) = f(p)g — f(¢)p. Since Agy is regular of dimension

2, this localizes to the usual Koszul complex. As in [ 1, p. 622, first
paragraph], we get a resolution

0 A—9 p_ T 4 A/m 0
(4 Jso
Y A A A
0 A P A (A/) ———0

of the type considered in [1, Theorem 3.3]. This shows that p(A/9M, ¢) =
[P] in W=(A). If c € A— M, then x — ¢~ x clearly gives an isomor-
phism (4/9M,n) ~ (A/9M,c*n) as noted in [1, Proposition 2.1]. There-
fore, if A/ = C, p(A/9M,n) is independent of 7, while if A/M =R,
there are two possible values: p(A/9M,n) and p(A/9M,—n). By [1,
Lemma 3.7], p(A/9M,—n) = —p(A/9M,n). Therefore, in either case,
p(A/M,n) = £p(A/M, ¢) = £[P], and the lemma follows. O

Now let A = Rlz,y,2]/(z* + y*> + 22 — 1), and let B = C @R A.
Lemma 6.2. If A/ = C, there is an epimorphism A% — M.

Proof. Let x,y,z map to a, 8,7 in A/ = C. At least one of these,
say «, does not lie in R. Find r,s € R with 8 + ra and v + sa in
R. Let f =y+rz—(8+ra)and g = z+ sz — (7 + sa). Then
A/(f,9) = R[z]/(h(z)) where degh < 2. Since A/(f,g) maps onto
A/ = C, it is clear that M = (f, g). O
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Let p be the invertible ideal (z + iy,z — 1) of B. Then p generates
PicB = Z. Now pp = (2 — 1) so p~! ~ p which is isomorphic to p as
an A-module by complex conjugation. Therefore, the two generators
of Pic B, p and p are isomorphic as A-modules.

Lemma 6.3. If A/ =R, there is an epimorphism p — M.

Proof. Let z,y, 2 map to o, 3,7 in A/91 = R. Since a?+p2++% =1,
we can find an orthogonal matrix over R sending («, 3,7) to (0,0,1).
By a corresponding linear change of coordinates, we can assume that
A =Rz, y, 2"/ (z? + y? + 2% — 1) with M = (2/,9/,2' — 1). Let
p' = (¢’ +iy’,2’ — 1). Then p’ as well as p generates Pic B. By the
remarks preceding the lemma, we see that p’ &~ p as an A-module. The
map R : B — A taking a1 + asi to a; is easily seen to map p’ onto M.
O

Recall that in Section 5 we defined p,, = [P,] — [Py] € KSpo(A).

Corollary 6.4. The map Z — KSpo(A) by n +— p, is an isomor-
phism.

Proof. We saw in Section 5 that this map is a monomorphism so
it will suffice to show that p; generates KSpo(A). By [1, Section 7]
or the remark below, KSpy(A) = W~(A). Apply Lemma 6.1 with
P = {Py, P1} noting that P, ~ p and Py = H ~ A? as A-modules, and
that Py = H represents 0 in K Spy(A) and W~ (A). O

Remark. The fact that KSpg(A) — W~ (A) is an isomorphism can
also be seen as follows. If @ is symplectic, then Q ® QY = H(Q) by
Lemma A.3. In particular, H(p) * P, L P/ 2 P, 1L P, 2 Py L
Py = H 1 H by Lemma 5.2 and the remarks preceding it. Since [p]
generates Ko(A), it follows that H : Ky(A) — KSpo(A) is zero so
KSpy(A) — W~ (A) is an isomorphism by the observation at the end
of the appendix.

The proof of Theorem 1.1 now follows easily. Consider the map
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PSps(A) — Po(A) which forgets the symplectic structure. Since
PicA = 0, we have A2P ~ A for any rank 2 projective A-module P.
As observed in Section 5, it follows that P has a symplectic structure,
showing that our map is onto. By Corollary A.11, PSps(A) 5
K Spo(A) so PSpa(A) = {P, | n € Z} by Corollary 6.4. Since p" ~ p~"
as an A-module by complex conjugation, we have P,(A) = {p™ | n > 0},
the elements being distinct by Theorem 1.2.

7. The real coordinate ring. As above, let A = R[z,y,2]/(z? +
y?+22—1),let B= C®rA,andlet S = {1+ fi+fi+---+f2| fi € A}.
In [16, Theorem 11.1] it is shown that the elements of P,(Ag) are in
1-1 correspondence with real vector bundles of rank n on S? (and
similarly for any S™). The stable case was proved earlier by Moore [9].
I will show here how to give an algebraic proof for this classification of
projective Ag-modules.

Remark. The maximal ideals of Ag correspond to those of A with
A/M = R, e.g., by [16, Theorem 10.4, Lemma 10.6], so that Ag can
be regarded as the “real” coordinate ring of S2.

Theorem 7.1. For any s € S, the maps P,(A) — P,(4s), P.(B) —
Pn(BS), Ko(A) — Ko(AS), Ko(B) — K()(Bs), KSpo(A) — KSp()(AS
are all isomorphisms.

The corresponding results for Ag follow immediately by taking
colimits.

Corollary 7.2. The maps P,(A) — P,(As), P.(B) — P,(Bs),
Ko(A) —» Ko(As), Ko(B) — Ko(Bs), KSpo(A) — KSpo(As) are all

isomorphisms.
We first recall a classical observation of Serre.

Lemma 7.3. If R is a commutative regular domain of dimension
< 2 and S is a multiplicative set in R, then P,(R) — P,(Rs) and
Ky(R) — Ky(Rs) are onto.
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In fact, if P is a finitely generated projective Rg-module, write
P = Mg where M is a finitely generated R-module. Then @ = M**
(where N* = Hom (V, R)) gives the required projective lifting [12,
Lemma 3.1].

That P;(B) — Pi(Bs;) is an isomorphism now follows from Theorem
3.3. Since P;(B) — P,(B) is onto, so is P;(Bg) — P,(Bgs) and this
is injective since P;(Bg) — Ky(Bs) is split by the determinant map.
The assertions of the theorem for B follow immediately.

Lemma 7.4. Ifs € S, Ky(A) 5 Ko (Ay).

Proof. Since A is regular, the localization sequence [2, Chapter IX,
Theorem 6.3] gives

Go(A/AS) — Ko(A) — Ko(AS) — 0.

Now Go(A/As) is generated by [A/p] for prime ideals p of A of height 1
which contain s and [A/9] for maximal ideals 9t of A which contain s.
Since A is a UFD, the ideals p are principal so [A/p] maps to 0in Ky(A).
If s € 9, then the definition of S clearly implies that A/9 = C. By
Lemma 6.2, we have a Koszul resolution

0—-A—=A* 5 A= A/M—0
showing that [A/9t] maps to 0 in Ko(A). O
Corollary 7.5. If s € S, P,(A) = P,(A,) forn > 3.
The case n = 0 is trivial, and the case n =1 is clear by Lemma 7.3

since Pic (4) = 0.

Now consider the diagram

Ko(A) —H— K Spo(4)

|

RKo(A,) —H . K Spo(A,).
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Since the top arrow is trivial by [1, Section 7] (see the remark after
Corollary 6.4) and the left vertical map is onto by Lemma 7.3, the

bottom arrow must also be trivial so that KSpo(A,) — W= (A,).
Let (pn)s = [(Pn)s] — [(Po)s] € KSpo(As) denote the image of p,
under the map KSpy(A) — KSpy(A4,). Since Lemmas 6.2 and 6.3
localize, we see, by Lemma 6.1, that K Spo(A,) is generated by (p1)s
as in Corollary 6.4. Tt follows that KSpo(A) — KSpo(As) is onto
and the elements of KSpy(A,) are the n(p1)s = (pn)s for n € Z. If
the map Z = KSpo(A) — KSpo(As) is not injective, then, as in the
proof of Theorem 1.2, some (P,)s will be hyperbolic and therefore
free, contradicting Corollary 4.8. This shows that Z = K Spo(A) 5
K Spy(A,) by the map taking n to (py,)s.

Since PicAs = 0, PSpa(A4s) = RSpO(AS) maps onto Ps(As) as
in the proof of Theorem 1.1 in Section 6, showing that Py(A;) =
{A2,p,,p2%,p3,...}. In order to show that these elements are distinct,
we must first examine the action of the group of units on K Spy which
is defined as follows. If u € R* and (P, (,)) is a symplectic R-module,
define uo(P, (,)) = (P, u(,)). This preserves direct sums and hyperbolic
modules and so induces actions of R* on KSpy(R), KSpo(R) and
W= (R).

Now let R be a smooth two-dimensional affine domain over R. Let M
be an R-module of finite length, and let ¢ : M — M be symmetric and
nondegenerate. If a € R induces an automorphism a : M A M , define
ao (M,p) = (M,ap). This is again symmetric and nondegenerate.
Note that a® o (M, ) ~ (M, ) via the map M — M sending z to
a~!z. The construction of [1, Section 3] defines an element p(M, ¢) in
W~ (R).

Lemma 7.6. p(M,up) = uo p(M,p).

Proof. By [1, Theorem 3.3], p(M, ) is represented by a symplectic
module K which fits into a diagram

0 pr—t g5 .p_a 0
N ok * Y ~
0 pr_=5 gt p By 0




1462 R.G. SWAN

where ¢(z) = (z, —) and 8 € Hom (P, M) ~ Ext 2(M, P*) corresponds
to the extension class of the top row. Replacing ¢ by ¢’ = u~!¢ changes
this extension class to 3’ = u/3, and we get a commutative diagram

0 pr—t g5 p_a .y 0
A ¥ I ' / )
0 pro= g " p By 0.
The lemma follows immediately from this. a

Now let A and s be as in Theorem 7.1. If 97 is a maximal ideal of
As with A;/9T =R and u € A%, define sgn gn(u) = sgn (u mod M). If
9 corresponds to the point p € S?, then sgn on(u) = sgn (u(p)).

Lemma 7.7. sgngy is independent of IN.

Proof. This is clear by continuity, but a simple algebraic proof can
be given as follows. If p,q € S2, take a plane section through p
and ¢, reducing the problem to the case of S!. Choose coordinates
on S' such that p,q # (—1,0) and parametrize S' by (z,y) =
(1=t%)/(1+¢%),2t/(14+¢?)). Thenu = f(t)/(1+t*)N where f(t) has no
real zeros and so is of constant sign, showing that sgnu(p) = sgnu(g).
The fact that f is of constant sign can be checked algebraically by
factoring into quadratic factors and completing the square. ]

Lemma 7.8. Let P be a rank 2 symplectic As-module. Let u € A}
with sgn (u) = 1. Then wo P 2 P as a symplectic module.

Proof. Identify PSpsy(A,) = KSpo(As) = W (A,). By the Bertini
argument of [1, p. 626, last paragraph], we have P = p(A/I,¢) as a
symplectic module, where I = N9; the M; being distinct maximal
ideals. By Lemma 7.6, uo P = p(A/I,up). If A/M; = R, the fact
that sgn (u) = 1 shows that we can write u = a? mod 9;. The same is
trivially true if A/9; = C. By the Chinese remainder theorem we can
write u = a® mod I so (A/I,up) = (A/I,a*p) ~ (A/I,p). Therefore
uo P =p(A/I,up) = p(A/I,p) = P.



ALGEBRAIC VECTOR BUNDLES ON THE 2-SPHERE 1463

Corollary 7.9. If P is a rank 2 projective Agz-module which is not

free, then

Aut (P) % A7 % (£1} > 1

18 exact.

Proof. If u € A and sgn (u) = 1, Lemma 7.8 gives us an automor-
phism f of P with f: (P,(,)) = (P,u(,)). Clearly det (f) = u, showing
that im (det) D ker(sgn). This inclusion cannot be proper otherwise
im (det ) = A% contradicting Theorem 4.7.

We can now show that the indicated elements of Py(A;) =
{A2,p,,p2%,p3,...} are distinct. Lemma 7.8 implies that there are at
most two nonisomorphic symplectic structures on p”, namely, (P,)s
and (P_p)s = (P,)Y. If p™ =~ p7, it follows that (Pp)s = (P,)s or
(Pm)s = (an)s- Therefore, (pm)s = (pn)s or (pfn)s which implies
that m = +n. ]

APPENDIX

For the reader’s convenience, I will include here a brief outline of
Bass’s theory of symplectic modules which is used in Sections 5, 6 and
7. A much more general discussion can be found in [3]. All rings
considered here will be commutative.

A symplectic A-module here will mean a finitely generated projective
A-module P with an alternating bilinear form (,) : P x P — A which is
nondegenerate, i.e., P = P* = Hom 4(P, A) by the map p — (p, —). I
will write P = @ to indicate an isomorphism preserving the symplectic
form (,).

The orthogonal sum P L @ of two symplectic modules is the direct
sum P & Q with ((p,p'),(¢,¢")) = (p, @) + (', 7)-

Lemma A.1. Let P be a symplectic A-module, and let Q C P be
a submodule which is symplectic with respect to the restriction (,) | Q.
Define Q+ = {p € P | {p,Q) = 0}. Then Q* is also symplectic and
P=Q 1LQ*.

Proof. Q N Q+ = 0 since Q is symplectic and (Q N Q+,Q) = 0. If
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p € P, there is a ¢ € Q such that (p, —) | Q = (¢, ) sop — ¢ € Q*+
showing that P = Q @ Q*. Since (Q+,Q) = 0, the isomorphism
P = P* is the direct sum of Q — Q* and Q+ — Q1* so these are also
isomorphisms and Q-+ is also symplectic. ]

If M is a finitely generated projective A-module, we define the
hyperbolic module H(M) to be the symplectic module H(M) = M &
M* with {(a, ¢), (b,¢)) = ¥(a) — ¢(b). In particular, I will write H for
H(A), the free A module with basis e, f and (e, f) = 1. By H" I will
mean H(A")=H 1 H.l--- 1 H.

Lemma A.2. If P is a symplectic A-module, there is a bilinear form
b: P x P — A such that (z,y) = b(z,y) — by, x).

Proof. Since P is a finitely generated projective A-module, we can
find a finitely generated projective A-module @ with P & Q free. Let
F=P 1 P 1 H(Q). Then F is symplectic and is free as an A-module
since F = PPPPQPQR"but P~ P*so PHQR* ~ P*P Q*F
is free. Let {e;} be a basis for F, and let (e;,e;) = a;; so that
(Xxie;, Yyjej) = Yaijx;y;. Note that a;; = 0 and aj; = —a;;. Let
bij = a;; if i < j and b;; = 0 otherwise. Set b(x,y) = Xb;;x;y;. Then
(z,y) = b(z,y) — b(y,z) for all z,y € F, and restricting b to P gives
the required form.

Since P ~ P* we can define the dual PV of P by simply changing
the sign of the alternating form (P, (,))Y = (P, —{,)). O

Lemma A.3. If P is a symplectic A-module, then P 1 PV = H(P).
Of course, we ignore the symplectic structure on P in defining H(P).

Proof. Let b be as in Lemma A.2 and define § : P 1L PV —
H(P) = P D p* by e(xay) = <£I? + yab(ya_) + b(_’w» Then
ker§ ¢ D := {(-z,z) | z € P}. Note D ~ P as an A-module.
Now 0(—z,z) = (0,b(z, —) + b(—,—z)) = (0, (xz,—)) so 0 induces the
canonical isomorphism P ~ D = P*. Therefore, kerd = 0 and
0@ P* C im#6. Since im# clearly projects onto P, we see that € is
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also onto. An easy calculation shows that 6 preserves the symplectic
form. mi

Corollary A.4. If P is a symplectic A-module, there is a symplectic
A-module Q with P 1 Q = H™ for some n < 0o.

Proof. Let P ® P’ ~ A" be a free A-module. Then we can choose
Q = PV 1 H(P') since P L PV 1 H(P') 2 H(P) L HP) =
H(PoP')~H" o

If P is a finitely generated projective A-module and p is a prime
ideal of A, then P, is free, and we denote its rank by rk, P. We write
rk P > r if rky P > r for all p. Recall that an element x of P is called
unimodular if there is a homomorphism P — A such that x — 1.

Definition. The projective stable range psr (A) is defined as follows:
psr (A) < r if whenever P is a finitely generated projective A-module
of rank > r and (a,z) € A@ P is unimodular, we can find y € P such
that = + ay is unimodular.

The following two theorems summarize the well known stability
theorems of Bass and Serre. Proofs may be found in [2] and [5]. A
short exposition is given in [15].

Theorem A.5. (Bass). If A is noetherian, psr (A) <1+ dim (A).

More generally, psr (A) < 1+ dimm — spec (A).

Theorem A.6. Let P be a finitely generated projective A-module
such that rk P > psr (A). Then

(1) P~ A@® P’ for some P'.
(2) fA® P~ A®P, then P~ Q.

The main result proved here is the following theorem of Bass [3] which
gives a symplectic analog of Theorem A.6.
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Theorem A.7. (Bass). Let P be a symplectic A-module.

(1) IftkP > psr(A), then P = P’ 1 H for some symplectic A-
module P’.

(2) IftkP >psr(A)—1and P L H>=Q 1L H, then P = Q.

The importance of this for the study of projective modules is that
the rank bound in (2) is improved by 1 over that in Theorem A.5(2).

Proof. (1) Since (1,0) € A®P is unimodular, thereisay = 0+1y € P
which is unimodular. Since {,) is nondegenerate, we can find an z € P
such that (z,y) = 1. Now Q = Az + Ay is free on z and y since
az + by = 0 implies a = {(az + by,y) = 0 and similarly b = 0. Clearly
Q = H and (1) follows from Lemma A.1.

(2) Bass defines a symplectic transvection of a symplectic module M
to be an automorphism of the form

o(z) = oywa(®) =2+ (u,x)v + (v, 2)u + alu, z)u

where a € A, u,v € M, and (u,v) = 0. It is easy to check that
(ox,0y) = (z,y) and that the inverse of ¢ = 0y, is given by
O " =0y-v,—a-

Here we will take M = P 1 H =P @& A® A, writing the elements
of M as (p,b,a) with b,a € A, and we will consider only symplectic

transvections with v = (y,0,0) for some y € P and with either
(I) w=(0,1,0) or (II) u = (0,0, —1). These have the form
(1) o(p,b,a) = (p+ay,b+ (y,p) + aa,a).

(II) T(pa ba a) = (p + bya ba a— <y7p> + ﬁb)

Suppose that § : Q L H = P L H. Let 6(0,0,1) = (p,b,a) which
is unimodular since (0,0,1) is. Since rank (P & A) > psr(A), we can
find ay € P and a € A with (p + ay,b + aa) unimodular in P & A.
Let o be the corresponding symplectic transvection of type (I) taking
(p,b,a) to (p+ ay,b + (y,p) + aa,a) = (p',b',a). Note that (p/,V') is
also unimodular since we can transform it to (p + ay,b + aa) by an
ordinary transvection of the form (z,&) — (z,& — (y, z)).

Now since (p',b’) is unimodular, we can clearly find a symplectic
transvection 7 of type (II) transforming (p,?’,a) to (p”,b',1). We can
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then find a symplectic transvection o’ of type (I) transforming (p”, b’, 1

to (0,0,1). Soif 8 = o'ro0 : Q L H = P 1 H, then 6'(0,0,1) =
(0,0,1). Let 6'(0,1,0) = (p1,b1,a1). Since ((0,1,0),(0,0,1)) = 1, we
have by = ((p1,b1,01),(0,0,1)) = 1. A symplectic transvection 7 of
type (II) now takes (p1,b1,a1) to (0,1,0) and clearly fixes (0,0,1). It
follows that #” = 70" : Q L H = P 1 H sends H isomorphically onto
H and therefore sends Q = H+ in Q L H isomorphically onto P = H+
in Pl H.

If Ais a field, psr(A) = 1 and (1) implies that every symplectic
module is isomorphic to H™ for some n since it is obviously impossible
to have a symplectic module of rank 1. In particular, the rank of any
symplectic module is even. For any A, if p is a prime ideal of A, let
k(p) = Ap/pAp and define rk, (P) = dim () (k(p) ® 4 P) which is even
since k(p) ®4 P is a symplectic module over the field k(p). As in [2,
Chapter IX, Section 3], we get a function p — rky,(P) in 2Hy(A) where
Hy(A) is the ring of continuous Z-valued functions on Spec A. When
A is a domain, Hy(A4) = Z. mi

Define K Spo(A) to be the Grothendieck group with generators [P]
for each symplectic module P and relations [P L Q] = [P] + [Q]. Just
as in ordinary K-theory, we have the following lemma [15, Corollary
6.2].

Lemma A.8. (1) Any element of KSpo(A) has the form [P] —n[H].

(2) [P] = [Q] in KSpo(A) if and only if P L H™ = Q L H™ for some
n < 00.

In fact, (1) follows by expressing any element as [Q]—[P] and applying
Corollary A.4 to P, and (2) follows by writing out [P] —[@Q] = 0 in terms
of the defining relations [P 1 Q] = [P] + [Q)]-

We have a map rk : KSpo(A) — 2Hy(A) sending [P] to the function

p — 1k, (P), and we define K Spo(A) to be the kernel of this map.

Let PSp,(A) be the set of isomorphism classes of symplectic A-
modules of rank n. Define PSp,(A) — PSpni2(A) by sending P to
P 1 H. Define PSps,(A) — KSpo(A) by sending P to [P] — n[H].
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Corollary A.9. colim PSp,,(A) = KSpy(A).

Proof. The ontoness follows from Lemma A.8 (1) and the injectivity
from Lemma A.8 (2). O

As a special case of Theorem A.7, we have

Corollary A.10. (1) Ifpsr A <2n+1, then

PSpon(A) 3 PSponia(A) S - 5 KSpy(A).

(2) If psr A < 2n, then PSpan_2(A) - PSpan(A) is onto.

_Corollary A.11. If A is noetherian of dimension 2, then PSpa(A) 5
K Spo(A).

This special case of [3, Chapter IV, 4.11.2, 4.16] was used in [11,
Theorems 1.1, 1.2].

We can define a map H : Ky(A) — KSpo(A) by sending [P] to
[H(P)]. The cokernel of this map is, by definition, the symplectic Witt
group W~ (A) used in [1]. Since the diagram

Ko(A) —H s K Spy(A)

Ho((4) —2— 2Hy(A)
is commutative, we see that W~ (A) is also the cokernel of H : Ko(A) —
K Spo(A). In particular, K'Spo(A) — W~ (A) is an isomorphism if and
only if H : Ko(A) — KSpo(A) is zero.
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