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MOMENT MAPS FOR TORUS ACTIONS

JAMES S. WOLPER

ABSTRACT. A surface of revolution in R? has a natural
symplectic S! action. A moment map for this action is
constructed. Also, a converse to a theorem of Marsden and
Weinstein on the existence of moment maps for torus actions
is derived for compact surfaces.

1. Introduction. This paper examines when a moment map
exists for a symplectic torus action on a compact manifold. This
is an important question because these actions are useful tools in
mathematical physics and in algebraic geometry (where the compact
case is of more interest; see [3]). Most of the results apply to compact
surfaces (2-manifolds); in fact, a lot of insight is gained by considering
the rather simple case of the obvious S' action on a surface of revolution
in R3. The most important result is a converse (in the case of a compact
surface M) to a long-known result of Marsden and Weinstein [6] that
a moment map for a torus action on M exists if H*(M,Q) = 0.

All manifolds are assumed differentiable, connected, compact and
orientable. Singular cohomology is denoted H*, while de Rham coho-
mology is denoted Hix. G is an abelian Lie group, usually a torus (i.e.,
a product of S1’s), with Lie algebra g.

Here are the basic definitions (to fix notation), mostly following [1]. A
closed nondegenerate 2-form w on the manifold M is called a symplectic
structure on M. A trivial consequence of this definition is that every
orientable 2-manifold has a symplectic structure given by the area form
dA. (In fact, if M is a compact surface, then HZp(M, Q) has rank 1,
so w is a multiple of dA modulo exact forms.)

When G acts on a symplectic manifold (M,w) we will consider each
g € G as a diffeomorphism g : M — M and simply write gm instead of
g(m). The set G.m = {gm : g € G} is called the orbit through m. A G-
action on M is symplectic if for all g € G we have ¢g*(w) = w. For each
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a € g and m € M, define a curve «y through m by 7(t) := exp(ta)m.
Then a,, :=v'(0) in 7. (M) is an infinitesimal generator for the action.

Let g* denote the vector space dual of g. A differentiable map
p: M — g* is a moment map if it satisfies

(1) p(gm) = p(m)

for all g € G (keep in mind that G is abelian) and, for alla € g, m € M,
and v € T, (M),

(2) dp(m)(v)-a = w(m)(v, am).

Here are some simple but useful results.

Proposition 1. Ker (du(m)) is the (symplectic) orthogonal comple-
ment to the tangent space of G.m. (Both Ker (du(m)) and the tangent
space of G.m are considered as vector subspaces of Ty, (M).)

Proof. Suppose v € Ker (du(m)). Then, for all a € g, du(m).a = 0,
so w(m)(v, an,) = 0. Of course, each a, is in T;,,(G.m), so v is in the
symplectic complement of T,,(G.m).

Conversely, every vector tangent to the orbit G.m is of the form a,,
for some a € g. If w(m)(v,am) = 0 for all a, then du(m)(v).a = 0 as
well, so v € Ker (du(m)). O

Proposition 2. du(m) is identically 0 if and only if m is a fized
point for the G action.

Proof. The point m is fixed if and only if a,, = 0 for all a in g. Hence,
at a fixed point m, du(m)(v).a = w(m)(v,am) = w(m)(v,0) = 0.
Conversely, if du(m) is identically zero, then w(m)(v,a,,) = 0 for all
v e T, (M) and a € g. If m is not a fixed point, then there is some a
for which a,, # 0; but then w(m)(v, a,,) =0 for all v € T,,,(M), which
is impossible due to the nondegeneracy of w. O

2. Surfaces of revolution. Now consider a surface of revolution
M c R3, with symplectic structure given by the area form dA. Use
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standard cylindrical coordinates (r,#,z) on R3. The rotational axis of
symmetry is taken to be the z-axis, and the orbits are all in planes
perpendicular to this axis. (To see that this is a special case of a
surface with S'-action, consider the meridianal flow on the torus, all of
whose orbits are circles. There is no axis of symmetry perpendicular
to the orbits.) There is a curve, given in cylindrical coordinates by
f(r,z) =0 and 8 = 0, such that M is the locus formed by rotating the
curve around the z-axis. If M is a differentiable manifold, then f must
be differentiable and f = 0 must have a horizontal tangent when r = 0.

It is easy to check from the definition that elements of ¢ = R
correspond to infinitesimal generators at m which are in the plane
perpendicular to the z-axis at m, where m = (r,0,z2) in cylindrical
coordinates.

Notice that a moment map for an S' action can have no critical points
other than fixed points. This is because the dimension of R, the Lie
algebra, is 1, so the image of ;1 can have rank 0 or 1. Hence, at a critical
point for u, du is identically zero.

There is an obvious (but incorrect!) candidate for a moment map
p: M — g*, namely, the map p(r,0,z) = z. Why is this the case?
Recall that the kernel of dy must be in the symplectic orthogonal
complement of the orbit. Since w = dA is nonzero on any pair of
independent vectors in the tangent space to M, it follows that the
tangent space to the orbit is its own symplectic orthogonal complement.
Thus, du must take horizontal vectors (i.e., those perpendicular to the
z-axis) to zero; thus, p must be a function of z. If we knew that all
orbits were connected, then we could see that x must be a function of
z alone since it must be constant on orbits; however, we have not made
this assumption.

This is incorrect because we are only specifying the kernel of du; p
itself also has to have certain values, according to (2). By definition,
if v and w are orthogonal unit tangent vectors at m € M, then
dA(v,w) = %1 (the sign is determined by the orientation). For a,
to be a unit vector, |a| = 1/2wr. Suppose v € Ty, (M) is orthogonal
(in the Euclidean sense) to the orbit G.m, and let ¢ denote the angle
between v and the vertical. If u = z, du(v) has length sin(¢) (as is easy
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to verify). Thus,

sin(9)
d =
2(v)-a 2mr
while
dA(v,an,) = £1.

Proposition 3. Suppose the surface of revolution M is compact and
simple connected. Then

2mrds
sin(9)

is a moment map for the S' action on M, where the integral is taken
over the path from the minimum for zq to (19, 6o, z0) in the plane 8 = 6y,
i.e., in a generator of the surface, and ds is arc length.

st = [

Proof. There is a minimum for z since the surface is compact; the
integral is well defined since it is simply connected, and p has the
properties of a moment map by construction. u]

(Related results appear in [5] and [2].)

This proposition also has an interesting geometric interpretation in
the case when the generator has the form r = f(z). It is a simple
calculus exercise to verify that

g~ VIR

Suppose that the minimum value of z is ¢ and that the maximum value
is b; then the surface area of M is

b
/27rf(z) 1+ f'(2))?d=.
Thus,

Corollary 4. Ifr = f(z), then the function u(ry, 6o, 20) given by the
area of the part of the surface with z < zg is a moment map.
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3. Torus actions on other manifolds. A moment map for a G-
action restricts to a moment map for the action of a Lie subgroup H C
G. Thus, nonexistence results for S!'-actions extend to nonexistence
results for torus actions.

Let M be a compact manifold with a symplectic S action, and
suppose that there is a moment map p for the action. Since M is
compact and connected, so is (M) C R, so u(M) is a closed interval.
In particular, ¢ must have a maximum value and a minimum value.
But at such points dup is identically zero; these points are therefore
fixed points for the action, by Proposition 2.

Proposition 5. A fized-point-free action of S' on a compact,
connected, manifold cannot have a moment map.

An S action on a manifold M determines a vector field X on M
by X,, = 1,,, where we consider 1 to be the generator of g = R. An
isolated fixed point of the action corresponds to an isolated zero of the
vector field. Any isolated zero of a vector filed has an index, and these
are subject to the following topological constraint, proven in [4].

Theorem 6 (The Poincaré Hopf index theorem). The sum over all
zeros of the indices of a vector field on M with isolated zeros is the
Euler characteristic of M.

Dennis Stowe pointed out the following.

Lemma 7. Suppose S' acts smoothly on a compact manifold M.
Then all of the fixed points are isolated and of index 1.

Proof. This is proven in [6], but here is a sketch. Choose local
coordinates around a fixed point such that the fixed point is at the
origin. Then modify the coordinates so the orbits are round circles and
the action is rotation; this is possible unless the action is trivial. If the
action is trivial,then a whole neighborhood of the fixed point consists
of fixed points. It is trivial to check that the index of a rotation is 1.
]
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Marsden and Weinstein showed that if H!(M,Q) = 0 then a torus
action on M has a moment map. Here is a partial converse for surfaces.

Corollary 8. Suppose S' acts symplectically on a compact surface
M and that H'(M,Q) # 0 (i.e., M is a surface with genus g > 1).
Then there can be no moment map for the action.

Proof. If H'(M, Q) # 0, then g is at least 1 and X is negative or zero.
The vector field corresponding to the S! action must have fixed points,
and by Lemma 7 these are isolated and of positive index. Furthermore,
if there is a p, then g must have a maximum and a minimum, and
every zero of the vector field must be a critical point for p. Thus, X
must be positive, a contradiction. a
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