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MULTIVARIATE POLYNOMIAL SPLINE SPACES

LIN-AN CHEN, YI-JUNG HSU AND YUANG-CHIN CHIANG

ABSTRACT. In this paper we construct bases of certain
spaces of multivariate polynomial splines defined on rectan-
gular partitions. These bases are presented by polynomials,
truncated power functions and products of these functions.
This setting provides a natural generalization of the two-
dimensional polynomial spline, proposed by Chui and Wang
[8], to p variables.

1. Introduction. A standard way of approximating the cause-
and-effect relationship is using a single model over the entire range of
variables, for example, the models for linear or polynomial functions.
In practice, however, it might be more realistic to partition the range
of variables into disjoint regions, and to approximate the relationship
by a sequence of submodels which are smoothly connected, in some
sense, at the boundaries of the neighboring regions. Polynomial spline
functions are useful for this purpose.

Polynomial spline functions are generally defined as piecewise polyno-
mials of degree k, whose partial derivatives satisfy certain smoothness
conditions. Theoretical as well as applied research on univariate poly-
nomial spline spaces has widely developed in the last two decades, see,
for example, [5] and [7]. For bivariate polynomial splines, progress has
also been made in the study of their bases and dimensions, see, for
example, [2, 3, 4, 6] and a review article by [8]. For general mul-
tivariate polynomial splines, Alfeld, Schumaker and Sirvent [1] have
studied the dimension and existence of local bases in triangulation par-
tition. However, only the basis with zero smoothness-degree has been
found. Therefore, development of the theory of multivariate polynomial
splines, analogous to the well-known theory of univariate polynomial
splines, has still remained to be achieved, see also [5, p. 362] and Schu-
maker [8, p. 195] for this point. Besides the need for its theoretical
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study, the multivariate polynomial spline also provides a tool for an-
alyzing scattered data of arbitrary dimension p, from the aspect of
application.

In this paper we introduce multivariate polynomial spline spaces. In
order to derive explicit dimensions and bases, we study only the splines
with multivariate rectangular partition. The smoothness conditions in
these spline spaces, relatively more flexible than the purely homoge-
neous ones used by Chui and Wang [4], are classified into three types,
viz., homogeneous, semi-homogeneous and non-homogeneous. How-
ever, all these types of smoothness conditions satisfy a certain mono-
tonicity property, since the multivariate polynomial splines without the
monotonicity property may not be able to be represented by the con-
venient tools of “+” and “—” functions, that are used in this paper.
Section 2, Preliminaries, introduces the notations and the general form
of the space of multivariate polynomial splines. Section 3 discusses
two non-homogeneous multivariate polynomial spline spaces and de-
rives their corresponding bases. Section 4 presents a homogeneous and
several semi-homogeneous multivariate polynomial spline spaces.

2. Preliminaries. As noted by Chui and Schumaker [2], the
study of multivariate polynomial spline space for general partitions is
extremely difficult, especially for providing explicit bases, see also [3].
We introduce the general form of the multivariate polynomial spline
space for rectangular partition in this section. Although the application
of spline defined on a special kind of partition may be limited, the
polynomial spline defined on rectangular partition for scattered data in
a multivariate plane region seems to be reasonable. Consider p meshes
{6i :t; = 0,1,...,a; + 1}, with positive integer a;, i = 1,...,p,
the elements of which are termed as knots. These meshes define a
p-dimensional rectangular grid in the space of variables zi,...,xp,
consisting of (a1 + 1) --- (a, + 1) multivariate rectangles as the region
set:

{(@1,...,2p) 6], <z <6; 41,i=1,...,p},
ti:0,1,...,ai,i:1,... ,D.

Here the region T' = {(z1,... ,2p) : 6§ < z; < &, 41,4 = 1,...,p} is
a bounded domain of spline functions. Let P* denote the collection
of all real polynomials of degree k; that is, each p € PF has the
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representation:

P
p(x,...,2p) = Z Bml_“mPHm;”i.
i=1

mi1+-+mp=0

A piecewise multivariate polynomial of degree k has the form

Z Zp (21, 2p) (0] <z <Oy p,i=1,...,p)
tp=0  t,=0

where p'tfr are in P* and I is the characteristic function. Let S*
denote the collection of all piecewise multivariate polynomials of degree
k. The dimension of S* is (p+k) o_1(a; +1).

The multivariate polynomial spline is then a member in S*, satisfying
some continuity conditions of its partial derivatives and retaining its
segmented nature. However, the smoothness conditions need to be
forced on a piecewise multivariate polynomial only on the boundaries
of multivariate rectangles.

For fixed multi-index (¢1---t;---tp), i =1,...,p, denoted by

l(tl o 'ti_ o ) (5 5t1+1] : (6t —1751, 1+1]
21) 5 x (ot gyt cex (87,6
X x ( tip1) t,+1+1] x ( tp tp+1]v
l(ty---t; ---tp) is the boundary separating the domains of polynomials

ptitite gnd pti-titlets - With multivariate rectangle partition, a

boundary in (2.1) is the smallest unit for which the partial derivatives
of the piecewise multivariate polynomial are required to satisfy the
smoothness conditions. Thus, a multivariate polynomial spline is a
piecewise multivariate polynomial to which partial derivatives of some
order of neighboring multivariate polynomials are smoothly connected.

Let D = {(t1,...,¢; ,...tp) t i =1,...,p, t; = 1,... a4 t; =
0,1,...,aj,for j # i} be the index set. Then the collection of all the
boundaries is

{l(tl"'ti_"'tp) . (tl"'ti_"'tp) GD}.
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The smoothness condition is then to force the regression function to be
smooth on each boundary in some way. Consider a smoothness set as

J={ytr---t; - -tp) i y(tr---t; - t,)=0,1,... k-1,
(tl---tf---tp) GD}.

3

Let us define

Sk(‘]) = {f € Sk : f c C’y(tl"'t;"'tp)
on l(ty---t; ---tp), for (t,---t; ---t,) € D}

to be the space of multivariate polynomial splines of order k and
smoothness J. If f € S¥(J), then for each (t;---t; ---t,), function
f has continuous partial derivatives of order less than or equal to
y(ty---t; ---tp) on the boundary I(t; ---¢; ---tp).

The aim of this paper is thus to generalize the rectangular spline
spaces, derived by Chui and Wang [3, 4] from the bivariate case to
any finite dimensional case and from the uniform smoothness condition
to some general smoothness conditions. For any smoothness set, J,
it is not always possible to provide an explicit representation to the
space S¥(J). We therefore restrict to some types of J such that the
corresponding spline spaces can be explicitly represented by either a
“+” or “— function.

3. Multivariate polynomial spline spaces with monotone
smoothness conditions. Two multivariate polynomial spline spaces
with monotone smoothness conditions are derived in this section. For
simplicity of introducing the smoothness sets, we define a partial
ordering by writing (t1---tp) < (s1---Sp) whenever t; < s;, i =
1,...,p. Also, through the end of this paper, we simplify the vector
notation (0,...,0,¢1,0,...,t2,0,...,%,0,...,0) as (t1,t2,... ,tp)-

Definition 3.1. We re-denote J as J; and consider it as a non-
increasing smoothness set if, for each i, 1 < ¢ < p, t; = s; and
(tl"'tp) < (31...5p) in D, ’Y(tl"'t;"'tp) > 7(31...5;...31))_ We
also re-denote J as J; and consider it as a nondecreasing smoothness
set if, for each 4, 1 < i < p, t; = s; and (t1---tp) < (s1---sp) in D,
’Y(tl“‘ti_"'tp) S’Y(Sl"'si_"'sp)-
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There are some choices for choosing the monotone smoothness set for
application. We introduce here the multivariate spline spaces for some
of these choices.

We will find bases of the spaces S*(J;) and S*(J;) through the bases
of §*. For this purpose, we first show that any piecewise polynomial
in S* can be decomposed into linear combination of either right-hand
or left-hand piecewise polynomials. However, basis representation for
spline space relies on the types of smoothness set J.

Lemma 3.2. The following three spaces are the same.

(a) The space of piecewise multivariate polynomials of order k, i.e.,
the space S*;

(b) The space spanned by the piecewise multivariate polynomials

p .
phil(x; > 6t,)
5.1) phutis Iz, > 5 ai, > 6%)
pt1---th(£L'1 > 6t117 cee sy Tp > 65};)

where all p are multivariate polynomials in P* and t; ranges from 1
toa;, t=1,...,p;

c e space spanned by the piecewise multivariate polynomials in
Th d by the pi 3 ltivariat l jals 4
(3.1), by replacing all indices “>7” in indicator function I( ) by “<.”

Proof. We prove only part (b), the proof for part (c¢) being similar.
Let np, = min{p,q}. For 0 < ¢ < >>¥ | a; — 1, denote a piecewise
polynomial f; = fq1 + fq2, where

p_min{g,a;}
_p0+z Z ptII$1>(5l)
t;=1
+ > Z tz ;;2 I(zi, > &z, > 6;7)

1<i1<i2<p tig ttig =2
1<t; <a1
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tiystin,-estiy
prq
+ > > Pty 4ty

161 < <ingy Sp tiy T Fliy,, =9

1<t;; <ay,
(3.2)
I(wi; > 8 5 =1, ,nipg)
and
a1+ +ap
2= ) P, <@ <6 ya.i=1,...,p),

tite -t tp=q+1

where p,” € P*. We further let

20 tyeet : . .
i = Z Py IOy, <mi < 04,110 =1,...,Dp).
ti+--+t,=q+1

Consider the decomposition fgo = By + (fq20 — By), where

p
By =Y pit™I(z; > 0i1q+1 < a)
i=1
ti t; ij .
+ D S p I, > 6,5 =1,2)

1<41<ia<p ti; +tip=q+1
1<ti; <ai;

DY
1<iy <\ <in g <p
tiy - tin i
E Dq P (g >(5tjj,z:1,...,npq).

iyttt =+l
1<ti; <ai;

We will show that, for each f € S¥ and 0 < ¢ < }-¥_, a; — 1, there
exists a piecewise polynomial f, of (3.2) such that f = f,. Let ¢ = 0.
Obviously,

art-fap

byt ; ) )
F=p+ Y PVRIE < <8 ,i=1,...,p)
trtettp=1
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with ptll'"tp = pir+t» — p. By denoting py = p, f = f1. Suppose that

f=Ffq(=f}+f3). It can be checked that f2° — B, and f2 — f2° are
all piecewise multivariate polynomials defined on the region

ai+-+ap

U {(z1,...,2p) 1 6, <xi <6; ,1,i=1,... ,p}
trt oty =q+2

We now define polynomials pf;_{r'l'tp. Let us denote the polynomial pzl"'tp

by p);::l'tp for which py"*” is the polynomial of B, defined on region

{(@1,...,2p) : 6;, < mi,i = 1,...,p}. For (t,...,tp) such that
t1-tp

S0yt > q+2, let p/T"" be such that f2,, = f? — B;. We can
also see that fq1 + Bgy1 = fqu. We then have

f=1fl+By+fl—B,
= for1 + fon
= fo+1-

The proof is then done by setting ¢ = >%_; a; — 1. u]

We define a; and a_ to be the values max{a,0} and min{a,0},
respectively. The formulation of a piecewise multivariate polynomial
by those right-hand and left-hand truncated polynomials indicates
that some sort of multivariate polynomial splines may be represented
explicitly by them. In the rest of this paper, when we say replace “+”
function by “—” function, it would mean that we replace a4 by a_.

Theorem 3.3. (a) The following functions form a basis for the space

Sk,
p mq
L ii?lliwl ’ mj
(zi t,-)-i— ijei Ti™
(3.3) (i, — 5§§1)+ Nz, — 5zfz)+ 1Lz f”;n]’

f:l (xl - 67?1)7-?7

where 0 < Y°F_ m; <k and t; ranges from 1 to a; fori=1,...,p.
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(b) The space of functions of (3.3), by replacing all “+” functions by
“_7” functions, is also a basis of space S*.

Proof. We prove only part (a), the proof of (b) being similar. For
any finite set {y1,...,yp}, let us denote by [[y; = y1---y, and

¥ = y1,-..,Yp. Define a set of polynomial functions and truncated
polynomial functions v by
(3.4)
P -1 p .
otorm(@) = (T ) [Tl = 80770 > 0) 271t = )L
i=1 i=1

0 m,ﬁk, ti:O,l,...,ai,izl,...,p.

v

i=1

Equation (3.4) also has the number of elements (k’;;p) P (a;+1), and
each element can be formulated as a linear combination of functions in
(3.3). So the proof of this theorem is obtained if it can be shown
that the functions ¢ in (3.4) are linearly independent. For h; = —, +,
i =1,...,p, let the partial derivative be denoted as

P
_ 8Z¢:1 d; _ .
w'/rdl((sZi;-.. ,JZ:) = —axdl 8xdl’wﬂtimmi(x)|wi:522’ 1 = ]_, ,P.
1t Oxp

We also define linear function A;y, rq; On 9 as

(3.5)
Mrwiras () = 3 0 3 () atyrdighy L ghe),
hp:_7+ h1:_7+

where « is the binary function defined by «(h) =1 if h = + and 0 if
h = —. If we let

hJ(m]) = Z (—1)21'751' a(hi)’l)[}ﬂ-i#jdi ((531, . ,33]', . ,(53;)
hi=—,+
i#j

to have continuous m; th derivative at d,;, then

omi omi
Arurds (V) = =5 mrhi(eg)| _ + 5omrhi(e)| =0
j i=0u; J T3 =0u;
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By careful inspection, it can be seen that
1 ifui:ti,di:mi,i:l,..., 5
B A ) = P

0 otherwise.
Any zero linear combination of (3.4) will have zero coefficients by (3.6).
This shows that the set {trs, xc,(Z)} is linearly independent and thus
the set of functions in (3.3) is a basis of S*. u]

The number of elements in the set of (3.3) is (p;k) P (a;+1), which

is exactly the dimension of space S*. From the results of Theorem 3.3,
each multivariate regression spline in S*(J) can be formulated as a
linear combination of the elements in the basis of (3.3) or the basis in
(b). However, an explicit representation of a multivariate polynomial
spline is not always possible for any continuity condition of its partial
derivatives. The following theorem provides bases of spline spaces

Sk(J4) and S*(J;).

Theorem 3.4. (a) The following functions form a basis of S*(Jy).

p p
Hm:'nia Ogizmigka
i=1 i=1

(x; — 5;1)1“ I;nj, y(t7)+1<m; <k,

J#i
0 S Zmz S ka {(:E“ - 6;11)-4—11 (miz - 6;?2)4-12 H xj Ja
i=1 J#i1,i2
7(ti_17ti2) +1< My < ka’Y(tiUti_z) +1< My < ka
(3.7)

p

0 S Zmi S k}I(Vo(til,th) S k — 2)
i=1

p
{H(Ii—(szi)Ti,’y(tl...ti...tp)+1 <m; Sk,

i=1

p
0<> m; < k}I(»yo(tl,... ,t,) <k —p)
i=1
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where yo(t1, ... ,tp) = Z;’.:l Y(tiy -ty -+ ty,) and t;; ranges from 1 to

vj
a;..
25

(b) The space of functions of (3.7), by replacing all “+” functions by
“_” functions, is a basis of space S*(J;).

Proof. We prove only part (a), the proof of (b) being similar. First
it is obvious that all the functions in (3.7) satisfy the smoothness
condition J;. We therefore need only to show that these functions
form a generator of S*(J;). The proof is an analogue of the one for
proving the linear independence of the set in (3.3). Therefore, we only
briefly sketch it here.

Suppose that we have a piecewise multivariate polynomial P in
Sk(J4). Since S*(J;) C S*, P can be formulated as a linear function
of the elements of (3.3), we need only to show that the coefficients
associated with the elements that are not part of (3.7) have to be zeros.
Consider the linear functions Ar;xm, of (3.5) for these (ti,...,tp)
and (mq,...,m;) belonging to the complement of set (3.7). Then
the smoothness condition J; on P implies that (3.6) holds for those
elements which are not part of (3.7) and then their corresponding
coefficients are zeros. Thus, the set in (3.7) is a generator of S*(Jy).
]

Corollary 3.5. dim S*(.J;) = dim S*(J;) and equals

3.8 p+k $
B8 (7,7 )2 X 2
b=1 1<i1<--<ip<p t;,=1,...,a;,,5=1,...,b

k—(v0(tiy - sti, ) +b)

<b+j1> (p+k2b~/0(ti1,... ,tib)j>

= b—1 p—>b
I(fYO(tila"' 7tib) < k_b):|
Proof. Fix b, (i1,--- ,ip), (tig,--- ,t5) with 1 <b<p, 1 <4 <--- <

ip < p, ti; = 1,...,a; for j = 1,...,b. The polynomials forming a
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basis in region {0;; < zi,,... ,5;2’17 < m;, } are

m,-b

(Iil - 62,}1 )T—ir-hl "‘(‘T":b 752:[))—0—
H] #lu 7ibx;'nj7
(3.9) YOty oot by + 1 <myy <kj=1,....b,

b
0< Zmi < k.
i=1

We will compute the number of basis functions in (3.9). First, the

number of {(mq,...,mp) : Zj#h,... pmi; =01, k— 23:1 mg; }
is

(3.10) <p_b+k_22—1mij>.

p—>b

Moreover, the range of the function Z’;zl mi; is {y0(tiy,-- ,ti,) +
b+e:e=0,1,...,k—v(ty,,...,t,)}, and the number of the set

b .
{miys oo ymay) 2 305 ma; = o(tiy, oo 5 ti,) + b+ e} is

(3.11) <b—£€11>, fore=0,1,... ,k— (yo(ti,,---,ti,) +0).

Combining (3.10) and (3.11), we have the number of basis functions in
(3.9) as

k7(70(ti1 g 7tib)+b)

Z <b2511> <p—b+k—('yo(;il_,é)..,tib)—i—b)—e).

e=0

Considering the fact that the dimension of a polynomial in Py, is (p ';k),
the dimension of S¥(J,) is (3.8). O

A simpler way to set the smoothness set for the case where p = 2
is to fill up nonnegative integers (t1,t2)s in the cells of the following
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index matrix, where we let a = a; and b = as:

i (1,0) (2,0 a,0) 7
(0,1) (1%,1) (25,1) - (a*,1)
(L1Y) @1%) - (a17)
(0,2) (1%,2) (2+,2) - (a*,2)
(L2Y) (224 - (027
(0,8 (1%,0) (245 (a*,b)
L W) @26 o (abt).

In the next section, we consider several special cases of monotone
multivariate polynomial spline spaces. These cases include spaces of
a homogeneous and several semi-homogeneous smoothness conditions.
The bases and dimensions of the corresponding multivariate polynomial
spline spaces are also presented.

4. Multivariate polynomial splines under homogeneous and
semi-homogeneous smoothing conditions. We first consider cer-
tain semi-homogeneous smoothness conditions and then obtain their
corresponding spline spaces. Let us denote a knot hyperplane as

Li(t) ={(z1,... ,zp) €T 1 2; = 6;}

Obviously,
Lt) = |J Uttty

tj:O,'l,.'.. ,Qj
J#

In this setting, the boundary set is

N1 = {li(ti) 1t = 1,... ,a,-,i = ].,... ,p}.
This design tries to force the polynomial spline a constant smoothness
condition on the boundary plane z; = §;, for each i, i =1,... ,p and

ti, t; =1,...,a;. Let the smoothness set be

Ju={7iti): for 1 <i<p,0<y(ts) <k—-1,t;=1,...,a:}.
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The number of smoothness conditions for set J; is thus reduced to

[12_, a;. We then give a basis for the following multivariate polynomial
spline space

SF)={feSF: for1<i<pl1<t;<a;fe€ C7:%) on L;(t:)}.

Corollary 4.1. The set of (3.3), by replacing y(ti; ---t; ---t;,)

vj
by i, (t:;) and redefining vo(ti,,--- ,t;,) by 2221 i, (ti;) is a basis of
Sk(J1) with dimension

p
p+Ek Z Z Z
p . )
b=1 1<i1<---<ip<p t;,=1,...,a4,,5=1,...,b

k*(ZL it (tie)+b)

[ 5 <b4g111> <p+k—2b—§j§’_1w(t“)—j>

i=0 p=b

I(iwﬂ) <k-t)]

Consider a more uniform condition of smoothness as
Jr={7:0<v<k-11<i<p}
This setting forces the polynomial spline to obey the constant smooth-

ness condition on the boundary set Uy, {x; = 0}, }. Consider the space
of multivariate polynomial spline space as

S*(Jo) ={fe8%: for1 <i<p,feC%onlt) for 1 <t; < a}.

This space sets one smoothness condition on each of the sets {z; =
0i(t;),1 < t; < a;}. There are only p number of smoothness indices.

Corollary 4.2. The set of (3.3), by replacing yo(ti, ---t;. -+ ti,) by

25

Ve, and redefining y(tiy, ... ,ti,) by 22:1 i, 15 a basis of S*(J2) with
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dimenston
(p + k:> n Zp: 3
p b=1 1<i;<--<ip<p
p k=, vatD)

(5 () )

=0
b

I(ngk—b)
=1

Consider the case as a; = az = -+ = a, = a. Let us denote a knot
hyperplane as

l(j):Uli(j):U{(:cl,...,xp)eT:xizaj}, i=1,...,a

In fact, for each j, I(j) forms a boundary of a multivariate rectangle.
This design forces a multivariate polynomial spline to obey a constant
smoothness condition on the rectangle boundary I(3).

There are two types of smoothness sets that can be considered; they
are:

Jlid:{’)/la---,'Ya:k—lz’ylnyQZ...Z,yazo}
and

Ji={71, % 0< << <y <k—1}

We can thus obtain bases for the multivariate polynomial spline spaces
Sk(J¢) and S*(JE).

Corollary 4.3. (a) The set of (3.3), by replacing vo(ti; ---t; ---t;,)

vj

by i, and redefining vo(tiy, ... ,ti,) by Doy Yiru(tiy,- .. ,t;,) where
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the counting function ny(t;,,... ,t;,) is defined as 25';1 I(t;, =1),is a
basis of S*(J¢) with dimension

+k -
(P15 % )3
p b=1 1<i1 < <ip<p tiszl,...,(lis,szl,...,b

|:k(zlp1 Yirvr(tiy 5o stiy, )+b)

x ()

Jj=0

<p+k—2()—2f_1’)’lnl(tila--- ,tib)—j>

p—>b

P
I<Z’ylnl(ti1,... ,tib) S kb>:|
=1

(b) The set of the basis in (b) of Theorem 3.4, by replacing y(ti, - - t;,

T tib) by ’Ytij and redeﬁning 70(ti17 .. 7tib) by Zf:l ’Ylnl(tila ey tib)
is a basis of S*(Ji) with the same dimension as that of S¥(J3).

The most uniform smoothness condition is to set J containing a single

element vy, 0 < 7 < k — 1. We denote this spline space as S*(v) and
describe it in detail.

Corollary 4.4. The set of the following functions is a basis of S*(v):

p P
H;UZT"”',O S Zmz S k?
i=1 i=1

(z; — 6T Ha:;nj,’y+ 1<m; <k,
j#i

p
0< Zmi <k, {(xil - 5;31);”1'1 (ziy — 5§§2)Ti2
i=1

p
IT =y +1<mi,mi, <k0<d mi< k}
i iz =1

I2(y+1) <k)
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p p
1=1 i=1

2

I(p(y+1) <k)

with dimension

(732 { (1) (=)

_k“’i”” b+j—1\ (p+k—2b—by—j
b—1 p—>b

=0

I(b(y+1) <k).

Notice that any piecewise multivariate polynomial of degree k with
k continuous partial derivatives would actually be a single multivariate
polynomial of degree k. The smoothest possible piecewise multivariate
polynomial which retains a segmented nature is the multivariate poly-
nomial spline in S*(k — 1). The smoothest multivariate polynomial
spline can be formulated as

k

p P a;
D By [+ DD Bri(wi — 61k
i=1

M1+ +mp=0 i=1t;=1

with dimension (p+k) +ay +---+ a,. Now, let’s consider the special
case of p = 2 and uniform smoothness condition. The basis for this
bivariate polynomial spline with smoothness j is, if 0 < j < (k —1)/2,
w;nlx;nzvo S mi +m2 S k:
(w1 = 6;) a5, j+ 1 <my <k,
0<my+me <k, forl1<t<a,
21" (22— &)1, 5 +1 < my <k,

0<my+me <k, forl<t<hb,
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(z1 — 04 (w2 — 07)1%, j+1<mi <k,
JH1<my<k, forl<t;<a,1<ty;<b(k-1)/2<j<k-1,
z1"23?,0 <myp+mg < k,

(1 —6)1j+1<m <k, forl<t<a,

(m2—67)1%,j+1<my <k, 1<t<b,
with dimension

27k +2)(k+ 1)+ (a+b)(k—j)(k+j+3)
+ab(k® + 4k — 352 — 95 —4)] f0<j<(k—1)/2

and

27 M k+2)(k+ 1)+ (a+b)(k—7) if(k—1)/2<j<k—1.

The basis of bivariate polynomial spline for rectangular partition
and uniform smoothness condition, proposed by Chui and Wang [4],
is different from the one stated above; however, they are equivalent.
Based on the above result, it can be argued that the basis formula-
tion of a multivariate polynomial spline is not unique. However, the
formulation presented in this paper is a natural generalization of the
usual univariate polynomial spline basis. To see this, for example, bi-
variate polynomial spline basis in this paper consists of all the terms
(z1— 0}, )1* (x2 — 67,)71* for (ma, my) satisfying my 4+ mo < k, which is
equivalent to the fact that a usual basis of univariate basis contains all
the terms (z — )7 for m satisfying m < k, whereas the one proposed

by Chui and Wang [4] includes only the term (z; — 5,511 )ﬂ_“ (z2— 5?2 )ﬂ_“.
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