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THE DENTABILITY IN THE SPACES
WITH TWO TOPOLOGIES

MISHEL FUNDO

ABSTRACT. Following the purely geometric way, we study
here the notion of r-dentability in the locally convex spaces
(lcs) with two comparative topologies, as a generalization of
the dentability and w∗-dentability. For this purpose, the
notion of r-dentable points is introduced as well as the notions
of r- and E′

r(M)-strongly exposed points. The study is based
on the method resulting from two lemmas of R.R. Phelps [6].
S. Gjinushi has given a local version of the first lemma in
a normed vector space [3] and E. Saab [7] has proved that
this lemma is true in a barreled locally convex Hausdorff
space. Here it will be proved that the first lemma of Phelps
is true in every topological vector space supplied with two
comparative topologies; the other lemma as well will be proved
in locally convex (topological) spaces with two comparative
topologies. Two theorems are obtained for r-dentability in a
local vector space with two topologies in which the stronger
topology is that of the type B.M. [7]. Then these two theorems
imply six known theorems for dentability and w∗-dentability
as corollaries.

1. Introduction. Let E be a vector space and r and r0 two
topologies in it, in connection with which E is a topological vector
space (tvs). We consider that r < r0. The tvs (E, r0) will be denoted
by E and (E, r) by Er, while their topological duals are denoted each
by E′ or E′

r, respectively. Since r < r0 we have that E′
r ⊂ E′. The

points of E will be denoted by x, while those of E′
r or E′ by x′. The

bounded (closed) sets in tvs Er will be called r-bounded (r-closed),
while those in tvs E, bounded (closed). Then γ(0) denotes the system
of neighborhoods of the origin in the tvs E. For every r-bounded
B ⊂ E, and for every x′ ∈ E′

r and a > 0, the set

{x ∈ B | x′(x) ≥ sup x′(B) − a}

will be called a slice of B and will be denoted by T (x′, a, B).
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Definition 1. An r-bounded set B ⊂ E is called an r-dentable set
in the tvs E, if for every neighborhood V ∈ γ(0), there exists a slice
T (x′, a, B) of B which is “V -small,” i.e.,

∀V ∈ γ(0) � x′ ∈ E′
r � a > 0, T − T ⊂ V.

As in proposition 2.3.2 [1], it can be proved that the set B is r-dentable
if and only if, when

∀V ∈ γ(0) � x ∈ B, x /∈ C
r
(B\x + V ),

where C
r
(B\x + V ) is the r-closed convex hull of the set (B\x + V ).

Definition 2. Let σ be a system of r-bounded sets in E. The tvs E
is called σ − r-dentable if every set B ∈ σ is r-dentable. The tvs E is
called r-dentable if every r-bounded set in it is r-dentable.

Remark 1. For r = r0 in Definition 1 the notion of the dentability
for B ⊂ E is obtained. Taking the dual space E′, r = w∗ = σ(E′, E)
and r0 = β(E, E′) (the strong topology in E′), implies the notion of
w∗-dentability of B ⊂ E′. Note that if in the first case the σ-system
is the system of bounded sets in the tvs E, and in the second case
the σ-system is the system of equicontinuous sets in the tvs E′, then
Definition 2 leads to the notions of the dentability of E [3] and the
w∗-dentability of dual E′ [3], respectively.

The definitions of the notions of the r-dentable points, as well as of
the r and E′

r(M)-strongly exposed points, will be given in Section 3,
as the generalization of the analogous notions, given in [3]. It is easy
to see that the proposition of Rieffel ([1], Corollary 2.2.3) is true for
r-dentability as well:

Proposition 1. If the vector space E is a locally convex space for
each one of the two topologies r and r0, where r < r0, then the r-
dentability of the r-closed convex hull of an r-bounded set D ⊂ E
implies the r-dentability of D.
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2. The two lemmas of Phelps for r-dentability.

Lemma 1. Let A be a closed bounded absolutely convex set in E,
which is a tvs for the two topologies r and r0, where r < r0. If every
subset of A is r-dentable and for the closed set B ⊂ A there exists
x′

0 ∈ E′ such that

D = {x ∈ B | x′
0(x) = 0} �= ∅, {x ∈ B | x′

0(x) > 0} �= ∅,

then for every neighborhood V ∈ γ(0) there exists a slice T1 =
T1(x′

1, a1, B) of B, which is V -small and for which T1 ∩ D = ∅ (∅
is the empty set).

Proof. We apply the method of the proof given by Phelps for
this lemma in the normed spaces [6], with the respective technical
modifications to extend it in topological vector spaces. Let us fix a
point z ∈ B, for which x′(z) > 0 and let us put r = 1/x′

0(z). Let
Tx : E → E be the linear map given by

∀ y ∈ E, Tx(y) = y − 2rx′
0(y)(z − x).

Then Tx◦Tx = idE (identity map in E), Tx(s) = s for every s ∈ D, and
(1/2)[Tx(z)+z] = x for y = z. The family (Tx)x∈D is an equicontinuous
family of linear operators in each one of the two topologies r and r0. We
prove this for the topology r0; the proof for the other case is the same.
Let V ∈ γ(0), and let u ∈ γ(0) denote an equilibrated neighborhood of
the origin in E, such that u+u ⊂ V . Then there exists λ > 0 such that
λ(z − D) ⊂ u. For this λ > 0 there exists the neighborhood u1 ∈ γ(0),
for which |x′

0(y)| ≤ 1/(2r) for every y ∈ u1, because x′
0 ∈ E′

r. If we
take u0 = u ∩ u1, we have

y ∈ u0 =⇒ Tx(y) = y − 2rx′
0(y)(z − x)

= y +
−2rx′

0(y)
λ

λ(z − x) ∈ u + u ⊂ V,

because u is an equilibrated neighborhood of the origin in the E and

λ(z − x) ∈ λ(z − D) ⊂ u,

∣
∣
∣
∣

−2rx′
0(y)

λ

∣
∣
∣
∣
≤ 1.
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This shows that the family (Tx)x∈D is an equicontinuous family of linear
operators. For every x ∈ D and y ∈ B, and for K = B ∪ (∪x∈DTxB)
and M = sup |x′

0(B)|, we have

Tx(y) = y − 2rx′
0(y)(z − y) ⊂ A + 2rM · 2A

= (1 + 4rM)A = M1A,

where M1 = 1 + 4rM ≥ 1. Then K ⊂ M1A or K/M1 ⊂ A, because
B ⊂ A ⊂ M1A; this proves that the sets K/M1 and K are r-dentable
sets in the tvs E.

Now let V ∈ γ(0). The set D is closed in the tvs E because
D = B ∩ x′−1

0 ({0}) and B is a closed set, while x′
0 ∈ E′. From the fact

that z /∈ D, it results that there exists an equilibrated neighborhood
u1 ∈ γ(0) such that (z + u1) ∩ D = ∅. We assume that u1 ⊂ V . From
the fact that (Tx)x∈D is an equicontinuous family, it results that there
exists an equilibrated neighborhood u2 ∈ γ(0) for which

(y1, y2) ∈ E2 ∧ y1 − y2 ∈ u2 ∧ x ∈ D ⇐⇒ Tx(y1 − y2) ∈ u1.

For u = u1 ∩ u2, there exists a u-small slice T of K : T − T ⊂ u. If
x0 ∈ K and x′

1(x0) > sup x′
1(K)−a, then x0 ∈ B, or there exists x ∈ D

for which x0 ∈ TxB. In the first case we take the slice T1(x′
1, a1, B)

where a1 = a− sup x′
1(K) + sup x′

1(B) while in the second one we take
the slice T1(x′

1, a1, TxB), where a1 = a − sup x′
1(K) + sup x′

1(TxB) (it
is easy to show that a1 > 0). Then T1 ⊂ T . If T1 ∩ D �= ∅, there
exists t ∈ T1 ∩ D. Then t ∈ T and (1/2)(Tt(z) + z) = t, from which
x′

1(t) = 2−1(x′
1(z) + x′

1(Tt(z))) ≥ sup x′
1(K) − a. From the fact that

z, Tt(z) ∈ K, z ∈ T ∨ Tt(z) ∈ T is obtained. If t, z ∈ T , we have
that t − z ∈ T − T ⊂ u ⊂ u1 in contradiction with the fact that
(z + u1) ∩ D = ∅. If t, Tt(z) ∈ T , the same argument shows that
t ∈ (z + u1)∩D, too, which is a contradiction as well. This shows that
T1 ∩ D = ∅. If x0 ∈ B, then the required slice is T1 = T1(x1, a1, B),
because T1 ∩D = ∅ and T1 − T1 ⊂ T − T ⊂ u ⊂ u1 ⊂ V . If x0 ∈ TxB,
(for any x!), then we have that

T−1
x (T1(x′

1, a1, TxB) ⊂ B, T−1
x (T1(x′

1, a1, TxB) ∩ D = ∅,

because Tx(y) = y for every y ∈ D and T1 ∩ D = ∅. From the
fact that x′

1 ∈ E′
r and (Tx)x∈D is an equicontinuous family in Er,
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x′
1 ◦ Tx ∈ E′

r is obtained. In this case it is easy to prove that the set
T2 = T−1

x (T1(x′
1, a1, TxB)) = Tx(T1(x′

1, a1, TxB)) is a slice of B, and
that T2 ∩ D = ∅. The set T2 is a V -small slice of B too; indeed, if
y1, y2 ∈ T2, then Tx(y1), Tx(y2) ∈ T1 ⊂ T or Tx(y1)−Tx(y2) ∈ T −T ⊂
u ⊂ u2. Accordingly,

y1 − y2 = Tx(Tx(y1) − Tx(y2)) ∈ u1 ⊂ V.

This last relation shows that T2 − T2 ⊂ V .

Remark 2. It is easy to show that this lemma holds true, when A = E
and the tvs is r-dentable, while B is a closed bounded set in E.

From Lemma 1, the following is obtained.

Lemma 2. Let A be a closed bounded absolutely convex set in the
space E, which is a Hausdorff locally convex (topological) space (Hlcs)
for the two topologies r and r0, and let r < r0.

If every subset of the set A is r-dentable and C is a closed convex
subset of A, while B is a subset of A, then for every V ∈ γ(0) and
for every slice T0 = T0(x′

0, a, C) of C and ε > 0, there exists the slice
T1 = T1(x′

1, a1, C) of C such that

T1 ⊂ T0, T1 − T1 ⊂ V, |x′
0 − x′

1|B∪C ≤ ε.

Proof. We follow the idea of the proof of the analogous proposition of
[3]. Here we give only the part of the proof concerning the application of
the first lemma and the case of the Hlcs supplied with two comparative
topologies. Let us introduce the notation H = {x ∈ E|x′

0(x) =
sup x′

0(C) − a}. Due to the translation in the origin, we can suppose
that the origin 0 ∈ H; then H = x−1

0 ({0}) where 0 ∈ R. Let K be the
closed absolutely convex hull of the set B ∪C, and let M = sup x′

0(K);
obviously, M > 0. We fix a real number λ > {2, 2M/ε}. If C1 denotes
the closed convex hull of the set (λK ∩ H) ∪ T0, then C1 ⊂ λK ⊂ λA
and

D = {x ∈ C1|x′
0(x) = 0} �= ∅, {x ∈ C1|x′

0(x) > 0} �= ∅,
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because x′
0(0) = 0 ∈ λK∩H ⊂ C1 and there exists a point x0 ∈ T0 ⊂ C1

such that x′
0(x0) > 0. Due to Lemma 1, and if V ∈ γ(0), then there

exists a V -small slice T1 = T1(x′
1, a1, C1) of C1 such that T1 ∩ D = ∅.

As in the other versions of this lemma given in [3], and based on the
fact that λK ∩H ⊂ D, T1 ∩λK ∩H = ∅, r < r0 and that x′

1 ∈ E′
r, we

conclude that

T1(x′
1, a1, C) ⊂ T1(x′

1, a1, C1),
sup x′

1(C) = sup x′
1(C1) = sup x′

1(T0).

Accordingly T1(x′
1, a1, C)− T1(x′

1, a1, C) ⊂ T1 − T1 ⊂ V . Now we may
choose a point z ∈ C such that x′

1(z) > sup x′
1(C)− a1. After that the

proof is the same as in the one of the lemma in [3].

Corollary 1. Let E be as in the above lemma. If the family
(An)n∈N is a sequence of closed bounded absolutely convex sets, in
which every subset is r-dentable, and the family (Bn)n∈N is another
sequence of bounded sets such that Bn ⊂ An for all n ∈ N , then for
every sequence (Vn)n∈N of neighborhoods of the origin of E and for
every slice T0 = T0(x′

0, a0, C) of a given closed convex C, with the
property C ⊂ An, for all n ∈ N , there exists a sequence (an)n∈N of
real positive numbers and a sequence (Tn = Tn(x′

n, an, C)) of slices of
C such that

a) Tn+1 ⊂ Tn ⊂ T0,

b) Tn − Tn ⊂ Vn,

c) |x′
n+1 − x′

n|Bn∪C ≤ an/2n+1, an+1 ≤ an/2.

Proof. We will show how to choose the slice Tn+1 for all n ∈ N ∪ {0}
when the slice Tn = Tn(x′

n, an, C) is known. Setting in Lemma 2
A = An, B = Bn, T0 = Tn, V = Vn+1, ε = an/2n+1, B0 = ∅

and A0 = A1 implies that there exists a Vn-small slice T ′
n+1 =

T ′
n+1(x′

n+1, bn+1, C) ⊂ Tn such that |x′
n+1 − x′

n|Bn∪C ≤ an/2n+1. The
slice Tn+1 we are looking for is the slice Tn+1 = Tn+1(x′

n+1, an+1, C)
for which an+1 = min{an/2, bn+1}.

3. The r-dentable, r- and E′
r(M)-strongly exposed points.



DENTABILITY 1123

Definition 3. Let A be an r-bounded set in E. The point x ∈ A
is called an r-dentable point of A if, for every V ∈ γ(0), there exists a
V -small slice T (x′, a, A) such that x′(x) > sup x′(A) − a.

If, in Definition 3, the element x′ ∈ E′
r may be chosen the same for

every V ∈ γ(0), then the given point x is called an r-strongly exposed
point of A.

It is understood that an r-strongly exposed point of A is an r-dentable
one and that an r-bounded set, that has an r-dentable point, is an r-
dentable set. Even in this case, an r-closed convex and r-bounded
C is the r-closed convex hull of a given subset S of C, if every slice
T (x′, a, C) of C has at least one point of S.

If r = r0, from Definitions 3 and 4, the notions are obtained of the
dentable and strongly exposed points as in [2, 3]. In the case of the dual
space E′ with r = σ(E′, E) = w∗ and r0 = β(E′, E), from Definitions
3 and 4, the notions of w∗-dentable and w∗-strongly exposed points are
obtained, because (E′, w∗)′ = E.

Definition 4. Let (E, r) and (E, r0) be two Hlcs in which r < r0

and M ⊂ E. We denote with E′
r(M) the subset of algebraic dual of

the vector subspace E(M) of E, generated by the set M , in which the
restrictions to M of its elements are continuous, if the topology in M
is induced by the space (E, r).

The point x0 ∈ K where K ⊂ M , is called E′
r(M)-strongly exposed

of K, if there exists x′
0 ∈ E′

r(M) such that

a) x′
0 is bounded on K and

sup x′
0(K) = x′

0(x0).

b) The sequence (xn) of the points in K converges to x0 for the
topology r0, if the real sequence (x′

0(xn)) converges to x′
0(x0).

As in the case of the strongly exposed points in Hlcs, we may prove
that the point x0 ∈ K is an E′

r(M)-strongly exposed point, if and only
if there exists a point x′

0 ∈ E′
r(M) which is bounded on K, and such

that for every V ∈ γ(0) there exists a V -small slice T (x′
0, a, K) for

which x′
0(x0) > sup x′

0(K) − a.
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The r-strongly exposed points are E′
r(M)-strongly exposed ones. It

is not difficult to prove that it is true.

Proposition 2. If the set B ⊂ M is r-closed convex and r-bounded
set in E, then every E′

r(M)-strongly exposed point of B is r-dentable.

In Section 4 we shall consider the tvs which are of type BM (quasi-
metrizable) [7] for the stronger topology r0. E. Saab [7] (also [3]) has
required these spaces to be Hausdorff. Really this requirement is not
needed, because in Proposition 3 we shall show that these spaces are
Hausdorff.

Proposition 3. The spaces of type BM are Hausdorff.

Proof. At first we shall prove that a topological vector space (tvs)
E is Hausdorff if, for every x �= 0, its topological subspace which has
the set {0, x} for its support, is a Hausdorff topological subspace. Let
x �= 0 be a point of E. The fact that the topology induced on the set
{0, x} by the topology of E, is Hausdorff, implies the existence (in the
subspace {0, x}) of a neighborhood V0 of the origin, 0, which does not
contain the point x: x /∈ V0. There also exists in E a neighborhood V
of the origin 0 such that V0 = V ∩ {0, x}. Then x /∈ V because x /∈ V0

and x ∈ {0, x}. This shows that the space E is Hausdorff. The set
{0, x} is bounded and the subspace {0, x} of a vector topological space
of type BM is a Hausdorff space because it is metrizable. From this we
obtain that the tvs of type BM are Hausdorff.

4. Two theorems for the dentability in the spaces with two
topologies. In the two Theorems 1 and 2 below, E is a vector space
endowed with two topologies r, r0, such that r < r0. We also assume
that E is an Hlcs for the topology r and an lcs of the type BM for the
topology r0.

Theorem 1. Let A be a closed bounded absolutely convex set in
which every subset is an r-dentable set. If B ⊂ A and the subset C of
A is an r-closed convex set which is also complete in one of the uniform
structures of the spaces (E, r) or (E, r0), then C is the r-closed convex
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hull of its E′
r(B ∪ C)-strongly exposed points.

Proof. It is sufficient to prove that every slice T0 = T0(x′
0, a, C) of C

(x′
0 ∈ E′

r) has at least one E′
r(B ∪ C)-strongly exposed point. The set

C is closed in E and B ∪ C ⊂ A; consequently, if the family (Vn)n∈N

denotes a sequence of the neighborhoods of the origin in the space
(E, r0) which generates the topology induced by r0 in the set 2A, then
from Corollary 1, for An = A, Bn = B, for all n ∈ N , there exists a real
positive sequence (an)n∈N and a sequence (Tn = Tn(x′

n, an, C))n∈N of
slices of C (x′

n ∈ E′
r), which satisfy the conditions

a) Tn+1 ⊂ Tn ⊂ T0,

b) Tn − Tn ⊂ Vn,

c) |x′
n+1 − x′

n|Bn∪C ≤ an/2n+1, an+1 ≤ an/2,

for all n ∈ N .

The slices Tn are r-closed sets and for this reason they are also closed
sets in E. As Tn �= ∅, for all n ∈ N , there exists xn ∈ Tn for all n ∈ N .
For n, m > ρ we have xn, xm ∈ Tρ or xn − xm ∈ Vρ. Consequently
the sequence (xn)n∈N is a Cauchy sequence in each of the uniform
structures induced on C by the spaces (E, r) and (E, r0); thus, the
sequence (xn)n∈N converges to a point x0 ∈ C for the two topologies
r and r0. From the fact that xk ∈ Tn for all k ≥ n, it results that
x0 ∈ ∩∞

n=1Tn ⊂ T0. From c) we obtain that

d) |x′
n+m(x) − x′

n(x)| ≤ an/2n, for all x ∈ B ∪ C.

This shows that the sequence (x′
n)n∈N in E(B∪C) converges pointwise

to a point x′ of the algebraic dual of E(B ∪ C), which is also a point
of E′

r(B ∪ C) and bounded on C. The point x0 is an E′
r(B ∪ C)-

strongly exposed one by the element x′. To prove it we can suppose
that Vn ⊃ Vn+1 for all n ∈ N . Let V ∈ γ(0); then there exists ρ > 1
such that Vρ ∩ 2A ⊂ V ∩ 2A ⊂ V . So Tρ − Tρ ⊂ V .

From d) and the fact that each Tn contains the point x0, it results
that

x′(x0) > sup x′(C) − aρ+1,

and that

x′
ρ(x) ≥ sup x′

ρ(C) − aρ, ∀x ∈ T,
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where T = T (x′, aρ+1, C); this shows that the slice T is a V -small slice,
which contains strictly the point x0.

From Theorem 1 we obtain the corollaries below; Corollary 1.1
generalizes, in a local form, Theorem 2.3 in [3], while Corollary 1.2
is in fact this theorem.

Corollary 1.1. Let E be a locally convex space of the type BM and
A a closed bounded absolutely convex set in E which is also a subset
dentable (which means that every subset of A is a dentable set [1]). If
B ⊂ A and C is a convex complete subset of A, then C is the closed
convex hull of its −E′(B ∪ C)-strongly exposed points.

Proof. It results from Theorem 1 for r = r0, where E′
r(B ∪ C) =

E′(B ∪ C).

Corollary 1.2. Let E be a dentable locally convex space of the type
BM and B a bounded set in E. Every bounded complete convex set
C ⊂ E is the closed convex hull of its E′(B∪C) strongly exposed points.
Furthermore this proposition holds true, when the locally convex space
E is dentable and quasi Fréchet space and C is a closed bounded convex
set in E.

Proof. It results from Corollary 1, if one denotes by A the closed
absolutely convex hull of the set B ∪ C.

Corollary 1.3. If E is an lcs of the type BM and C is a convex
complete subset of a closed bounded absolutely convex set A, which is a
subset dentable, then C is the closed convex hull of its dentable points;
the same holds when E is an lcs quasi-Fréchet and dentable, and C a
closed bounded convex set in E.

Proof. The proof is based on Corollary 1.2 and on the fact that each
E′(B ∪ C)-strongly exposed point is a dentable point.



DENTABILITY 1127

Remark 3. Corollary 1.3 contains Theorems 1.2 and 2.1 in [3], but
it is weaker than the local form given by Theorem 2.2 in [2]. This
local form does not result by applying the method of Phelps lemmas.
To extend the first Phelps lemma for this case, we would need to prove
that the sum C1+C2 of two closed convex sets with the RNP (the Radon
Nikodym property) is a set with the RNP; but W. Schachermayer in
[8] shows that this is not true.

Corollary 1.4. Let E be an Hlcs with its dual E′ a space of the
type BM. If C is a w∗-compact convex set such that the set B ∪ C
is contained in a closed bounded absolutely convex set of the space
(E′, β(E′, E)) which is subset dentable, then C is the w∗-closed convex
hull of its E′

w∗(B ∪ C)-strongly exposed points (furthermore of its w∗-
dentable points).

Proof. We set in E′ r = w∗ and r0 = β(E′, E) and observe that C is
complete in the uniform structure generated by the topology w∗.

Corollary 1.5 below is slightly stronger than Theorem 3.1 in [3],
because here we do not need to assume the quasi-completeness of the
dual space E′. The proof is based as well only on the method resulting
from the two lemmas of Phelps, and we do not need to use the lemmas
of Bourgain [4], Namioka-Asplund [5] and Bishop-Phelps.

Corollary 1.5. Let E be an Hlcs with its dual a space of the type
BM. Then the following statements are equivalent:

1. E′ is a w∗-dentable space.

2. Every w∗-closed equicontinuous convex set C in E′ is the w∗-closed
convex hull of its w∗-dentable points.

3. For every equicontinuous set B in E′ and for every w∗-closed
equicontinuous convex set C, the set C is the w∗-closed convex hull of
its E′

w∗(B ∪ C)-strongly exposed points.

Proof. It is sufficient to prove that 1 implies 3. The set C is a
w∗-compact convex set, while the w∗-closed absolutely convex hull
A = C

w∗
(B ∪ C)e of the set B ∪ C is a closed equicontinuous, i.e.,
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also bounded, set which contains the set B ∪C and such that its every
subset is a w∗-dentable set (because A is an equicontinuous set and
it holds true (1)). It results from Corollary 1.4 that the set C is the
w∗-closed convex hull of its E′

w∗(B∪C)-strongly exposed points.

Theorem 2. If

1. the dual of the space (E, r) is a Fréchet space (with its strong
topology) and (Bn)n∈N is an increasing sequence of r-closed absolutely
convex sets, which is a fundamental system of bounded sets for the space
(E, r) defining the strong topology in its dual.

2. For the r-bounded convex C, which is complete in one of the uni-
form structures of the spaces (E, r) or (E, r0), there exists a sequence
(An)n∈N of closed absolutely convex bounded sets in which every subset
of An, n ∈N, is an r-dentable set, and such that Bn ∪ C ⊂ An for all
n ∈ N ,

then the set C is the r-closed convex hull of its r-strongly exposed points.

Proof. It is sufficient to prove that every slice T0 = T0(x′
0, x0, C),

x′
0 ∈ E′

r contains at least one r-strongly exposed point. Let A be
the absolutely convex hull of C and (Vn)n∈N a decreasing sequence
of neighborhoods of the origin in (E, r0) that generates in the set 2A
the topology induced by r0. For the sequences (An)n∈N , (Bn)n∈N ,
(Vn)n∈N and the slice T0, there exists a positive sequence (an)n∈N and
the sequence (Tn = Tn(x′

n, an, C))n∈N , (x′
n ∈ E′

r) of slices of C, that
satisfy the conditions

a) Tn+1 ⊂ Tn ⊂ T0,

b) Tn − Tn ⊂ Vn,

c′) |x′
n+1 − x′

n|Bn∪C ≤ an/2n+1, an+1 ≤ an/2,

for each n ∈ N (Corollary 1).

From these relations (as in Theorem 1 or as in [3, Theorem 2.5]) there
exists a point x0 ∈ ∩∞

n=1Tn ⊂ T0. From (c′) there results a sequence
(x′

n)n∈N that is a Cauchy’s sequence in the space E′
r supplied with its

strong topology β(E′
r, Er); thus it converges to a point x′ ∈ E′

r because
the space (E′

r, β(E′
r, Er)) is a Fréchet one. The sequence x′

n converges
pointwise to x′; thus (from (c′)) we obtain that
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c′′) |x′ − x′
n|C ≤ an/2n for all n ∈ N .

Based on (c′′), as in Theorem 1, we can prove that the point x0 ∈ C is
an r-strongly exposed point by the linear form x′ ∈ E′

r.

Corollary 2.1. If the lcs E is dentable and of type BM and its dual
supplied with the strong topology is a Fréchet space, then every bounded
complete convex set in E is the closed convex hull of its strongly exposed
points.

Proof. We have r = r0 in this case. Let (Bn)n∈N be an increasing
sequence of the closed absolutely convex sets which is a fundamental
system of bounded sets in E and which also defines the strong topology
in E′. For each n ∈ N there exists an mn ∈ N such that Bn∪C ⊂ Bmn

.
After that we apply Theorem 2 where An = Bmn

.

Remark 4. Corollary 2.1 is Theorem 2.5 in [3]. For the same reason
as in Remark 3, we cannot prove by the lemmas of Phelps its local
stronger version given in Theorem 3.2 [2].

Corollary 2.2 below is Theorem 3.2 in [3]. Its proof here is based on
Theorem 2 and on the “symmetry” between the space E and its dual
E′.

Corollary 2.2. If E is a Fréchet space with its dual E′ a space of
the type BM, then the following two facts are equivalent:

1. E′ is w∗-dentable.

2. Every w∗-compact convex set C in E′ is the w∗-closed convex hull
of its w∗-strongly exposed points.

Proof. It is sufficient to prove that 1 implies 2. In this case we apply
Theorem 2, where r = w∗ and r0 = β(E, E′) in the dual E′. E is
barreled because it is a Fréchet space. So in E′ a set is a w∗-bounded
set if and only if it is an equicontinuous set. From this and from the
fact that the dual space (E′, w∗)′ = E endowed with its strong topology
(which is the topology of the space E) is a Fréchet space, there exists
an increasing sequence (Bn)n∈N of w∗-closed absolutely convex sets,
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which is a fundamental system of bounded sets in the space (E′, w∗)
and which also defines the topology of E. Let C be a w∗-compact
convex set in E′. For each n ∈ N there exists mn ∈ N such that
Bn ∪ C ⊂ Bmn

. The sets An = Bmn
are bounded (as equicontinuous

sets) and subset w∗-dentable (from Condition 1) and C is complete for
the uniform structure of the space (E′, w∗). Then (Theorem 2) C is
the w∗-closed convex hull of its w∗-strongly exposed points.
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Natyrore 4 (1977), 15 33.

4. A. Grothendieck, Espaces vectories Topologiques 3 a edicâo - Sâo Paulo,
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