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MATRICIAL RANGES OF QUADRATIC OPERATORS

SHU-HSIEN TSO AND PEI YUAN WU

ABSTRACT. We show that if T is a quadratic operator on
a Hilbert space, then (1) the numerical range of T is an (open
or closed) elliptical disc (or its degenerate form) and (2) for
every n > 1, the nth matricial range of T" consists of n X n
matrices whose numerical ranges are contained in the closure
of the numerical range of T'.

For a bounded linear operator T on a complex Hilbert space H
its numerical range W(T) is by definition the set {(Tz,z) : = €
H and ||z|| = 1}, where (-, -) denotes the inner product in H. As is well
known, to determine the numerical range of a general operator is a very
difficult task. Toeplitz, in the earliest paper on this subject [10], did
this for operators on a two-dimensional space: their numerical ranges
are (closed) elliptical discs. One purpose of this paper is to show that
an analogous result holds for quadratic operators on a Hilbert space.
Recall that T is quadratic if it satisfies T2 + \T + Aol = 0 for some
scalars A; and A,. In contrast to the finite-dimensional case, numerical
ranges of operators on an infinite-dimensional space are in general not
closed. We will determine for quadratic operators when their numerical
ranges are.

In the literature, there are miscellaneous generalizations of the numer-
ical range. The one to the matricial range seems to be most natural and
useful. Specifically, for every n > 1, the nth matricial range W™(T') of
an operator T on H consists of n X n matrices of the form ¢(7"), where
¢ is a unital completely positive linear map from B(H), the C*-algebra
of all operators on H, to M, the C*-algebra of n x n matrices. This
was first introduced by Arveson [2]. As was shown by him, they pro-
vide complete unitary invariants for certain compact operators. Note
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that W(T), the first matricial range of T, coincides with W (7). An-
other result we obtain in this paper is a complete determination of all
matricial ranges of any quadratic operator.

In Section 1 below we start by giving the canonical form for quadratic
operators. This will be used for the description of their numerical
ranges in Section 2 and their matricial ranges in Section 3.

For properties of completely positive maps and related dilation theo-
rems, the reader can consult Paulsen’s monograph [9].

1. Canonical form. There are two frequently seen subclasses of
quadratic operators: square-zero operators (I'* = 0) and idempotents
(IT? =T). In fact, every quadratic operator is an affine function of one
of these two types of operators. For if T is quadratic, say, T? + M\ T +
A2l = 0 for scalars A; and Ao, then T satisfies (T' — al)(T — bI) = 0,
where a,b = (~\; £ (A2 — 4)2)Y/?)/2. If a = b, then T — al is square-
zero; otherwise, (b — a) (T — al) is idempotent. Hence, T is an affine
function of one or the other depending on whether its spectrum consists
of one or two points.

The next theorem gives a canonical form for quadratic operators. The
special case for idempotents on a finite-dimensional space was treated
before in [4].

Theorem 1.1. Let T be an operator on H. Then T is quadratic if
and only if it is unitarily equivalent to an operator of the form

al A

aIEBbIEB[O bl

] on Hy & Hy ® (Hs @ Hs),

where a and b are scalars and A is positive definite, that is, (Az,z) > 0
for all nonzero vectors x in Hz. In this representation, a,b and the
dimensions of Hy, Hy (H; ® Hs if a = b) and H3 are unique while A is
unique up to unitary equivalence.

Proof. If T is of the above form, then obviously (T'—al)(T —bI) =0,
which shows that T" is quadratic. For the rest of the proof, we consider
only quadratic operator T' with spectrum consisting of two distinct
points a and b. The case for a = b can be treated analogously. Since
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(b —a) YT — al) is idempotent, it is clear that to prove the converse
we need only consider such operators.

If T is idempotent on H, then T = 007" on H = (ker T'Nker T*)® H',
where H' is the orthogonal complement of ker TNker T* in H. We may

represent T" as
0 B
0 C

on H = kerT’' @ ranT’*. Since T" is also idempotent, it is easily
deduced that C' = I. Hence, T" has the finer representation

0 0
0 I
0 0

~ o g

with respect to the decomposition H' = ker T @ker B (ranT"* Sker B)
or the representation

0 D
relg 7]

on ker B @ (ker T & (ranT"* © ker B)). From the above construction,
it is easily seen that D is injective and has dense range. If D = UA
is the polar decomposition of D, where U is unitary and A is positive

definite, then
u* o|{0 D||U 0| (0 A
0 I||0 I 0 I| |0 I}

This shows that T” is unitarily equivalent to

raly 4]

0 I
and hence has the asserted representation.
For the uniqueness (for idempotents), if 7" has the form

0 A
O@I@[ ] on Hy ® Hy ® (Hs @ Hs),

0 I
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then Hy = ker TNker T* and Hy = ker(T'—I)Nker(T'—1I)*. Hence their
dimensions are uniquely determined by 7'. To prove the uniqueness of

A, assume that
0 A and 0 A
o 1| ™ o I

are unitarily equivalent, where A and A’ are positive definite, with the
intertwining unitary operator

[ U,
U_[US U4].

Carrying out the matrix multiplications in
U Uz [0 Al |0 AU U,
Us Ug| |0 I| |0 I Us Uy’

we obtain Uz = 0 and Uy A + Uy = A’'Uy. Since U* is the inverse of U,

we also have

Uy Us||0 Al |0 A||UF Us

Us UfF||0 I| |0 I us Uf|’
from which U3 = 0 or Uy = 0 follows. Hence, both U; and Uy are
unitary and U; A = A'Us. We have

A2 = (AU7)(ULA) = (U A')(A'U,) = UL AU,

From this we infer that A and A’ are unitarily equivalent, completing
the proof. i

2. Numerical range. The main result of this section is the following
theorem specifying the numerical range of a quadratic operator.

Theorem 2.1. Let T be a quadratic operator with o(T) = {a, b}.

(1) If a = b, then W(T) is either the singleton {a} or the (open or
closed) circular disc with center a and radius ||T — all|/2.
(2) If a # b, then W(T') is either the closed line segment connecting a

and b or the (open or closed) elliptical disc with foci at a and b, major
azis |T — al|| and minor azis (|T — al||? — |a — b|?)"/2.
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(3) The following conditions are equivalent for T
(i) W(T) is closed,
(ii) T attains its norm;

(iii) T attains its numerical radius.

The numerical radius w(T') of an operator T is the quantity sup{|\| :
A € W(T)}. T is said to attain its norm, respectively attain its
numerical radius, if there is a unit vector x such that ||Tz| = ||T,
respectively |(Tz,z)| = w(T). For general properties of the numerical
range and numerical radius, the reader can consult [6, Chapter 22].

We prove Theorem 2.1 via the following lemma.
Lemma 2.2. If

al A
T—|:0 bI:| on H—Hl@HQ,
then

(D) |IT = aI|* = |a —b* +]|A]]?, and

(2) T attains its norm if and only if A does.

Proof. Let z be a unit vector in H. We decompose = as ay @ Sz,
where y and z are unit vectors in H; and Hs, respectively, and o and
B are scalars satisfying |a|? 4+ |3|> = 1. Then

|ITz|* = |[(acy + BAz) @ b32|>
= laf*|af® + 2Re (aaB{Az, y)) + |B]*|| A=|* + [b*|5]?

HIHIE

From this, we deduce that

][ 4]

Since, for fixed a and b, the norm of the 2 X 2 matrix

6 i)

(%)

Z ‘

yeH,:cH and |y||=||z||=1}-
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is an increasing function of |c| and ||A|| = sup{|{Az,y)| : y € Hi,z € H>
and ||y|| = ||z|| = 1}, we obtain

a |4

0 b )

On the other hand, from (x), we also have

nTnz\

1Tx||* < |a]*|af® + 2lal |af 18] |A]l + 8] |AlI* + [B]* 8]
(%) _[Ta 14N « 7
0 b Bet?

where 0 is a suitable real number with aaf||A||e?’ > 0. Therefore,

)
)

(1) Applying the above formula to T — al results in

P Tt
=P = [ )

?

nTng‘

This proves that

(5% I = |

2
= la—b” + [ AJ*.

(2) If T attains its norm, say, ||T'|| = ||Tx|| for the unit vector z, then
from (**) and (*xx*) we deduce that ||Tz||? = |a|?|a|*+2]a| |a| |8] | Al|+
|8/ || A]|?> + |b]?|8|%. This, together with (x), implies that ||A|| = || Az]|
if 8 # 0. On the other hand, if 8 = 0, then ||T|| = ||Tz| = ||acy]|| = |al.
But, for any unit vector y in Hy, we also have

jal = IT*| 2 IT*(y © 0)|| = (lal® + | A*ylI*)"/2,

from which it follows that A = 0. Hence, in either case, A attains its
norm.
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Conversely, if A attains its norm, say, | A|| = ||Az|| for the unit vector
z in Hy, then y = Az/||Az|| is such that (Az,y) = ||A]|. Let o and 8
be scalars satisfying |o|? + |3]? = 1 and

e " s11=10 0

Let ¢ = ay @ Bz. From (x) and (* * %), we have

|5 50 5)7-10s )

It follows that ||Tz|| = ||T"||, that is, T" attains its norm. o

2
= 171>,

Proof of Theorem 2.1. By Theorem 1.1 it suffices to prove the
assertions for the operator 7" in Lemma 2.2. We start by showing

W(T):UW<[8 <Ai’y>]>,

where the union is taken over all unit vectors y and z in H; and Ho,
respectively. Let x be a unit vector in H. As before, we decompose x
as ay @ Bz, where y and z are unit vectors in H; and Hs, respectively,
and o and 3 are scalars satisfying |a|? + |32 = 1. Then

wea= ([ ) 8] [5])
(*) = ala|® + Ba(Az,y) + b8
(o ] )

This proves the inclusion

W(T) C UW <[g <Ai’y>]> .

The converse containment follows by reversing the above arguments.
Since the numerical range of the 2 x 2 matrix

[8 <A? y>]
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is the closed elliptical disc (or its degenerate form) with foci at a and
b, major axis (|a — b|]? + [(Az,y)[?)'/? and minor axis |(Az,y)|, and
|All = sup{[(Az,y)| : y € Hi,z € Hp and |ly| = [lz[| = 1}, the
assertions in (1) and (2) on the shape of W(T) follow easily from
Lemma 2.2 (1).

For the proof of (3), note that it is easily seen from above that W (T')
is closed if and only if ||A|| = |(Az,y)| for some unit vectors y and z
in H; and Hj, respectively. This latter condition is equivalent to A
being norm-attaining. The equivalence of (i) and (ii) in (3) follows by
Lemma 2.2 (2). That (i) and (iii) are equivalent since the function
A — || attains a maximum value on each compact subset of the plane,
but not on any open ellipse. This completes the proof. ]

An interesting consequence of Theorem 2.1 is that, if a quadratic
operator 7T is such that 7'— AI attains its norm for some scalar \, then
it does so for all scalars.

Note that every rank-one operator is quadratic. Indeed, if T has
rank one, then, letting K = ranT V ranT”*, we can represent T as
T: ®0on K @ K+. Since T} is acting on a space of dimension at most
two, it is easily seen that T is annihilated by a quadratic polynomial.
There is another representation for rank-one operators: if x and y are
nonzero vectors in ran7" and ran 1™, respectively, then 7' = x ® y in
the sense that Tz = (z,y)x for any vector z. The following result is an
immediate consequence of Theorem 2.1; the assertion on the numerical
radius appeared before in [5, Theorem 1].

Corollary 2.3. If T = x ® y is a rank-one operator, then W (T') is
the closed elliptical disc with foci 0 and (x,y), major azis ||z - ||y|| and
minor azis (||| - |y||* — |(z,y)1*)"/?, and w(T) is equal to (||z] - [ly[| +

(2, 9)])/2.

3. Matricial range. In this section we only consider operators on
a separable space. The next theorem determines the matricial ranges
of a quadratic operator in terms of its numerical range.

Theorem 3.1. If T is a quadratic operator, then, for every n > 1,
W™ (T) consists of all n x n matrices A with W(A) C W(T).
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For its proof, we need some preparation. Recall that the operator A
on H is said to dilate to operator B on K if there exists an isometry V'
from H to K such that A = V*BV. Alternatively, this is the same as

requiring B being unitarily equivalent to some 2 x 2 operator matrix
A x

*} in which A appears in its upper left corner.
Our first result is well known, which establishes the equivalence of
dilation and infinite C'*-convex combination.

Lemma 3.2. Let T and T, be operators on H and H,, n > 1, re-
spectively. Then T dilates to ), ®T,, if and only if there are operators
X, from H to H,, such that ) X X, =1 and ) X} T,X, =T in
the strong operator topology (SOT).

Proof. If T dilates to ), ®T,, say, T = V*(3_,, ®T,)V for some
isometry V from H to ) @®H,, then letting X,, = P,V, where P,
denotes the (orthogonal) projection from ) @H, onto H,, we obtain
T =3, X:T,X, in SOT. On the other hand, V*V = I implies that
>on Xr X, =1in SOT.

For the converse, let X,,, n > 1, be the operators satisfying the
asserted conditions. It is easy to see that the operator V = [X;Xg---]*
is an isometry from H to ), @®H, and satisfies ' = V*(>_, ®T,)V.
This shows that 7' dilates to ), @7}, completing the proof. ]

If T; and X;, 1 < j < n, are operators on H with Z?Zl X7 X; =1,
then the operator 2?21 XiT;X; is called a C*-conver combination
of T}’s. By the preceding lemma, 1" is a C*-convex combination of
Ty,...,T, if and only if T dilates to Ty @ --®T,,. A subset of B(H) is
C*-convez if it is closed under the operation of C*-convex combination.
For any subset S of B(H), the smallest C*-convex subset of B(H) which
contains S is called the C*-convex hull of S.

The next lemma gives alternative descriptions of the matricial range
in terms of the notion of dilation.

Lemma 3.3. If T is an operator on H, then, for every n > 1,
W™ (T) is equal to the closure of the set of n X n matrices which can be
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dilated to T ® --- ® T for some m, 1 < m < /3n.
| ——

m

Proof. If H is finite-dimensional, then the assertion is an easy
consequence of [8, Lemma 3.1] and Lemma 3.2. Hence, from now
on, we assume that H is infinite-dimensional. By [3, Theorem 3.5],
W™(T) is equal to the closure of the C*-convex hull of W(T), the
nth spatial matricial range of T (recall that W (T) consists of n x n
matrices which can be dilated to T'). Hence, every operator in W"(T')
can be approximated by C*-convex combinations of a finite number of
operators each of which can be dilated to 7. From Lemma 3.2, each
such combination can be dilated to T ® --- @ T for some m > 1. This

—————

m
proves that W™(T') is contained in the closure of nxn matrices dilatable
to direct sums of copies of T. That m can be chosen to be less than
V/3n is a consequence of [8, Lemma 3.1].

To prove the reverse containment, assume that A is an n X n matrix
which can be dilated to T@T & ---,say A=V*(T ST &---)V, where
V is an isometry from C™ to H @ H @ --- . It is easily seen that the
map @ : B(H) — M, defined by ®(X) =V* (X X & ---)V for X
in B(H) is unital, linear, completely positive and satisfies ®(7') = A.
This shows that A is in W™ (T"). Since W™(T') is closed, it contains the
closure of all such A’s. o

The next lemma is the genesis of our Theorem 3.1.

Lemma 3.4. An operator A is dilatable to [g é] @ [g é] @--- if and
only if w(A) < (1/2).

Proof. Since w(A) < (1/2) is equivalent to the condition that
1+ 2Re(zA) > 0 for all z, |z|] = 1, the assertion follows from [2,
Theorem 1.3.1]. O

A more concrete proof of the preceding lemma can be given based
on Ando’s result in [1]. Indeed, if w(A) < (1/2), then it was shown in
[1, Theorem 1] that 24 = (1 + B)'/2C(1 — B)'/? for some Hermitian
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contraction B and contraction C'. Then the expression
1/2 Y2770 ¢ [((1+ B)/2)'/?
_ 1 1
a=[(oem) (oom) ][0 GG IR

with [ (14+8)/2)/% (1-B)/2)*/?]" isometry shows that A dilates to [g g]

Since C' is a contraction, it dilates to the unitary operator

U - C (1-CC*)l/?
“la-cro)2 —-C* '

ouU
00

0r 01 01 . 01 01
{00} or [0O}EB{O0}69---,wehavethatAdllatesto [OO}EB{OO]@--'

as asserted. This argument is shown to us by M.-D. Choi.

Hence, A dilates to [ } Since the latter is unitarily equivalent to

Now we generalize this lemma successively up to its full force.

Lemma 3.5. Let T be a quadratic operator with closed numerical
range. Then an operator A is dilatable to T ®& T & --- if and only if
W (A) is contained in W(T).

Proof. One direction is trivial. To prove the other, assume that
W(A) CW(T). If T is a scalar operator al, then W(T') and W (A) are
both the singleton {a}. Hence, A is also equal to al and thus dilatable
toT®T @ ---. On the other hand, if T' = al @ bl with a # b, then,
letting S = (b —a) (T — al) and B = (b — a)~*(A — al), we have
W(B) C W(S) = [0,1]. Thus, B is a positive contraction and S is an
orthogonal projection. Since the projection

(o 0]

is a dilation of B, the latter can be dilated to S ® S & -- -, and hence
A can be dilated to T@® T & - - - as required. For the rest of the proof,
we may assume that

i
T=al Dbl D [“I A],

0 bl
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where A’ is positive definite and the last summand is not missing. Since
W(T) is closed, from the results in Section 2 we have that A’ attains
its norm and hence ¢ = ||A’]| is its eigenvalue. Therefore, the 2 x 2

matrix
a c
n=[; 7]

al A
0 oI
and has the same numerical range as the latter. To complete the proof,

we need to show that W(A) C W(R) implies that A is dilatable to
ROPRD---.

Indeed, the above implication is unaffected by adding a scalar oper-
ator to R or by multiplying it by a nonzero scalar. This reduces the

proof to the case R = [(1) jll]. Consider the function f defined by

is a direct summand of

fN) = (4+1d*)"Y?Re X +i|d| *Im A

for A € C. We have
01
W(f(A))QW(f(R))Z{)\i|/\|§(1/2)}:W<[0 OD

Lemma 3.4 implies that f(A) dilates to

01 0 1
HEE LS
and hence A dilatesto RORP --- . ]

The special case of the preceding lemma when 7' is a 2 X 2 matrix
was obtained earlier by M.-D. Choi, C.-K. Li and N.-K. Tsing and
communicated to the second author by Choi. The idea of using the
function f to reduce the consideration of general 2 x 2 matrices to the

Jordan block [8 (1)} has been exploited by C.-K. Li in his recent simple

proof for the numerical range of 2 X 2 matrices [7].

We next drop the restriction of the closedness of the numerical range
in the preceding lemma. This we achieve through the next
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Lemma 3.6. Let T be a quadratic operator. If A is an operator
with W(A) C W(T) and dist(W(A),0W (T)) > 0, then A dilates to
TeT®---.

Proof. As in the proof of Lemma 3.5, we may assume that

!
T=al Dbl D [aI A],

0 &I

where A’ is positive definite and the last summand is not missing. By
our assumption and the proof of Theorem 2.1, we can find a number c,
0<c<|A|, in W(A") with the property that the numerical range of

al cl
S—aIGBbI@[O bI}
contains that of A. Now W(S) is closed and hence Lemma 3.5 is
applicable. We obtain that A dilates to S@® S @ ---. But, from the

choice of ¢, it is easily seen that the 2 x 2 matrix

6 i)

dilates to

al A

0 ol|’
Hence S dilates to T @® T & --- . Combining these, we obtain that A
dilates to T T @ -- - . o

We are now ready for

Proof of Theorem 3.1. By Lemma 3.3, we can approximate any A
in W™(T) by a sequence of n x n matrices {4}, each of which is
dilatable to T®T @ --- . Since W(A;) C W(T) for every j and since
the map which takes any operator to the closure of its numerical range
is continuous, cf. [6, Problem 220], we infer that W(A) C W(T).

Conversely, assume that W(A) C W(T) and

i
T=al Dbl D [“I A],

0 bl
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where A’ is positive definite and the last summand is not missing. For
each j > 2,1let A; = (1—(1/7))(A—((a+Db)/2)I)+((a+b)/2)I. Then A;
is an n x n matrix with W (A;) C W(T') and dist (W (4;),0W (")) > 0.
Lemma 3.6 implies that A; can be dilated to T®T @--- . Since A; — A
in norm, we deduce from Lemma 3.3 that A is in W"(T). o
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