ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 25, Number 4, Fall 1995

STRONG SEMICONTINUITY
FOR UNBOUNDED OPERATORS

HYOUNGSOON KIM

ABSTRACT. Let A be a C*-algebra and A** its enveloping
von Neumann algebra. Pedersen and Akemann developed four
concepts of lower semi-continuity for elements of A**. Later,
Brown suggested using only three classes: strongly Isc, middle
Isc and weakly lsc. In this paper we generalize the concept
of strong semi-continuity to the case of unbounded operators
affiliated with A**. First, we identify our generalized strongly
Isc elements with weak* lsc affine (—oo, co]-valued functions
on Q(A) vanishing at 0, and then we generalize various results
of the theory of strong semicontinuity. Also, we discuss some
interpolation problems and examples.

1. Introduction. In [3], Akemann and G. Pedersen defined
four concepts of semi-continuity for elements of A**, the enveloping
von Neumann algebra of a C*-algebra A. Later, L. Brown [5] suggested
using only three classes A™ Ag;, and (Ag;)—, and named them strongly
lsc, middle lsc and weakly Isc, respectively. There are also three
corresponding concepts of continuity, where “continuous” means “both
lower and upper semi-continuous”: the strong, respectively middle,
weakly, continuous elements are elements in Ag,, respectively, M (A);q,
QM (A)s,. (All these terms are explained in Section 2.) Then L. Brown

asked three questions, each of which is three-fold.

(Q1) Is every lsc element the limit of a monotone increasing net of
continuous elements?

(Q2) Is every positive Isc element the limit of a monotone increasing
net of positive continuous elements?

(Q3) If h > k, where h isIsc and k is usc, does there exist a continuous
x such that h >z > k?

He provided reasonably satisfactory answers and made an extensive
study on semi-continuity [5].
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As a generalization of the above, this paper considers semi-continuity
for unbounded self-adjoint operators affiliated with A** with the above
three questions. D. Taylor mentioned this question in [23]. In order to
deal with unbounded operators, we will use certain Mobius maps and
the theory of quadratic forms which was developed by Kato, Robinson,
Davies and Simon [7, 10, 19, 21, 22].

2. Preliminaries. Throughout this paper, A will denote a (nonuni-
tal) C*-algebra and Q(A) the quasi-state space of A. Equipped with
the weak* topology inherited from A*, Q(A) is a compact convex set.
It is well known that the enveloping von Neumann algebra of A can
be identified with the second dual of A, so it will be denoted by A**.
Let H, denote the universal Hilbert space of A. For M C A**, let M
denote the norm closure of M in B(H,),

My,={zeM|z"*=2}, and My ={zxeM|z>0}
For M C A%;, M™, respectively M,,, denotes the set of limits in A**
of monotone increasing nets, respectively monotone decreasing nets,
of elements of M. Let Z denote the center of A**, A the C*-algebra
generated by A and the unit 1 of A**, M(A) the multiplier algebra
of A, and QM(A) the quasi-multipliers of A. For operators z and h,
o(x) denotes the spectrum of x and Eg(h) the spectral projection of h
corresponding to the Borel set S C R (h is self-adjoint).

Now we will briefly introduce the notion of strong semi-continuity
for bounded operators. We refer the readers to [3, 5, 14] for further
theory and applications. It is well known that the evaluation map i
on A%} given by &(p) = ¢(z) for z in A% and ¢ in Q(A) is an order
preserving isometry of A%* onto the set of bounded affine real-valued
functions on Q(A) vanishing at zero. The image of A, under ~ is the
set of continuous affine functions on Q(A) vanishing at zero when Q(A)
is equipped with weak* topology inherited from A*.

Definition-Theorem 2.1 (Akemann and Pedersen [3, Theorem
2.1]). For z in A%X, = is called strongly lsc if it satisfies one of the
following equivalent conditions.

(a) =€ Am.

(b) % is lower semi-continuous on Q(A).
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(c) There is a bounded, monotone increasing net (x; + a;1) in As,
with limit x such that x; € Asq, a; € R and o; /0.

(d) z+ele AT for every e > 0.

a

Recall that an operator h on some subspace of H, is said to be
affiliated with A**, written hnA**, if uhu=!' = h for every unitary
operator u in the commutant of A**. If A is self-adjoint, it is equivalent
to the condition that the spectral projections of h belong to A**. One
of the main difficulties with unbounded operators is that they are
not everywhere defined. Especially, when we want to find a notion
of convergence of unbounded operators there is big trouble since the
domains of the operators may not have any common vector. For densely
defined self-adjoint operators, it was overcome by making use of the
resolvents of the operators. We will generalize this notion to semi-
bounded, not necessarily densely defined, self-adjoint operators. Let
H be a Hilbert space and Ly(H) denote the set of bounded below
self-adjoint operators on some subspace of H. For h in £,(H), D(h)
denotes the domain of h and pj the projection on D(h). Then the
bounded operator (Apy, —h)"1 ®0(I —pn), A ¢ a(h), will be called the
pseudo-resolvent of h and denoted by R} (h).

Definition 2.2. Let h; and h be in L,(H) such that o < h;, h for
some « in R. Then h; is said to converge to h in the revised strong
resolvent sense (revised s.r.s.) if R (h;) — R} (h) strongly for all A in
C\[a, 0).

Remarks. (a) This concept was used (but not named) in [7] and [22]
in the context of monotone increasing nets.

(b) If Ao < a and if R} (h;) — R} (h) strongly, then h; — h in the
revised s.r.s. This follows the proof of [18, Theorem 8.19].

Next we will review some theory of quadratic forms. It is well known
that there is one-to-one correspondence between L,(H) and the set
of closed quadratic forms on H bounded from below. If ¢; and ¢
are closed quadratic forms bounded from below, then so is the sum
q = q1 + q2. Let h, hy and hy be the self-adjoint operators associated
with ¢, ¢; and g3, respectively. Then h may be regarded as the sum
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of h; and hy in a generalized sense, and we write h = h; + hp. This
condition is strictly weaker than the requirement that the ordinary sum
hi+ ho be well defined. Equipped with the operation + we can regard
the above one-to-one correspondence as an isomorphism.

Definition 2.3. Let g be a quadratic form bounded from below.
Define § on H by G(u) = g(u) if w € D(q) and §(u) = +o0 if u ¢ D(q).
For ¢ bounded from above, we define § by §(u) = —(—¢q)~ (u).

Theorem 2.4 (Davies [7] and Kato (see [21]), independently). Let
q be a quadratic form bounded from below. Then q is closed if and only
if ¢ is lower semi-continuous.

It is very natural to adopt the order structure for operators bounded
below from the ordering in quadratic forms bounded from below. We
write hy < hg if G < §o where ¢;’s are the quadratic forms induced
from h;’s, respectively.

Notations. (a) Let
oz (=1/4, ) ifd>0
fs(x) = 1toz {(00,1/5) if 6§ <0.

Note that fs is operator monotone on its domain such that f5- f_5 =
fos fs = id and f5 - fo = fs4. where defined. For a self-adjoint
operator h which is bounded below by a < 0, fs(h), 0 < § < —1/a,
denotes the bounded self-adjoint operator fs(h) ® (1/6)(I — pp). For k
bounded above by 8 > 0, we write f 5(k) = f_s(k) ® (—1/0)(I — pn),
0<d<1/B.

(b) Let h;, i € I, and h be in Lp(H). We will write h; * h if
(h;) is monotone increasing such that h; — h in the revised s.r.s., or
equivalently, fs(h;) / f5(h) for 6 >0 with —1/§ < hy, h.

Proposition 2.5 (Davies [7] for (a) and (b)). Let hy, hy be in Ly(H)
such that hy, he > v (assume that v < 0) and q1, g2 the quadratic forms
induced from hq, ho, respectively. Then the following are equivalent.

(a) hl S hg.
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(b) R\(h1) < R\ (h2) for (one or all) A <.
(c) fs(h1) < fs(hg) for § positive and —1/8 < .

Proof. (a) < (b). See [7, Lemma 2.2].

(b) < (c). If § = 1/, then fs(h) = —A1 + A2R} (h) for h > ~. This
implies the result. ]

We will end this section with a very useful approximation theorem for
semi-bounded quadratic forms (semi-bounded self-adjoint operators).
It is a significant strengthening of the theorem in [10, p. 459] and was
independently discovered by Robinson [19], Davies [7], Kato (see [21]),
and Simon [22]. (See also Pedersen and Takesai [16].) We refer the
reader to [18, p. 385] for the history.

Proposition 2.6. Ifq; < g3 < --- is an increasing sequence of closed
quadratic forms bounded from below, then the form g, where D(g) =
{u € N, D(gn) | sup, gn(u) < 0o} and goo(u,v) = lim,, o0 gn(u,v), is
closed and hy,, /" ho where h; is the operator associated with g;.

Remark. We may replace the sequence g, by a monotone increasing
net g;, © € I. This provides the existence of the limit of monotone
increasing net (h;) of semi-bounded operators.

3. Unbounded strong semi-continuity. We will generalize the
concept of strong semi-continuity from bounded operators to semi-
bounded self-adjoint operators. Since we are more interested in densely
defined operators, we may restrict our attention to that case. However,
because of the way we use the theory of quadratic forms, it is convenient
to proceed without the restriction.

First, we extend the isomorphism between A%} and the Banach space
of all real valued bounded affine functions on Q(A) which vanish at
zero to the semi-bounded case. Let H, denote the universal Hilbert
space of A,
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Fo(A) ={f: Q(A) = (—o0,00] | f is bounded below, affine, norm
lower semi-continuous, and vanishes at 0}, and

Ri(A) = {hnA*™ | h is a bounded below self-adjoint operator on
a subspace of H,}.

We are not assuming h to be densely defined. Note that p;, the
projection on D(h), belongs to A**.

Definition 3.1. For h € Ry(A), define h : Q(A) — (—o0, 0] by

. [|(h+ A1) 20[[2 = A|Jv[|*(= (hv,v)) if v € D([h+ A1]*/?),
h(py) = h>—\
00 otherwise

where ¢, is the linear functional a + (av,v) on A. Then h is well-
defined since f5(h + A1) € A** and fs(h+ A1) 7 (h+ A1) as § N\, 0.

Remark. Note that h > k if and only if h > k on Q(A). Hence, for
(h;) and h in Ry(A), h; A/ h if and only if h; / h pointwise on Q(A).

Theorem 3.2. The map ~ is an order preserving isomorphism
between Rp(A) and Fo(A).

Proof. For h in Ry(A), note that fs(h) is in A** for all § > 0 with
—1/6 < h. Since f5(h) 7 has § N\, 0, his the limit of an increasing
net ((fs5(h))") of bounded, norm continuous affine functions on Q(A)
which vanish at zero. Thus & is in Fo(A). Obviously, & and & have the
same lower bound, and the map ~ is injective.

On the other hand, for a given function g in Fy(A), we define a form
q by

q(v) = l[v[Pg(L(o/101))) q(0) =0, and q=q|p(),
where D(q) = {v € H, | g(v) < oo}. Then it is easy to see that

G(av) = |a*q(v),
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and
v+ w)+ Glv—w) =24(v) + 24(w), Yv,w € H,.

Hence D(q) is a vector space and ¢ is a quadratic form (see Kurepa
[12]). By the definition of ¢, g and ¢ have the same lower bound
and ¢ is lower semi-continuous on H,. Theorem 2.4 implies that ¢ is
a closed quadratic form bounded from below, and hence there exists
an operator h in Ly(H,) such that ¢(v) = (hv,v). Now we need to
show that hnA**. Since ¢, = @y, for each unitary operator u in A’,
d(uv) = g(puw) = g(pw) = ¢(v) for all unit vectors v. This implies
that = 'hu = h, and hence hnA**. Therefore, " is a surjective map.
Moreover, it preserves addition when R;(A) is equipped with the formal
sum + induced by form sum. ]

Remark-Notation. If (h;) is a monotone increasing net in Ry(A4),
then the above theorem and Proposition 2.6 show that there exists h
in Ry(A) such that h; / h. For U C A%, we denote by UM the set of
limits of monotone increasing nets of elements in U. We will use “+”

for the formal sum, + for operators in R;(A4).

Definition 3.3. For h in Ry(A), h is called unbounded strongly lsc,
denoted by h € SLSC(A), if there exists a monotone increasing net
(h;) in Agu, hi = a; + M1, such that h; * h and \; 7 0. h is called
unbounded strongly usc, denoted by h € SUSC(A), if —h is in SLSC(A).
As a special class of SLSC(A), respectively SUSC(A), we denote by
SLSC?(A), respectively SUSC?(A), the set of all densely defined A in
SLSC(A), respectively SUSC(A).

Theorem 3.4. The map ~ is an order preserving isomorphism
between SLSC(A) and Fi(A) := {f € Fo(A) | [ is weak* lower

semicontinuous}.

Proof. Let h € SLSC(A). Then there exists a net (h;), h; = a; + A1
in A,, such that h;  h, A\; /0. Hence h is the limit of the increasing
net (a;+\;) of weak* continuous affine functions on Q(A). This implies
that h is weak* lower semicontinuous.

If g is in F; (A), then there exists a net (g;) of weak* continuous affine
real valued functions on Q(A) such that g; /' g pointwise by Alfsen [4,
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Corollary I.1.4]. Since g; — g;(0) is continuous on Q(A) and vanishes
at zero, there exists a; in A, such that a; = g; — g;(0) for all 7. Let
h; = a; + g;(0)1. Then

hi = a; + gi(0)1 = [g; — g:(0) + g:(0)1] 7 g.

Thus, h; /* h where h = g- O

Theorem 3.5. The map ~ s an order preserving isomorphism
between SLSCY(A) and FI(A) := {f € Fi(A) | f~(R) is norm dense
in Q(A)}-

Proof. Since the map v — ¢, is norm continuous on the closed unit
ball of H,, ~ maps SLSC?%(A) into F{(A). It remains to show that
h is densely defined when A = f for a given f in F{¢(A). Shifting by
a constant, we may assume that A > 0. Then it suffices to show that
D(h/?) is dense in H,. Let p be the projection on D(h/2), and let
pep denote the linear functional a — ¢(pap) on A. Then

pQ(A)p = {pep | ¢ is in Q(A)}
D {ppo | v € D(W?), [Jv]| < 1}
= {pv | flpv) < o0}
=f'(R).

Hence pQ(A)p is dense in Q(A). Since pQ(A)p is norm closed (cf. Effros
[9] and Prosser [17]), pQ(A)p = Q(A) and hence p = 1. o

Theorem 3.6. Let h € Ry(A). The following conditions are
equivalent.

(a) h € SLSC(A).

(b) h e Fi(A).

(c) h+el e AM foralle > 0.

(d) fs(h) € A7 for one (all) 6§ > 0 with —1/§ < h.

(e) There exists a sequence (net) (h;) in A™ such that h; / h.

Moreover, if h satisfies (a)—(e) and h > 0, then h + el € A} for all
e>0.
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Proof. (a) < (b) is proved in Theorem 3.4.
(a) = (c). This follows the proof (iii) = (iv) of [3, Theorem 2.1].

() = (b). hX(a,00] = Ussol(h+21)"] (a2, 0] is open in Q(A),
for all @ in R, since each (h + ¢1)”" is lower semi-continuous on Q(A).

(a) = (d). Let h; = a; + A1 be in A,, such that h; ~ h and
Ai /0. Fix an dg and let o < 1/(||hs, || + 1). Then h; > —1/a for
all ¢ > ig, and hence f,(h;) € Ase and fo(hi) 7 fo(h) as i 7 co.

Since fa(hi) € fa()‘i) + Asa and fa(Ai) /( Oa~We get fo@ € Ag}z by

[3, Theorem 2.1]. Note that fs5(h) = f5_o(fa(h)) € A™ whenever
—1/6 < h and § > 0 by [5, Propositions 2.30, 2.31].

(d) = (e). Let f5(h) € A™ for some § > 0. Then for any positive
e < 9§, foe(fs5(h)) = fs—e(h) € A™ by [5, Proposition 2.30], and
fs_<(h) S hase 8. Choose a positive sequence (e,) such that
€n /0. Then f5 . (k) 7 h.

(¢) = (b). h is the limit of a monotone increasing net (h;) of lower
semi-continuous functions on Q(A). Thus, A is lower semi-continuous.

For the last statement we follow the proof of [3, Proposition 2.2].
]

Remarks. (a) AT = {h € SLSC%(A) | h is bounded}.

(b) As, = SLSCY(A) N SUSC?4(A). So the concept of strong
continuity is still the same as in the bounded case for densely defined
operators.

Corollary 3.7. If h is in SLSC(A), then there exists an element a
i Ag, such that a < h.

_Proof. By [5, Corollary 3.22] there exists a € Ay, such that a <
fs(h) < h. o

Corollary 3.8. If h is in SLSC(A), then there exists a sequence
(hn) in AT such that hy,, / h.

Proof. If h € SLSC(A), then f5(h) € A™ for any fixed § > 0. Then
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fee, (f5(R)) is in AT for all positive £, < § by [5, Proposition 2.31]

s
and f*&n( 6(h)) = f§75n(h) /' hase, /0. a
Corollary 3.9. SLSC(A)M = SLSC(A).

Proof. Lower semicontinuity (for functions on Q(A)) is preserved
under monotone increasing limits. o

Corollary 3.10. Let h be in A™ and h < 1/e, ¢ > 0. Then
f—e(h) € SLSC(A). (Note that f_.(h) is a self-adjoint operator in
Ry(A) such that the closure of its domain is the range of the spectral
projection E(_ 1/c)(h) of h.)

Proof. By [5, Proposition 2.31], f_s(h) € A™ for all positive § < «.
Since f_5(h) N f-o(h) as & S e, f_-(h) satisfies (e) of Theorem 3.6.
O

If A; is a C™*-algebra, for all i € I, then by the cp-direct sum of the
A;’s we mean the C*-algebra of functions f on I such that f(i) € A;
and ||f(7)]] = 0 as i — co. If A is a co-direct sum of the A;, then A**
is the [o-direct sum of the A*’s.

Proposition 3.11. Let A be the co-direct sum of C*-algebras A;,
i €I, and let h = ®;crh; be in Ry(A). Then

h € SLSC(A) <= h; € SLSC(4;), Viel and Ve >0, h; > —¢
for all but finitely many i in 1.

Proof. (=). This follows from Theorem 3.6 and [5, Proposition 2.11].

(«=). For given ¢ > 0, we will show that h +¢1 € AX. By the given
condition, h; > —¢/2 for all ¢ except for 41, ... ,i,. Theorem 4.6 implies
that h; + €l € (A;)} for all i except for iy,... ,i,. For each i, choose
a net (k;) in (A;)sq such that k; S h; + €l as j — oo, and k; > 0 if
i # i1, ,in. Now consider the collection of finite sets F' = {(i,k%)}
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such that all of 4y,...,%, appear and each ¢ appears only one time.
Then it forms a directed set by the order

FL<F, < if(i,k})€Fy, then3(ik})e Fyst. j >j.

Let mp:@pk;-. Then zp is in A, and xp 7 h + €l. a

Proposition 3.12. Let I be an ideal of A with open central projection
z. Then

h € SLSC(A); = zh € SLSC(A),,  zh € SLSC(I),.

Proof. Combine Theorem 3.6 and [5, Proposition 2.18]. mi

Proposition 3.13. Let A be a C*-algebra with Prim A Hausdorff,
and let I and J be ideals of A with open central projections z and w,
respectively, such that A=1+ J, and h € Ry(A). Then

zh € SLSC(I) and wh € SLSC(J) = h e SLSC(A).

Proof. Combine Theorem 3.6 and [5, Proposition 2.25]. O

The following theorem gives affirmative answers to (Q1) and (Q2) for
separable C*-algebras like those in the bounded case.

Theorem 3.14. Let A be a separable C*-algebra. Then

(a) h € SLSC(A), implies that there exists a sequence (hy) in Ay
such that h,, / h.

(b) h € SLSC(A) implies that there exists a sequence (hy,) in Asq
such that h,, / h.

Proof. (a) Let h € SLSC(A);. Then fs(h) € AT for any fixed
§ > 0. Since AT = A7, we can choose a sequence (a,) in A such that
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an f~5(h). Let (¢,) be a sequence such that 0 < &, 4, €, < 4.
Since 0 < a, <1/6 < 1/en, f-c,(an) is in A, by [5, Proposition 2.30].
Moreover, (f_c, (a,)) increases to f_s(fs(h)) = h as n 7~ oc.

(b) Combine Corollary 3.7 and part (a). o

Theorem 3.15. For an arbitrary C*-algebra A, let h € SLSC(A) .
Then there exists a net (a;) in Ay such that 0 < a; < h, a; — h in
the revised s.r.s, and for all A > 0, for all ¢ € Agq such that ¢ < h,
c < a; + Al for i sufficiently large.

Proof. Fix § > 0 so that f5(h) € AT, By [5, Theorem 3.24], there
exists a net (by) in As, such that 0 < b, < _fg(h) and b, — fg(h)
strongly, and for all n > 0, for all ¢ € A such that ¢ < f5(h), c < by +7
for « sufficiently large. Let I = {(7,a) | 0 < 7 < ¢} and define a partial
order on I by

(r,a) < (,a') <= a<ad and 7<7.
Then I is a directed set. Let a; = f_;(by), ¢ = (7,a) € I. Then q;
is in A, since 7 < §. We claim that (a;); satisfies all the conditions.
Clearly fs(a;) = fs—+(ba) — fs(h) strongly as i — co. Since

1 1 ~ 1 1
fs(a;) = 1t 5—2371/5(%) and fs(h) = sLt 5—2R',1/5(h),

R_y/5(a;i) — R’_l/é(h) strongly. Therefore, a; — h in the revised s.r.s.

Let A > 0, ¢ € A, such that ¢ < h. Choose a dg > 0 small enough
such that fs5,(c) > ¢— (A/2)1 and §p < §. A little computation shows
that if § — §p < 79 < 6, then there exists a small > 0 such that
1/6 +m < 1/(6 — do) and f_(5-6,)(t + 1) < f-ry(t) + A/2 for all
t € [0,1/7). Since fs(c) < fs(h) (by Proposition 2.5), there exists
ap = ag(n, fs(c)) such that fs(c) < by, +nl if @ > ap. Hence, we have

f—(5=60)(ba +11) > f_(5-50)(f5(c)) = fs5,(c) > ¢ — %1-
Let 19 = (79, ap); then, for i = (7, a) > 1o,
a; = f—'r(ba) > f—To (ba)

A
> f(5-50)(ba +11) — 51

A A
20—51—5120—)\1. o
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Corollary 3.16. Let h € SLSC(A). Then there exists a net (a;) in
A,, such that a; < h, a; — h in the revised s.r.s. and for all A > 0,
for all c € A, such that ¢ < h, ¢ < a; + A1 for i sufficiently large.

Proof. Combine Theorem 3.15 and Corollary 3.7. O

Corollary 3.17. Let h € SLSC(A)). Then there exists a net (b;+A1)
in Ay, such that b € Ay, \; 210, and b; + A\1 7 h.

Proof. Assume that (a;) in A4 such that 0 < a; < h, a; — h in the
revised s.r.s., and for all A > 0, V¢ € Ay, such that ¢ < h, ¢ < a; + Al
for j sufficiently large. Let I = {(j,e) | ¢ > 0} and define a partial
order on I by

(Je)<(f'e') <= j<j, e>¢ and a;—¢el <aj —£'l

Then I is a directed set. For i = (j,¢), let b; = a; and A; = —e. Then
bi-}-/\il:aj*&l/‘h. O

The following theorem is an analogue of [3, Proposition 3.5] and [5,
Proposition 2.1] that justifies the definition of SLSC(A) in some sense.

Theorem 3.18. Let 0 < h € A%*. Then
(a) h=' € SLSC(A) & h € [(Asa)m] -
(b) h € (Ayy)m < there exists a § > 0 such that h~'—4§1 € SLSC(A).

Proof. (a). Choose, by Corollary 3.17, a net h; = a; + A1,
i € I, in Ay, such that a; € Ay, Ay 0, and h;  h, and let
P = E(y,00)(h). Note that p is the projection on D(h~!). For ¢ > 0
fixed, h;+¢el / h™l+ep(= h=! +el). Since e+ \; > 0 for i sufficiently
large, hi + el = a; + (e + X)L > (e 4+ X)) > 0 and (h; + 1)1 € Ag,.
Therefore, we have

(hi+el)™ PN (A +ep) P @ 0(1 - p) € (Asa)m.

Since (h_1 + Ep)_l ®0(L —p) = h in norm, h € [(Asa)m] -
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For the converse, let h € [(Asq)m| and h, = h + (1/n)1. Then
hn N\  h as n /" co. By [3, Proposition 3.5] (cf. [5, Proposition 2.1
(a)]), hyt € A™. Since h;;' / h~', h=' € SLSC(A) by Theorem 3.6.

(b) If h € (flsa)m, then there exists a net h; = a; + \;1, ¢ € I, in
Ay, such that h; N h and A\; N\ A\, A > 0. Here we may assume that
h; > 6; > 0 for some §; for all { € I. Then A~ € )\i_l + A, and
h7' 2 h7l. Choose 0 < § < A;'. Then h;' — 61 ~ h ™!~ 61 and
hi'—61 € (A\;'—8)1+Aq,. Since \; ' =38 > 0fori > iy, h; ' =351 € A™.
By Theorem 3.6, this implies that A~ — §1 € SLSC(A).

For the converse, we may assume that § is small enough that A~ —§1
is still positive. Then h~' — (§/2)1 € AY by Theorem 3.6. If
b; S h1 —(8/2)1, b; € Ay, then b; + (6/2)1  h~Ll. Therefore
(b; +(6/2)1) "1 h. O

Theorem 3.19. If (I,) is an increasing net of ideals with open
central projections z, such that A = (Ul,)~, then

heSLSC(A)y <= 2z4h €SLSC(l,)4, for alla.

Proof. If h € SLSC(A), then fs5(h) € AT for § > 0. By [5, Propo-
sition 2.24], z f5(h) € (Io)7 for all a. Then z,h = fos(zafs(h)) €
SLSC(I,)+ by Corollary 3.10.

For the converse, fix § > 0. If z,h € SLSC(I,)+, then there exists a
net (b; + Aiza) in (In)sa, bi € (Ia)4, A; 0 such that b; + A\ize 7 2ah
by Corollary 3.17. Thus, f5(b; + Aiza) € f5(Ai)za + (Ia)sa Whenever
N > =0 Yand f5(b; + \iza)  fs(zoh) as i 7 co. Since f5(\;) 0,
fs(zah) € (Io)7 for all a. By [5, Proposition 2.24], this implies

f5(h) € A7 and hence h € SLSC(A). o

Before we end this section, we check the relation between strong
semi-continuity and strong g-semi-continuity. Recall that a projection
p € A** is called open if it is strongly (or weakly) lsc, closed if 1 —p is
open, and compact if p is closed and p < a for some a in A. We refer
to [5, p. 905] for the history of g-semi-continuity.
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Definition 3.20. Assume hnA** and h is self-adjoint on a subspace
of H,.

(a) his called ¢-LSC if [E(; o) (h) + (1 — p)] is open for all ¢ € R.

(b) h is called strongly ¢-LSC if —h is ¢-LSC and E(_, _.(h) is
compact for all £ > 0.

(c) his called strongly ¢-USC if —h is strongly ¢-LSC.

Remark. The following lemma shows that strongly ¢-LSC implies
bounded below.

Lemma 3.21. h s strongly q-LSC implies that h is bounded below.

Proof. Let g, = E(_oo,—pnj(h). Then (g,) is a decreasing sequence of
compact projections and A,g, = 0. By Akemann [1, Theorem 2.10],
this implies that ¢,, = 0 for ny sufficiently large. Therefore, h is
bounded below. O

Theorem 3.22. h is strongly qg-LSC implies that h € SLSC(A).

Proof. By the above lemma, we may assume h > —n for some n.
Then for 0 < 6§ < 1/n, fs(h) is strongly g-lsc. Therefore, fs(h) € A™
by [5, Proposition 2.50], and so h belongs to SLSC(A). O

Theorem 3.23. Let h € SLSC(A) and hnZ. Then h is strongly
q-LSC.

Proof. Combine Theorem 3.6 and [5, Proposition 2.55]. mi

4. Interpolation theorems and examples. For the commutative
C*-algebra A = Cy(X), where X is a locally compact Hausdorff space,
the strong interpolation problem can be reduced to the bounded case
easily, so that we can give an affirmative answer to (Q3). Unlike
the commutative case, we have a noncommutative counterexample for
this problem. But, under some extra hypotheses, we still get positive
results.
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Example. Let A = ¢y ® My. Then A** = [, ® Ms. Let h = (hy,)
and k = (k,) where

b — [ cos 0, —siné, —B, 0 cosf, sind,
™7 \sinf, cosb, 0 an —sinf,, cosf, |’
—a, 0
2vanfn

1<a, Moo, 1208, \0, 0, =cos 1 "0 ),
<an oo, 136\ (Bo)
Then h,, > k, for all n, and so h > k. By Proposition 3.11, we
can see that h € SLSC(A) and k € SUSC(A). Now, if a,, exists in
(M3)sq such that hy, > a, > ky, then a little computation shows that

[lan|| > v/anBn. Therefore, (a,) cannot be in Ay, unless v, B, — 0.

Theorem 4.1. (a) Let k € [(Asa)m])” and h € SLSC(A) such that
k < h. Then there exists a € Asq such that k < a < h.

(b) Let k € SUSC(A) and h € A™ such that k < h. Then there
exists a € Agq such that k < a < h.

Proof. (a) By Theorem 3.6 above, there exists ng € N such that
fl/n(h) € AT, for all n > ng. And we also have f/,,(k) € [(Asa)m]”
for all n such that —n < k —1 by [5, Proposition 2.30]. Proposition 2.5
implies fi/, (k) < fl/n(h) for n such that n > ng and —n <k —1. We
may assume that —ng < k—1. Let B be the cy-direct sum of countably
many copies of A, B =& A, and let

(oo}
n=mno

F= (k) = (ifl/nac))m

n n=ngp

and

- - 1 -~ o
=) = (570
n=no
Then by Proposition 3.11 above, jc € [(Bsa)m)~ and h € B™. Since

kn < hy for all n > ng, k& < h so that we can apply the strong
interpolation theorem [5, Corollary 3.16]. Therefore there exists a
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b € Bs, such that k < b < iz, that is, there exists b, € A, for all
n > ng, such that ||b,|| — 0 and (1/n)f1/n(k) < by < (1/n)f1/n(h)
We fix an integer m > ng such that ||b,|| < 1/2. Then fy,,(k) <
mby, < fl/m(h) and ||mb,,|| < m/2. Hence f_;/m(mby,) is in A,, and
k< f_1/m(mbp) < h.

(b) Apply part (a) to —h < —k. O

Theorem 4.2. (a) Let k € SUSC(A) and h € SLSC(A) such
that k < h. Then for all € > 0, there exists an a € As, such that
k—el<a<h.

(b) Let k € SUSC(A) and h € SLSC(A) such that k < h. Then for
all € > 0, there exists an a € A, such that k < a < h+¢l.

Proof. (a) Since —k € SLSC(A), fl/n(—k) € Am for sufficiently large
n. Note that fl/n(—k) /' (—k) as n — oco. Hence, we have

h+ fim(—k) 7 (h—k) >0, and h+ fi/n(—k) € SLSC(A).

Dini theorem (for Isc functions on Q(A)) implies that —e < h—i—fl/n(—k)
for sufficiently large n. Applying the previous theorem for — f; /n(—k)—
¢l and h, we can find a in A,, such that k — el < —fl/n(—k) —el1<
a < h.

(b) Apply part (a) to —h < —k. O

Definition 4.3 (cf. [5, Definition-Lemma 3.39]). Let h and k be self-
adjoint operators on some subspaces of H, such that h, knA**. Then
we write h >k if and only if E(_u y(h) - Ejpo)(k) = 0 for all 5,¢ € R
such that s < t.

Remark. Note that h § k implies h > k.

Theorem 4.4. Assume h g k. If either h is strongly q-LSC and k is
in SUSC(A) or k is strongly ¢-USC and h is in SLSC(A), then there
exists an a i Ag, such that k < a < h.
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Proof. Assume that h is strongly ¢-LSC, k& € SUSC(A) and hgk.
Consider the function g given by g(t) = t if t € (—o0,||k4|]), and
g(t) = ||k4]|| otherwise. Let g(h) = g(h) & ||k+||(1 — pp). Then

g(k) = k, §(h) is strongly ¢-1sc, and §(h) gg(k). Therefore, g(h) > g(k)
and we can apply Theorem 4.1. Then there exists a € Ay, such that
k =g(k) < a < g(h) < h. The other case follows by a similar argument.
]

Example A. Cy(X). Let A = Cy(X) where X is a locally compact
Hausdorff space. Since each bounded strongly lsc element is determined
completely by its atomic part (Pedersen [15, Theorem 4.3.15]) so is
every element in SLSC(A) by Theorem 3.6. Therefore, it is enough to
consider z,;A**. Note that the atomic part, z4;A** can be identified
with L*°(X), the set of bounded functions on X. The diffuse part,
(1 — z4¢)A**, is isomorphic to a direct sum of L (X, u)’s for some
continuous measures y. It is known and easy to see that the bounded
strongly Isc elements correspond to the bounded lower semi-continuous
functions f on X such that f_ vanishes at infinity. Using this and
Theorem 3.6 above, it is obvious that SLSC(A) corresponds to the set
of (—o0, 00]-valued lower semicontinuous functions on X such that f_
vanishes at infinity.

Example B. £. Let A = K, the algebra of compact operators
on a separable infinite dimensional Hilbert space. It is well known
that A** = M(A) = B(H). Since every (not necessarily densely
defined) positive operator h can be approximated from below by finite
rank operators on D(h) and 1 — p, € A7, it follows directly that
SLSC(A) ={h | h_®0(1 —pp) € K}.

Example C. ¢c® K. Let A = ¢ ® K; then A** can be identified
with bounded collections {h,, | 1 < n < oo, hy, € B(H)}. We give the
following criterion which is deduced from Brown [5, Criterion 5.13].

Criterion for unbounded semicontinuity for ¢ ® K. If h €
Ry(A), then h € SLSC(A) if and only if

(1) Each hy, is in SLSC(K), 1 < n < oo.
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(2) If K € K, K < hy, and if € > 0, then there exists an N such
that K < hy,, +¢ for alln > N.

Proof. This is a special case of the criterion for Cy(X) ® K below.
O

Example D. Cy(X) ® K. Let A denote Cp(X) ® K where X is a
second countable, locally compact Hausdorff space. Then z,;A** can
be identified with the space of bounded functions from X to B(H). So
we will say that, for a self-adjoint operator h affiliated with z,;A**, h
is strongly LSC if h = z4¢h for some (unique) A in SLSC(A). We give
a criterion for hnz,: A** as follows (cf. [5, Criterion 5.19]).

Criterion for unbounded semicontinuity for Cy(X)®K. hnz. A**
is strongly LSC' if and only if

(1) Each h(z) is in SLSC(K) for all x € X.

(2) For all e > 0, there exists a compact F C X such that h(z) > —¢
for all z ¢ F, and

(3) Ifzg € X, K 5 K < h(zg), and € > 0, then there is a
neighborhood U of xy such that K < h(z)+¢€l for allz € U.

Proof. (=). This follows from the same proof as for [5, 5.13].

(«<). Assume that h satisfies (1), (2) and (3). By (2) and (3), h
is bounded below. Let —m < h, m > 0, and fix § > 0 such that
d < 1/m. Now we will show that f5~(h) € 24 A™ using the criterion
5.19 of [5]. First, it is clear that fs(h)(z) € K™ by (1). By the
properties of f5, the second condition of [5, 5.19] follows from (2). For
the last condition, let zo € X, K 3 K < fs(h)(zo), and € > 0. Let
K' = g(K) where g = id A (1/0 — ¢/2) (assume 1/§ > €/2). Then
K' <K <K'+ (g/2)1<1/é and f_s(K') is a compact operator such
that f_s(K') < h(zo) by Proposition 2.5. Choose small o > 0 such that
fs(=m)+¢e/2 > fs(=m+a). Then f5(-) +€/2 > f5(-+ ) on [-m, o0).
By (3), there is a neighborhood U of xy such that f_5(K') < h(z) +«al
for all x € U. Therefore,

K<K' + %1 < fs(h(z) + al) + 21 < f5(h(x)) + el
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for all z € U. Hence, we are done by Theorem 3.6. ]
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