ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 24, Number 2, Spring 1994

WEAK COMPACTNESS IN THE SPACE
OF VECTOR-VALUED MEASURES
OF BOUNDED VARIATION

NARCISSE RANDRIANANTOANINA AND ELIAS SAAB

ABSTRACT. Let X be a Banach space and (£2,X) a mea-
sure space. A characterization of relatively weak compact sub-
set of the space of X-valued countably additive vector mea-
sures of bounded variation defined on X is given.

1. Introduction. Let X be a Banach space, (£2, X)) a measure space.
We denote by M(,X) the space of X-valued-countably additive
measure on ({2,3) of bounded variation.

Recently Ulger [6], Diestel, Ruess and Schachermayer [2] gave a
characterization of weakly compact subsets of L'(X). The only known
characterization of weakly compact subsets of M (€, X) is given by the
following theorem:

Theorem A (Bartle-Dunford-Schwartz) [3, p. 105]. Suppose X and
X* have the Radon-Nikodym property (RNP). A subset K of M (2, X)
1s relatively weakly compact if and only if

(i) K is bounded,
(il) K is uniformly countably additive,

(ili) For each A € X, the set {G(A);G € K} is a relatively weakly
compact subset of X.

It turns out that one can show, using similar methods as in [4], that
if (i), (ii) and (iii) are to characterize relatively weakly compact subsets
of M(€,X), then X and X* must have the Radon-Nikodym property.

The use of the Radon-Nikodym derivative was essential in the proof of
Theorem A to reduce the study of weakly relative compact subsets of
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M(£2, X) to those of L'(\, X). When X does not have the Radon-
Nikodym property one cannot hope to represent a measure by its
Bochner derivative, but the next best thing to a Bochner derivative
is a weak*-derivative valued in X**. The lifting of L°°()\) comes in
handy to construct such a weak*-derivative. That is, the approach we
will take to give a characterization of relatively weakly compact subsets
of M(Q, X) is similar to those given by Ulger [6] for L'(\, X). This
approach was used to Talagrand in [7]. In this paper we follow and
adopt Talagrand’s techniques to obtain our result.

2. Definitions and some preliminary results. Let (2,X) be a
measure space and X a Banach space. For m € M(Q, X), we denote
by |m/| its variation. Let A be a probability measure on Q with |m| < A,
and let p be a lifting of L>°(X) [5]. For z* € X*, the scalar measure
x* o m has density (d/d\)(z* om) € L*(X). We define p(m)(w) to be
the element in X** defined by

p(m)(@) (@) = p (" o m) (@)

It is known (see for instance [1]) that z*(m(A)) = [, < p(m)(w),
z* > dA(w) for each measurable subset A of Q and each z* € X*.
Similarly, it can be shown that |m|(A) = [, ||p(m)(w)|| dA(w) for each
measurable subset A of Q. In case X = Y™ is a dual space, p(m)(w)
will be the element in X = Y* defined by

p(m)(@)() = p(yom)(w)  for every y € Y.

Before stating the first proposition, let us introduce the following
notation: For A a probability measure on (£2,X), we denote by

W, X) = {me M, X) | |m| <A}

Proposition 1. Let Y be a Banach space and (Gp)p a sequence in
W(X,Y™*) so that

(1) Gp(A) converges weak® to 0 for each A € .

(ii) There is a lifting p of L(X), such that p(Gp)(w) converges
weakly in Y* for X a.e. w then Gy, converges to 0 weakly in M(2,Y™).
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Proof. The idea is contained in the proof of Theorem 15 in Tala-
grand’s paper [7]. The only difference is that the y; chosen below are
taken from the predual while the corresponding ones in Talagrand’s
paper are taken from the triple dual. Let us introduce the following
subset B of the unit ball M(Q,Y*); of M(Q,Y*)* as follows: an ele-
ment p € B if and only if there exist a finite partition of measurable
subsets A1, As,..., A, of Q and yq,...,y, in Y7 the unit ball of Y so
that

p(m) =Y yi(m(A;))  forallme M(Q,Y*).

i<n

The set B is clearly convex, and for each m € M(Q,Y ™) one has
[Im|| = |m| = sup{@(m),y € B}
so B is weak*-dense in M(Q,Y™*);. For each m € W(\, Y™*), let
Z(.,m): B — L*()\)
given by

Z(p,m) =Y yi(p(m) () Xa, (-)-

i<n

Notice now that, for each A € X,
(4 (oo} = [ Z(em)w) dx(w)
where m4 : ¥ — Y*, mA(A") = m(AN A’) for all A’ € %, in particular

(o) = / (0, m) (w) dA(w).

From (%), one can deduce that Z(.,m) : B — L1()) is weak* to weak
uniformly continuous. So the map ¢ — Z(yp,m) has a continuous
extension (still denoted by Z(p,m))

Z(.,m): M(Q,Y*); — L*()).

Before we proceed, we need the following lemma:
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Lemma 1. For a fized ¢ € M(Y*)*, |l¢|l| < 1 and a sequence
(Gp)p in W (A, Y™), there exists a countable subset D of the unit ball

of Y and a map w — g(w) € ﬁg(y**’y*), so that for each p € N,
Z(p,Gp)(w) = g(w)(p(Gp)(w)), A almost everywhere.

Proof of the lemma. Here we adopt the methods in [7] to our
situation. Since B is weak*-dense in M(Q,Y™*);, choose as in [7] a
sequence (p,) in B so that

||Z(<pn7Gp) - Z((vap)Hl S 2"

for each p < n.

Hence lim,, o Z(¢p, Gp)(w) = Z(p,Gp)(w) a.e. for all p € N. Let
on(m) =3 icp Yin{m(Ain)} and D = {y; nln > 1,4 < k,,} countable
subset of the unit ball of Y. Now consider an ultrafilter ¢/ on N and

for each w € Q, let g(w) € D°YY) be the weak*-limit along U of
the sequence (Yj(n,w),n)n Where i(n,w) is the unique i < k, so that
w € Aj(nw),n- We now have

Z(pn, Gp) (W) = D < p(Gp)(@), Yin > Xa,, ace.

i<kn
= p(Gp) (w) (yi(n,w),n)

and hence

Z(p,Gp)(w) = 9(w)(p(Gp)(w)) ace. O

We are now ready to prove the proposition.

Assume for the contrary that there exist ¢ € M(Q,Y*);, e > 0 and a
subsequence (G},), C (Gy) so that ¢(G},) > € for each p € N. Applying
the lemma on (G},)pen, We have

e < /Z(@,G;)(W)dk(w) = /g(w)(p(GL)(w))d/\(W)

taking the limit on p, we have

e < / 9(@)(y(w)) dA(w)
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where
y(w) = weak-limit of p(Gp)(w).

This implies that we can find A € ¥, A(A) > 0, so that g(w)(y(w)) >0
for each w € A. We claim that there exists A’ C A, A\(4A") > 0
and v € D such that y(w)(v) > 0 for w € A’. To see this, let
D = {z,,n > 1} and fix 4, = {w : y(w)(z,) > 0}. We claim that
A C UpA,. To see this, let w € A, y(w)(z(w)) > 0, and since

g((,U)(y((U)) = 111/1{11 y(w)(yi(w,n),n)a and Yi(w,n),n eD

we can find z, € D so that y(w)(z,) > 0. This shows that w € A,.
Now notice that 0 < A(A4) < A(UpA4,), and hence there exists ng, so
that A(4,,) > 0; fix A’ = A,, and v = z,, € Y, and the claim is
proved. Since

@64 = [ p(E)w)0) dNw)

!

converges to
/ y(w)(v) dA\(w) > 0 as p approaches oo,
we get a contradiction with condition (i). O

The next two lemmas are well known and can be found in [1] and [6],
respectively.

Lemma 2 (A. Grothendieck). A subset A of a Banach space E is
relatively weakly compact if and only if, given any € > 0, there exists a
relatively weakly compact subset H. of E such that A C H. + eBjy.

Lemma 3. Let A be a bounded subset of a Banach space E. Then
the set A is relatively weakly compact if and only if, given any sequence
(yn) in A, there exists a sequence g, with g, € conv (Yn, Yn+1,-..) that
converges weakly.

3. Main results.
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Theorem 1. Let X be a Banach sapce, (2, 2) a measure space and
A a probability measure on (Q, %), and let H be a subset of W (A, X).
Then the following are equivalent

(1) H is relatively weakly compact in M(Q, X);

(2) Given any sequence (my,)n in H and a lifting p of L= (), there
exists (My)n with m, € conv (m,,Mpy1,...), such that the sequence
p(my,)(w) converges weakly in X** for X a.e. w;

(3) Given any sequence (my,)y, in H and a lifting p of L>(X), there
exists (My)n, with M, € conv (M, Mp41,...) such that the sequence
p(my)(w) converges (in norm) in X** for X a.e. w.

Proof. (1) = (3). Assume that H is relatively weakly com-
pact and (my), € H; by Lemma 3, there is a sequence m, €

conv (Mmp, Mp41,...), so that (Mm,) is weakly convergent in M (2, X)
to a measure m € conv(H). By Mazur’s theorem there exists
m,, € conv (M, Mpi1,...) so that ||m], —m|| — 0 which means that

[ llp(ml,)(w) — p(m)(w)|| dA(w) — 0, and, by taking a subsequence 7!,
of m, (if necessary), we have p(m ”)(w) — p(m)(w)A a.e. which shows

(if
= (3).
(3) = (2) is trivial.
( ) = ( ). Consider (m,), C H and m,, € conv (my,,Muy1,-..) as
(2
y(w) = {Weak—limit of p(my,)(w), if this limit exists
0 otherwise '

It is evident that y(w) € X**, ||y(w)|| < 1 for A a.e. w and the map
w — y(w) is weak*-scalarly measurable. Let m : ¥ — X** given by
m(A) = weak*- [, y(w) dA\(w). Now for each z* € X* and A € £, we
have

m(4),2%) = [ (y(w)a) dA@)

A

_ / lim (p(n) (@), 7) dA(w)
A

n—oo

= lim [ (p(1in)(w),2") dA(w)

n—oo A

= lim (m,(4),z")

n—o0
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so m(A) = weak*-limit of m,(A) in X**. Using Proposition 1 with
Y = X*, we must have m,, — m converges to 0 weakly in M (Q, X**),
and since M (€, X) is a closed subspace of M(Q, X**) and (), C
M(Q, X), then m € M (R, X) and 7, — m weakly in M (€, X). This
proves that H is relatively weakly compact (Lemma 3). O

The next theorem shows that all cases can be reduced as in Theorem
1.

Theorem 2. A subset A of M(Q2, X) is relatively weakly compact
if and only if there exists a probability measure A on (2,X) so that,
for each (my), in A, there is a sequence M, € conv (M, Mpi1,...)
which satisfies the following: given € > 0, there exist an integer
N and a relatively weakly compact subset H of NW(\ X) so that
{Mn,n > 1} C H 4+ B where B denotes the unit ball of M (2, X).

Proof. Assume that A is relatively weakly compact. V(A4) =
{|m|,m € A} C M(R) is relatively weakly compact. It is well known
(see, for instance, [3]) that there is a probability measure A on (£, X)
so that V(A) is uniformly A-continuous, i.e.,

Ve > 0,36 >0 sothat if A(B) < d,|m|(B) <e forallme A.

Fix (m,), a sequence in A. Let f,, be the A-density of |m,|. There
exists a subsequence f,,; which converges weakly in L'()\) to a function
f. By Mazur’s theorem, there is a sequence g; € conv (fn;, fn; 15---)s
such that g; converges to f in norm. By taking a subsequence, if neces-
sary, we may assume that g;(w) converges to f(w)\ a.e. Consequently
sup; gj(w) < oo for A a.e., so we have Q = (Un{w : sup; g;(w) <
N}) U Z where Z is a set of measure zero. Now fix £ > 0, consider
6 > 0 from the definition of the uniform integrability and choose N so
that

A{w :supgj(w) >N} <6 andlet E ={w:supgj(w)< N}
J J

if

9i =Y MNfn, and > N =1

] 1>j
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Consider

~ _ ] ~
mj = E XMy, My € CONV (Mg, My i1y -- - )-
l>j

The sums above are, of course, finite sums. Let us denote by mZ the
measure > — X given by mZ(B) = m,(BNE). Let H = {mf n > 1}.
Since {my,n > 1} C conv (A4), which is relatively weakly compact. H
is realtively weakly compact. Also, we have H C NW (), X), in fact

[7E(B)|| = lin(E 0 B)| s/

BN

gnd\ < NA(B).
E

Finally, let us notice that m,, = mZ +mf" and ||mE"|| = |m,|(E°) <
ijn )\?|mnj |(E€) <, s0

{mn,n>1} C H +¢eB.
The converse is an immediate consequence of Lemma 2. u]
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