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CLOSED INCOMPRESSIBLE SURFACES
OF ARBITRARILY HIGH GENUS IN THE

COMPLEMENTS OF CERTAIN STAR KNOTS

RICHARD F. GUSTAFSON

1. Introduction and preliminaries. One of the several results
presented by U. Oertel in [2] is the determination of the closed incom-
pressible surfaces in the complements of most star knots. Presented in
this paper are the cases for some star knots not included in Oertel’s
discussion. A brief sketch of the terminology and definitions follows.

A “tangle” is a set of two tangled arcs embedded in a 3-ball B, both
of whose endpoints lie in S2 = ∂B (e.g. Figure 1). The construction of
a rational tangle originates from “drawing slope p/q lines on a square
pillowcase starting at the four corners” [2], p/q ∈ Q with (p, q) = 1
(e.g., Figure 2).

The star knots are formed from geometric sums of rational tangles
which follow a prescription K(p1/q1, p2/q2, . . . , pk/qk) so that adjacent
endpoints of the tangles match in pairs to form the knot (e.g., Figure
3). Cases where K is a knot provide that qi ≥ 2.

Oertel constructs his closed incompressible surfaces in S3 −K in two
steps.

The first is the selection of a finite collection of disjoint 4-punctured
spheres each of whose intersection with the plane of projection of K
consists of simple closed curves which intersect K transversely at four
points on the arcs of K joining tangles.

The second step is to complete the closed surface by a sequence of
peripheral tubing operations which connect the punctured spheres.

If a 4-punctured sphere bounds a ball which contains more than one
rational tangle, the ball is a “Seifert tangle” denoted (B; p1/q1, . . . ,
pk/qk) (Figure 4). The sphere ∂B − K is incompressible in S3 − K
if and only if it bounds a Seifert tangle on each side which is not a
rational tangle (cf. [2, Corollary 2.14]).
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FIGURES 1 6.

Additionally, if qi ≥ 3 for each i, then a surface obtained from disjoint
incompressible 4-punctured spheres by a sequence of tubing operations
is incompressible if and only if each tube passes through at least one
rational tangle (cf. [2, Theorem 2]).

2. The exceptions. The interest here is one of Oertel’s results



CLOSED INCOMPRESSIBLE SURFACES 541

FIGURE 7.

which states that if qi ≥ 3 for each i, k ≥ 4, and K is a star knot, then
S3 − K contains closed incompressible surfaces of every genus ≥ 2 (cf.
[2, Corollary 3]). Also required is that

∑k
i=1 pi/qi �= 0.

If some qi = 2, then tubing some incompressible spheres can result in
a compressible closed surface.

Figure 5 presents such a case. Figure 5(a) shows a tubing scheme
for (B;−1/2, 1/3) (Figure 4) and Figure 5(b) presents another view.
There are two arcs in B = (B;−1/2, 1/3).

The arc from p1/q1 = −1/2 can be completed on ∂B to a circle while
the other arc completes on ∂B to a trefoil τ . This is illustrated in
Figure 5(c). Because the arcs which join points on a sphere are unique
up to homotopy preserving the end points, by adding disjoint arcs in
the closure of ∂B∪{a-tube, b-tube} one obtains a pair of simple closed
curves with linking number “one.” The tube in Figure 5(a) about the
arc p1/q1 = −1/2 will be called the “a-tube” and the second tube
the “b-tube.” Figure 6 illustrates compressing disc D(b). In Figure 7
the boundary of D(b) has been broken into eight segments. The four
segments with end points labelled 1 & 0, 2 & 3, 1 & 3, 2 & 0 lie in
pairs in the discs of ∂B in Figure 5(b). The three segments with end
points labelled 1, 2, 3 lie on the a-tube while the last segment with end
points labelled 0 lies on the b-tube. Figure 8 illustrates compressing
disc D(a). In Figure 8 the boundary of D(a) has been broken into six
segments with the same labelling scheme as that for D(b) except that
the segment 1 & 3 also has an arc on the annulus of ∂B. There is no
arc on the b-tube.
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Note that any arc γ completing the trefoil τ intersects each of ∂D(a)
and ∂D(b). Also note that discs D(a) and D(b) can be placed so that
they are disjoint. Figures 10(a) and 10(b) show the discs D(a) and
D(b) in place in Figure 5(b).

3. In the remaining discussion K = K(−1/2, 1/3, 2/3, 2/3) (cf.
Figure 3), B = B(−1/2, 1/3) and B∗ = B(2/3, 2/3) − K.
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FIGURES 11 and 12.

4. Remark. Proposition 2.13 of [2] gives that ∂B − K is incom-
pressible in B −K and also that ∂B∗ −K = ∂(S3 −B(−1/2, 1/3)−K
is incompressible in B∗ − K. Thus, there are no compressing discs in
either B − K or B∗ − K.

5. Some closed surfaces in S3 − K. Figure 11 illustrates surface
S(2) of genus 2 + 1 = 3. S(2) is formed by tubing two copies of
∂B−K : ∂B(1)−K, ∂B(2)−K and four tubes T (1), T (2), T (3), T (4).

Figure 12 illustrates S(3) of genus 3 + 1 = 4, again formed by tubing
three copies of ∂B − K : ∂B(1) − K, ∂B(2) − K, ∂B(3) − K and six
tubes in this case.

Figure 13 gives the general scheme for continuing constructions in
the pattern already established to yield a surface S(n) of genus n + 1
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formed from n copies of ∂B − K and 2n tubes.

6. A view of s(n) and the tubing scheme. In Figure 14 is
displayed a regular neighborhood U of K, along with two copies of ∂B
and the meridians cut in H = ∂U by these spheres. Figure 15 presents
a view of U and the relative positions of the four tubes for S(2). Note
that tube T (4) is an annular subset of H while the other three tubes
are nested (along with T (4)) in U and “flare” (by annuli from meridian
discs) to meet C(1) = ∂B(1) − U and C(2) = ∂B(2) − U . The two
boundary components of each T (l), l = 1, 2, 3, 4 cut H into annular
subsets H(l), l = 1, 2, 3, 4 which are nested H(4) ⊆ H(3) ⊆ H(2) ⊆
H(1) ⊆ H (Figure 15).

Note that the tubed 2-sphere ∂(B∗∩U)∪(∂B∗ − H) is incompressible
by Oertel’s Theorem 2.

7. Theorem.

Theorem 7. For n = 1, 2, . . . , S(n) is incompressible in S3 − K.

The structure of the following proof parallels that of Section 6 in [1].

Lemma 7.1. For each l = 1, 2, . . . , 2n, each tube T (l) and each
annulus H(l) is incompressible in S3 − K.

Proof. Each noncontractible simple closed curve γ in H(l) is parallel
in H(l) to either component of ∂H(l), hence γ bounds a disc E(γ) ⊆ U
which intersects K in just one point. If such a simple closed curve γ
were to bound a disc E∗ in S3 − U , E∗ ∩ H(l) = γ, then E(γ) ∪ E∗ is
a sphere in S3 which intersects the simple closed curve K in just one
point, which is impossible. The above holds as well for each T (γ) for
the same reasons.

Lemma 7.2. For each i = 1, 2, 3, . . . , n, C(i) is incompressible in
S3 − K.

See Remark 4.
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Suppose S(n) is compressible, and let E be a compressing disc for
S(n). Then E ∩ S(n) does not bound a disc on S(n). Assume for each
i = 1, 2, . . . , n that E ∩C(i) is minimal and that E ∩H is minimal. If
E ∩ H = ∅, then just one of the following can hold:

(a) There is some l = 1, 2, . . . , 2n such that ∂E ⊆ H(l); or

(b) There is some i = 1, 2, . . . , n such that ∂E ⊆ C(i). But (a)
and (b) cannot occur because of Lemma 7.1 and Lemma 7.2. Hence,
E ∩ H �= ∅.

From the minimality conditions stated after Remark 7.4 for E ∩C(i)
and E∩H(l) stated above, H(l)∩E consists of at most disjoint spanning
arcs in H(l) and E with boundary in both components of ∂H(l). Call
the class of such arcs A and suppose that A �= ∅. Then each arc
in A separates E into two disjoint subdiscs and among these subdiscs
are “outermost discs” which contain no other subdisc. Since A �= ∅,
E must have at least two “outermost discs.” If E is an “outermost
disc,” then ∂E = δ ∪ η where δ is a spanning arc in A and η ⊆ ∂E.
Neither D(a) nor D(b) can be an “end disc” because each of ∂D(a)
and ∂D(b) contains at least three spanning arcs of A. So there is
just one possibility for δ: δ ⊆ H(l), and η is a subset of one of
C(1), C(2), . . . , C(n). But this contradicts: Theorem 2 of [2] in the case
that H(l) ⊆ B(2/3, 2/3) and, in the case that H(l) ⊆ B(−1/2, 1/3),
it contradicts that δ ∪ η either forms a trefoil knot or δ ∪ η bounds a
disc punctured by K. See Figure 5(c). So A = ∅, which contradicts
E ∩ H �= ∅. Thus, S(n) is incompressible in S3 − K.

8. More knots. It should be clear that there are knots other than
K(−1/2, 1/3, 2/3, 2/3) to which the previous discussion applies. Ac-
cording to 2.1 all that is really required is that K = K(−1/2, 1/3, p3/q3,
. . . pk/qk), k ≥ 4, be a knot, that spheres originate from ∂B(−1/2, 1/3),

−1/2 + 1/3 =
3∑

k=1

pk/qk �= 0, (pk, qk) = 1, qi ≥ 3, i ≥ 3.
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