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INVARIANT HYPERBOLIC TORI FOR
HAMILTONIAN SYSTEMS WITH RUSSMANN
NONDEGENERACY CONDITIONS

CONG FUZHONG, LI YONG AND JIN DEJUN

ABSTRACT. Following the procedure designed by Graff
for proving the persistence theorem of invariant hyperbolic
tori for Hamiltonian systems with some modifications, we
obtain in this paper a KAM theorem for Hamiltonian systems
with hyperbolic fixed point. Because the Hamiltonian of
unperturbed systems satisfies the Riissmann nondegeneracy
condition, this generalizes the well-known result of Graff.

1. Introduction and main results. In the classical KAM theory, a
stronger nondegeneracy condition is required, see [1, 7, 8]. To weaken
that condition is, currently, an attractive topic, and there have been
some profound works for Hamiltonian systems, for example, [2—4, 11,
15, 17]. However, in our opinion, the real weakening of the degeneracy
condition should look like

“image of the frequency map y — w(y) does not lie in a
hyperplane of the frequency space.”

This is precisely Riissmann nondegeneracy condition [13]. Pdschel’s
work [9, 10] may imply Rissmann’s conjecture, because Riissmann’s
condition actually restricts the frequency vectors of the unperturbed
system to some “twisted manifold.” Recently, Riissmann’s conjecture
was proved in [16]. Almost certainly this can be done for other KAM-
type theorems.

In the present paper, we shall consider such degeneracy problems.
More precisely, we shall prove the following result about the existence
of invariant hyperbolic tori for Hamiltonian systems with Riissmann
nondegeneracy.
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Consider the Hamiltonian systems
(11) H(I,y,Z) :h(y)+<Z,,QZ+>+R(JJ,y,Z),
where (z,y,2) € 2, (,) stands for the usual inner product in C?, and
Y={z:Rex e T",|Imz| <r}
x {y:Rey € G, [Imy| < p}
X {(z4,2-): |2z] < p}

:221X22X23.

Here T™ = R™/2nZ™ denotes the usual n-dimensional torus, G C R" is
a connected open bounded set, € is a matrix function of order ! defined
on ¥y X Yo, z = (241,..- ,241), and r and p are positive constants.

Theorem A. Assume that
(A1) h,Q and R are real analytic functions on T;

(A2) w(y) = (Oh/Dy) satisfies the Riissmann nondegeneracy condi-
tion on G;

(A3) on 21 X 22,
Re (v, w) > 2p|v]?,

for every v € C, where  is a given positive constant.

Then there exist a nonempty Cantor set G5, C G and a constant
M > 0 such that if
1R < M,

for each yo € Gs,, the reduced invariant hyperbolic torus
Jo:y = Yo, z2=0
for the unperturbed system
h(y) + (z-,Qzy)
persists under the perturbation R, and

[w™ (yo) — w(yo)| < 2M*/2,
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where w™®(yo) denotes the frequency of the invariant hyperbolic torus
drifting from Jo, for the perturbed system (1.1). Further, meas Gy,
uniformly converges to meas G, as §o — 0.

Remark. By [2], Riisssmann’s condition implies the standard nonde-
generacy one. Hence, in (A2),

in the case [ = 0, Theorem A is the classical KAM theorem; when
[ >0, it is the well-known result of Graff [6], which is an important
generalization of the KAM theorem. Zehnder [18] also proposed a
further approach. Because in our result, the unperturbed system may
possess some stronger degeneracy, Theorem A generalizes the above-
mentioned results.

Our argument is similar to that in [6] and that in [11]. Nevertheless,
because of the presence of the certain degeneracy in the unperturbed
system, some modifications are necessary. For example, it will be
seen below that, in our arguments, the chosen action y = yo remains
unchanged in whole iteration processes.

2. Proof of Theorem A. In this section, on the basis of the
KAM iteration method related to [6], we give the proof of Theorem
A. Throughout this paper, all norms of vectors, matrices and functions
denote the maximum ones.

Outline of the proof. We utilize the rapidly convergent iteration to
prove Theorem A. To this end, choose rapidly convergent sequences as
follows:

so =85 Y, My = 537, To = p,

Oiy1 = 5?/7, M= Misﬁa s; = Mi(7/18),
rig1 =1r; —6d;, 1=0,1,...,

where §y is a positive constant satisfying conditions (A)—(M) listed
below.
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From (A2) in Theorem A and Lemma 9, there exists r € N such that
for all y € G, the collection of vectors

l*lw(y)

oy aeZy, 0<|al=ar+ - +a, <,

generates R™. Let w' : G — R™ be a real analytic function. Using
Lemma 8 there is C4 > 0, satisfying that as

(2.1.1) lw —wl| < Cy,
for a given 7 > nr — 1, Lebesgue measure of the set
Gly,w') ={y:[ (k,w') [ Z2k]77, 0F# k€ 2",y € G}

uniformly converges to meas G, as v — 0.

Set

Oit1 = {y:| (k,w™ ™ (y)) | > &;|k|™ ™, 0 £ k € Z",y € G},
i=0,1,...,

where wiT!(y) is given below. Define
Gsy = () Oit1-
i=0

Fix yo € Gs,, and set

D; ={z:Rezx € T",|Imz| < r;}

x {y:ly — yo| < 4si,y € G}
X {(z4,2_): |24 < 6s;}, i=0,1,....

Rewrite (1.1) in the following form:

(2.1.2) H(z,y,z) = B*(y) + (2=, Q" (z,y)24) + H(z,y, 2),
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where
(2.1.3) h'(y) = h(y) + [R]:(y,0),
1
(2.1.4) Rla(0.0) = oz [ R0 ds,
(2.1.5) Q' (z,y) = Qx,y) + R..._(z,9,0),
(2.1.6)
H(z,y,z) = R(z,y,2) — <Z7 Z4 2z (z,9,0 Z+>
_ 5‘h1( )
wl(y) = 6—y

First we need to construct a canonical transformation 77 by a suitable
generating function S*(z,y!, 24, 21):

T( ’y Z+7 )ED1—>D9($y,Z+, )7
el =z + S,
Ti:
1 z}_ =2y + Sil ,
_ 1
zo =2zt +5z,
such that
15 T @) =HoTi g2
o =ht(yh) + (21, Q' (= yh)zL ) + R (2 4t 21,
and that on Dy,
(2.1.9) W' = || < My, || — Q| < M{T?9,
and that on Dy,

o(z,y, 2)
o(xt,yt, 21)

where I stands for the identity matrix.

(2.1.10) IR < My,

wSMﬂw,
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Generally, if we have that on D;,

(2.1.11)  H'(z',y,2") = h(y') + (2L, Q' (a',y)zL ) + R (2, ¥, 2"),

satisfying
(2.1.12) Re (1, Qi(a',y')v) = ulo?,  [|R|| < M;,
then by a suitable generating function S*+!(x?, i+t zi, zi_H) we can

construct a canonical transformation
i+l (Ii+1,yi+1’zi+1) € Diy1 — D; D (xi,yi,zi),
of the form
:Ei+1 = :Ei + S;j:rlla
i+1 y =yt Sﬁl’
(2.1.13) T AL Sij_;ll,
2t =4 S?Ll,

such that

Hi+1(l,i+1,yi+1, Zi+1) _ Hz' ° Ti+1(mi+1, yi+1,zi+1)
_ hi+1(yi+1) + <ZZ:H, Qi-{—l(wi-i—l, yi+1)zi+1>

(2.1.14) § R (gL it Ly
and that on D;,
(21.15) R -R <M, [ -9l < M,

and that on D,

Qi1 yitl Zitl)

(2.1.16) [|[RTH| < Miga,
(2.1.17)
T+ — dd|| < M7, H Oays) IH < M,
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Since
(A) 60 < 2777

we have Z;’;O §; < 260. From

1
(B) dp < 5470

it follows that r; > po/2,i=1,2,... . Define

Dy = {|Imz| < po/2} x {y = yo} x {z+ = 0},
U=T 0Tpo---0T;, U =TT, - T

Then U;: D; — Dy. Hence if T;, T} satisfy (2.1.17), then for sufficiently
small §g,
U = lim U;, U, = lim U]
11— 00 1— 00
hold uniformly on Dy, and Uy: Doy — Dy. Put Imé = 0 on Dy;
then, according to Lemma 7, Uy,: T™ — Dy is a continuous embedding,
and on T™

5, = woo(yo),

where w™(yo) = w(yo) + Doioy w'(yo); refer to [6, Section 2-d] for
details. By (A), w™(yo) exists, and

[w™ (yo) — w(yo)| < 2M*/2.

The discussion of the measure of invariant tori. Obviously,
G\ Gs, C |J(G\ Oip1).
i=0

From (A2), Lemma 9 and Lemma 8, there exists the function I(§) > 0
such that

(2.2.1) meas (G \ Oi+1) < 1(61)
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and as 6 — 0, I(§) — 0. It is easy to prove that, for some positive
constant x and sufficiently small §,

[(6) < o™.
Hence, as
O\ (1/(36n-+35))
(C) do < min{2_7/”, (74> },

using Lemma 8, Lemma 9 and (2.2.1), we have
meas (G \ Gs,) < Zmeas (G\ Oi41) < Z cdf < 2¢4(,
=0 i=0

which prove the convergence of that measure in Theorem A.

Inductive iterations. To prove the theorem, we consider one cycle of
the iteration scheme. To this end, assuming (2.1.14)—(2.1.17) hold for
k, we need to prove that they also hold for & + 1. For simplicity, we
omit “k” and rewrite “k + 1” as “+.” Then, by (2.1.14),

(2.3.1) H(z,y,2) = h(y) + (2=, Uz, y)z4) + R(z, y, 2).
Rewrite it in the following form:

(2.3.2) H(z,y,2) = h*(y) + (2=, Q% (z,9)21) + H(z,y, 2),

where

(2.3.3) 1

0
(2.3.4) wt(y) = w(y) + 5. [Ra(5,0),

Q+(I’ y) = Q("’E7 y) + RZ+27 (I’ y? 0)7
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(235) F(:E, Y, Z) = R(:E, Y, Z) o [R]Z(ya 0) o <Z—7 RZ-{_Zf (I, Y, 0)Z+> .
We consider the generating function S*(z,y*,zy,2"):
St(@,y" 24, 28) = Az, y*) + B(z,y )24 + Oz, y7)2"

(2.3.6) 43 (20, Dy )es) + 3 (2, B,y )t

where A, B,C, D, E are determined by the following equations:

(2.3.7) 0A + R(z, yT, 0) — [R]z(y+, 0) =0,

(2.3.8) OB + BQ(z,y*) + R, (z,y",0) =0,

(2.3.9) 00 — 0" (z,y*) + R+ (z,y,0) = 0,
(2.3.10) 0D + DQ(z,y") + QT (z,y")D + R, », (z,y*,0) =0,
(2.3.11)

OB — BQ (0,y") — @ (2,5 )E + R+ o+ (2,y7,0) = 0,

where “0” denotes the operator 0 = Z wi (yo)(0/0zk), and “T”
k=

stands for the transpose. By Lemmas 2 and 3, these equations have
unique solutions.
Introduce a canonical transformation
zt =z + S’;ﬁr,
2.3.12 T+ v=yt S
(-- ) ‘Zi:Z++S:+’

— Lt gt
z- =27+ 57
Under this transformation, H(z,y, z) becomes
Ht(at,y*t,27) = Ho T (a+, gy, +)
=hT(y") + < Q+ 2y)

+(hf(yt) —w? (o),SD
+[ht(y) —hT (") — (Rt (¥ 1), S5
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— (5 QT @+ 85, y") — QN (2,y7) (24 + 81))
+ {2+ 85, (Qwy™ + 50 — Qs yT))zy)
(2313) + [R*(xay+ + S:7Z+a Zi + S:Jr) - R*(m,y+, eraZJ—r)]

2

+ R (5", 24, 20) = DR,y t 2, 20))
i=0
=B + (2,07 )
+ P +P2—P3+P4+P5+P6
= ht(yt) + (1,0 (@ )
4 R (2, yt2t),
where

R*(Iayaz) = R(x,y,z) - [R]I(yao)a

and R*®) denotes the sum of the ith order terms in Taylor’s expansion
of R*.

If on D, [|R|| < M, then
RGO < 1,
R, - (-, 0)]| < 3%2 < MT/36),
and hence on D,
(2.3.14) ||ht = hl| < M, 1+ — Q|| < M),

By the Cauchy estimate, on {|[Imz| < r} x {jy™ — yo| < 4s},

M
(2.3.15) |R-, (2,97, 0)], |R-_(z,y7,0)| < —

s )
(2.3.16)

M
‘RZ+Z+(x’y+7O)|7 |szzf(x)y+50)| S 8_2

Using Lemma 1 yields that, on D,

|27 (2, ™)

<0
R<1/Q+xy >Z

ved
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By Lemmas 4, 2 and 3, on {|Imz| <r — 26} x {|y" — yo| < 2s},

(2.3.17) [|A]| < CyMo—Pn+2),
(2.3.18) IBIl, [IC]] < C2Ms™,
(2.3.19) 1D, |1B]| < CoMs™2,

where C; = 4™((n+ 1)/e)" 11, Cy = 20121,
Similarly, on {[Imz| <r — 30} X {|yT — yo| < s} x {|z+| < 65},

(2.3.20) 18F]| < CsMo— Pt

(2.3.21) 1S5 1s ST 11s 11T 1] < CaMs™16CnF2),
(2.3.22) 1%, o lls 1S5, 1| < CaMs=257 2,
(2.3.23) 1S, .+ =0,

where C5 = 5max{C, C2}.
Now let us check that 7t maps D into

Di:{Imz| <r—56} x {|ly — yo| < s} x {[z4] < s}
Indeed, if
(D) 50 S 03*1/(10(”+1)) S C;l/(4n+41),
then by (2.3.21),
|zt —a| < ||S;—+|| < C3M5*15*2(”+1) <.

From the choice of r and r* it follows that if [Imz™| < r,, then
Imz| < r — 56. We derive from (2.3.20) that

lyt =yl < (IS < CsMe ) < s
provided

(E) 8o < 03—1/(10(n+1)) < 03—1/(38n+37)'
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Therefore,

ly —yol <1y —y4| +1y+ — vol < s +4s4 <.
If
(F) 8o < min{C;l/(w(n+1)), 771/(4n+4)}’

then by (2.3.22),
el < I+ 1S

<65y + CsMs 1672 <75, <,
e-] < [+ IS5l

< 6s;y + CyMs~1§~(nt2) < 7sy < s.

(2.3.24)

To summarize, we have

T+:D, — D, C D.

In the following, we estimate RT. By Lemma 1 and (2.3.20), we have

1Pl < nflhy (™) = By (o) 1115,
< n?|lhgy |y * = ol 118511

(2.3.25) 120, -5, - ey M5
< 4n2@,C38' ™M/ < % M

provided

(G) 8o < (24020, Cy)~ 1/ (1Tn+16)),

Similarly, as

(H) 8o < (6n%0Q, - C2) 1/ (56n+54)

we have

1P| < |IBf (y) = h* (y™) = (b (y™), S2) |
< n?([hg 1[5 112
(2.3.26) < n2®0 ) C§M26_(4n+6)

< n2®0 . 05556n+54M8/7 < M8/7.

| =
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By Lemma 1, (2.3.21) and (2.3.22), we get
(2.3.27)
1Ps]] < n?[l2Z] |27 (2 + S,y ") = @ (@, y )] ]2 + S|

<n%-6s;-n

| 155 s + canrsmgmene)

< 6n%s 0y -6 CyMo—(2nt2)

57165 + CsMo~ 22 g1y

1
< 6(6 + 03)n3®1 i 03(517n+16M8/7 < —M8/7;

(=2}

(2.3.28)
1P|l < n?[|2E + SF 1192, y* + SF) — QF (@, 5| |24l
<n3(6sy + C’3M6_(2"+2)s_1)®1s_1 SOy M§—(3nt3) L gg
1
< 6(6 + 03)n3®103517n+16M8/7 < 6M8/77

provided
() 80 < (36(6 + C3)n®©,Cg)~ 1/ (17nH16)

where the constant O, is given in Lemma 1. Applying the mean value
theorem, Cauchy’s estimate, (2.3.20) and (2.3.21), we have
|1Ps] < n(|| Ry | ||5+|| +IRZ_IISE D
<2nM-s - CyMs (nt3)
(2.3.29) +2nMs 1CsM§ (22 g

< 2nC3(631n+30 + 63n+3)M8/7 < M8/7.

| =

Here we have used the inequality

(J) b0 < (24nCs)~ Y/ (Bn+3),

Using Taylor’s expansion and (2.3.24) yields

||[Ps|| <n®-3IM - s7%|2* < 6n°Ms>7°s%

(2.3.30) < 6. P33 a/a2) 187 < Ly
= — 6 b
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provided
(K) 5o < (62 X 73n3)—1/(n+1)'
Hence from (2.3.25)—(2.3.30) we derive that, on D,

(2.3.31) |RT|| < M¥7 = M.

Finally, we prove (2.1.17) for k£ + 1. By (2.3.20) and (2.3.21),

(2.3.32) T+ — id|| < M(T/39),
Taking o,

(L) oo < (203)—1/(14n+14);
hence,

03M§(2n+2)872 < 1
-2
From (2.3.20) and (2.3.21) it follows that on the domain

{Mmz| <7 —36} x {ly* —yol < s} x {|22] < 6s},
LU+ X S+
()= (2)+ (3 e

Syr < CaM§—(nt2) -1 < ls
st )= =2”

By Lemmas 5 and 6, on

{ltma™| < — 58} x {ly* — yol < s} x {|z1] < 6s},

() =(5) (7))

and ¢ and ¢ are real analytic; furthermore,

we have

(5)] s
"

H (8, ») < ACsM s~ 15— (2n+2)

Az, z})
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Then, on D,

oz, y,z)

(2.8.33) Ha<x+,y+,z+)

_IH < M),

refer to [6, Section 3-f] for details. Equations(2.3.14), (2.3.31)—(2.3.33)
imply that (2.1.14) and (2.1.15) hold for k£ + 1. Thus we complete the
proof of the theorem.

3. Technique lemmas. In this section we shall list some lemmas
which have been used in the proof of Theorem A.

Lemma 1. For each i € N, set
Di = {|Imz| <r; — &} x {ly —yo| < 3si} x {|2L] < 5si}.
Assume (A1)—(A3) hold. Then there exist ©g, 01 > 0 such that on D;,
(1) [R5 H] < ©o;
(2) I+ < Oy

(3) Re (v, Q" (z,y)v) > plv|

Proof. Let C5 = ||hyylla: + 1, where G' = {|Imy| < p,Rey € G}.
From the iteration processes, it is known that

iy () = by () + D (1R )a(9,0))uy-

Hence, if

(1/(16n+16))
(M) dp < min {2—(7/(16n+16))’ (g) },
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then

s 1< Ml + DR (3: 0
j=1

< Cs+ Y 2M;s; >

j=1

S 05 + 226;67’%%16

j=1
S 05 + 4(5(]).6n+16
< Cs + p = Oy,
which proves (1).

Since on D;,

QO (z,y) = Qa,y) + Y _RL . (2,9,0),
j=1

N

using (M) on D;,
1] < 1915w, + ) IR, . (2,4,0)]
j=1
<19l =, + Z2Mjsj_2
j=1
< ||Q||21><E2 +p =01

Hence on D;,

Re (v, Q"™ (z,y)v) > Re (v,Q(z,y)v) — plv|?
> 2ulv]? — plv|* = plvf*.

This completes the proof. a

Lemma 2 [6]. Consider the equation

Vow +V(2)®(2) + A(2)V(2) = F(z),
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where w = (wy,...,wy), © = (z1,...,2,), ®(z) and A(z) are real
analytic on X,.: {|Imz| < r}. Assume

Re (v, ®(z)v) > plv|?,

Re (v, A(z)v) = plv?,

for all v € C'. Then for each real analytic matriz F(z), there eists a
unique real analytic matriz V(x) such that

V(z)| < 22pF ().

Lemma 3 [6]. Consider the equation
Va(z, 2)w + Az, 2)V (2, 2) = f(z,2),

where w = (W1, ... ,Wy), T = (T1y.-- ,&n), 2 = (21,...,21), A(z,2) is
a real analytic matriz on the domain

Erri{Ima| <} x {ly| < R}.

Assume on Xy R,

Re (v, A(w, 2)v) = plv?

for all v € C!. Then for each real analytic function f(z,z) defined on
Y, Rr, the equation admits a unique solution V(z,z) such that

V(z,2)| <2027 f(x,2)].

Lemma 4 [1]. Consider the scale equation
oU(x) + f(x) =0,

where 0 = Y _, wy,(0/0zy). Assume
(1) f is a real analytic and 2mw-periodic function on %,
@) Iflls, < M,
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(3) [f1= (1/(2m)") [pn f(z) dz =0,
(4) | (k,w) | > K|k|" ", for all 0 # k € Z™, where K > 0, T > n are
constants.

Then on X,_25, 0 < 26 < r < 1, the equation admits a unique
solution U(xz) such that [U] =0, and

|U(z)| < Mcs— @)

where ¢ = 4A"K~Y((n + 1)e=1)"*1,

Lemma 5 [5]. Assume on the k-dimensional ball |y| < 6r,

z=y+¢(y),

where ¢(z) is real analytic and ||¢|| < r/2. Then there exists a unique
real analytic function f defined on |z| < r such that

y =z + f(a),
and on |z| <,

A< Mloll, Izl < ll¢ll/r

Lemma 6 [5]. Assume on X, ¢(y) is real analytic. Define

r=y+ o(y)

Then for given 6 € (0,7/2) with ||¢|| < §/2, there exists a unique real
analytic function f(x) on X._o5 such that

y=z+ f(x)

and on X, _os,

A< 2ligll, (1]l < 467 HIgl.
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Lemma 7 [6]. Let Vo(z) be a smooth vector field on Dy. Define the
flow:

d t t
:aﬁbo(x) Vo(¢o(2)),
$o(z) = .

Assume there exists an invertible transformation T;: D; — D; 1 with
1152\ T} | < oo, where T} denotes the Jacobian of T;. The transforma-
tion

$o(x)

U =Ty0---0T;:D; = Dy

naturally induce flows
6= U o 60U
with corresponding vector fields V; on D;:
Vite) = Lot
dt t=0
Assume
(1) Vi converges to Vo as i — 0o and ||V; — Voo|| < edit1 on Do,
where c is independent of i, and d; = dist (D;,0D;_1);
(2) the segment © = xq + vt, 0 < t < 1, belongs to Du; and on this
segment, Vo, = v;
(3) [|(8V;/0x)|| < B on D;, where B is independent of i;
(4) Uso = lim;_, o, U; exists and is continuous.
Then for 0 <t < (1/(B+()),

06 (Uso(0)) = Uso (w0 + vt) C D.

Lemma 8 [16]. Let S C R™ be a connected bounded closed region.
Assume that w : S — R™ is C" and satisfies that for any y € S the
collection of vectors

0l*lw(y)

(3.1) S

a€Zl, O0<l|af=ar+ - +oa,<r
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generates a linear space R™. Then, for a given T > nr — 1, Lebesgue
measure of the set

S(v,w') = {y: | (k,w'(y)) | > vk 7,0 £ k€ Z"}

uniformly converges to meas S with respect to all C"-functions w' : S —
R™, which belong to some C"-neighborhood of w, as vy — 0.

Lemma 9 [12, 14]. If real analytic function w : S — R™ satisfies
the Rissmann’s nondegeneracy condition on S, then there exists r € N
such that, for all y € S, the collection of vectors (3.1) generates R™.
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