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GENERATORS FOR THE SEMIMODULE
OF VARIETIES OF A FREE MODULE

R.L. McCASLAND, M.E. MOORE AND P.F. SMITH

Throughout this paper all rings are commutative with identity and
all modules are unital modules. Furthermore, the symbols R, M and
F represent a ring, R-module and free R-module, respectively. For any
submodule N of M, we define (N : M) = {r e R:rM C N}. A
submodule P of M is called prime if P # M and whenever r € R,
m € M and rm € P, then m € P or rM C P. It is well known
(and easy to check) that a submodule P of M is prime if and only if
p = (P : M) is a prime ideal of R and the R/p-module M/P is torsion-
free. For this fact and other basic properties of prime submodules, see,
for example, [1], [3] and [7].

The (possibly empty) collection of prime submodules of M will be
denoted by spec M. For any submodule N of M, we set V(N) = {P €
spec M : N C P} and call V() the variety of N. The collection of all
such varieties V(N), N a submodule of M, is denoted by ¢(M). In [4]
we proved that, in general, ((M) is closed under arbitrary intersections
but is not closed under finite unions. However, ((R) is a semiring with
addition given by intersection and multiplication given by union, and
in [5] we proved that ((M) is a {(R)-semimodule with respect to the
following addition and multiplication:

V(Nl) + V(NQ) = V(N1 + Ng) and V(G)V(N) = V(CLN),

for all submodules Ny, Ny and N of M and ideals a of R. For a broader
study of semimodules, see, for example, [2]. The module M is called
Zariski-finite if ((M) is a finitely generated ((R)-semimodule, i.e., there
exist a positive integer k and submodules N;, 1 < i < k, of M such
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that

C(M) = (R)V(N1) + -+ + ((R)V (Vi)
={V(a)V(N1) + -+ V(ar)V(Ng) :
a;,...,04, are ideals of R}
={V(ayNy 4+ -+ agNg) : a;,... ,a, are ideals of R}.

Zariski-finite modules were introduced and studied in [6].

In general, free R-modules are not Zariski-finite. Before we prove
this fact, given an index set I and submodules N;, ¢ € I, of M,
we let (V(N;) : ¢ € I) denote the collection of varieties in (M)
of the form V(3 ,.;a;N;) where J is a finite subset of I and a;,
i € J, ideals of R. Then the varieties V(N;), ¢ € I, generate ¢(M)
if (M) = (V(V;) : © € I) and in this case we call the varieties
V(N;), © € I, generators of ((M). Of course, ((M) is generated by
{V(N) : N is a submodule of M}, but we want to find more interesting
generating sets!

Our first main result shows that if R is a domain and M is torsion-
free and contains nonzero elements x,y such that Rx N Ry = 0, then
the cardinality of every generating set of ((M) must be greater than or
equal to the cardinality of R. We also show that if R is a Noetherian
ring with only one minimal prime ideal p and if F' is of finite rank
n > 2, then ((F) is generated by the varieties of the height 1 p-prime
submodules of F. Furthermore, if in this case ((F') is generated by
{V(Nj;) : j € J}, then for each j € J, there must exist a height 1p-
prime submodule P and an ideal ¢; of R such that V(N;) = V(c;P).

1. General modules. Note that if k is a positive integer, N and
N;, 1 < i <k, are submodules of M and a;, 1 < i < k, ideals of R such
that V(N) = V(ai N1 + - - - + a5 N), then in general the “coefficients”
a;, 1 < i <k, will not be unique. Our first two results examine this
situation. If a is an ideal of R, then y/a will denote the prime radical
of a. Recall that v/a= {r € R:r™ € a for some positive integer n}. If
re€ R, me M and P € spec M, then rm € P if and only if r"m € P
for some (or any) positive integer n.

Proposition 1.1. Let M be any R-module, let k be a positive
integer, let N;;, 1 < i < k, be submodules of M and let a;,b;,
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1 <4 <k, be ideals of R such that \/a; = Vbi, 1 < i < k. Then
V(aa Ny + -+ agNg) = V(b1 Ny + - -+ + b Ng).

Proof. Let P € spec M. Then

PeV(a1N1+---+aka)<:>u,-N,-gP, 1<:<k
<~ Jou,N; CP, 1<i<k,

and the result follows. O

In particular, if, in Proposition 1.1, R is a Noetherian domain and
a; is a nonzero proper ideal of R for some 1 < ¢ < k, then the
ideals af*, m > 1, are distinct, see, for example, [8, p. 216], so that
V(aiNy + --- 4+ apN) = V(ai"" Ny + --- + a"* Ny,) for all positive
integers m;, 1 < i < k, gives an infinite number of expressions for
V(ai N1+ - -4aNg). However, as we show next in all these expressions,
there is a unique maximal choice for the ideals ay,... ,a;. Recall that,
for any submodule N of M, the prime radical rad N of N is defined to
be the intersection of all prime submodules of M containing N, and in
case there are no such prime submodules rad NV is defined to be M.

Proposition 1.2. Let k be a positive integer, let N and N,
1 < i <k, be submodules of M, and let a;, 1 < i < k, be ideals of
R such that V(N) = V(ayNy + --- 4+ apNg). Let ¢; = (rad N : N;),
1<i<k. Thenc¢;, 1 <i <k, are ideals of R such that

(i) V(N) = V(C1N1 +-- Cka,) and

(ii) b; C ¢;, 1 < i < k, for all ideals b;, 1 < i < k, of R such that
V(N) = V(blNl + -+ kak)-

Proof. (i) Let P € V(N). Then N C P and P € spec M. Clearly
rad N C P and hence ¢;N; C radN C P, 1 < ¢ < k. Thus
N1+ 4+ Ny CPand P € V(c; Ny + -+ ¢, Ng). Conversely, let
Q € V(cyNy + -+ + ¢ N). Note that a;N; C rad N so that a; C ¢;,
1<i<k. Hencea;Ni+---+apN CQ and Q € V(N).

(ii) Clear. O

In view of these results, we shall concentrate in the sequel on the
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submodules N; rather than the ideals a;. The next result is illuminating
for what comes later. For any set X, | X| will denote the cardinality of
X.

Theorem 1.3. Let R be a domain, and let M be a torsion-free R-
module which contains nonzero elements z,y such that Rz N Ry = 0.
Let I be an index set, and let N;, i € I, be submodules of M such that
V(N;), i € I, generate ((M). Then |I| > |R).

Proof. For each element r € R, let P. be the submodule of M
containing the element = + ry such that P./R(x + ry) is the torsion
submodule of the R-module M/R(z + ry). Clearly y ¢ P, so that
P, £ M and P, is a prime submodule of M for each r € R. Let r € R.
Then V(P;) = V(3¢ @;N;) for some finite subset J of I and nonzero
ideals a;, j € J, of R. Since P, € V(P,), it follows that, for each j € J,
a;N; C P, and, since (P, : M) =0, then N; C P.. f N; =0, j € J,
then V(P,) = V(0), which gives the contradiction 0 € V(P,), i.e.,
P, = 0. Hence there exists j(r) € J such that 0 # N,y C P,.

Finally note that P. N Py = 0 for all distinct 7, s in R because
Rz N Ry = 0. In particular, j(r) # j(s) for all r # s in R and the
mapping j : R — I is an injection. O

Corollary 1.4. Let R be a domain. Then a free R-module F is
Zariski-finite if and only if F' has rank < 1 or R is a finite field and F
has finite rank.

Proof. The necessity follows by Theorem 1.3. Conversely, if F' has
rank 1, then F' = Rf for some f € F. In this case, for every submodule
G of F, there exists an ideal g of R such that G = gf and hence
V(G) =V(gf) = V(g)V(Rf). Thus F is Zariski-finite. On the other
hand, if R is a finite field and F has finite rank, then F', and hence also
spec F, is finite so that clearly F' is Zariski-finite. a

Let R be any ring, and let M be an R-module. Given submodules
N,L of M, we set N ~ L if rad N =rad L. Clearly, N ~ L if and only
if V(N) = V(L). It is elementary to check that ~ is an equivalence
relation on the lattice of submodules of M. The next result is also
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elementary, but we shall give its proof for completeness.

Lemma 1.5. Let N;,L;, 1 < ¢ < k, be submodules of M such
that N; ~ L;, 1 < i < k, for some positive integer k. Then
Ny + -+ agNg ~ a1 L1 + -+ ag Ly for any ideals a;, 1 < i < k, of
R.

Proof. Let P € V(agNy + --- 4+ apNg). For each 1 < i < k,
a;N; € P and hence ;M C P or N; C P. But N; C P implies
L; C Pforany 1 <4 < k. Thus a;L; C P, 1 < i < k, and hence
PEV(G1L1+"'+ﬂkLk). O

Corollary 1.6. Let N;,L;, i € I, be submodules of M, and let a;,
i € I, be ideals of R such that N; ~ a;L; for alli € I. If {V(N;) :i € I}
generates (M), then {V(L;) : i € I} generates ((M).

Proof. Let N be any submodule of M. There exist a finite subset
J of I and ideals b;, j € J, of R such that V(N) = V(3_,c;b;N;),
Le, N~} .c;b;N;. By Lemma 1.5, N ~ > ., bja;L;, i.e, V(N) =
V(>_,esbja;L;). 1t follows that ((M) is generated by {V/(L;) : i € I}.
O

Note that in Corollary 1.6 if a; = R, ¢ € I, then {V(IV;) : ¢ € I}
generates ((M) if and only if {V(L;) : i € I} generates ((M). This
fact will be used to give a further corollary of Lemma 1.5. First recall
that a submodule S of M is called semiprime if S is an intersection
of prime submodules of M. Clearly S is a semiprime submodule of
M if and only if S # M and S = rad S. Moreover, if M is a finitely
generated module, then every proper submodule IV is contained in a
maximal submodule P, say, of M and P € V(N). In this case rad N is
a semiprime submodule of M.

Corollary 1.7. Let M be a finitely generated R-module which is
not cyclic. Then {V(S) : S is a semiprime submodule of M} generates

((M).
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Proof. Recall that ((M) is generated by {V(N) : N is a submodule
of M}. If N is a proper submodule of M, then rad N is a semiprime
submodule of M and N ~ rad N. To account for V (M), note that
there exist a positive integer k£ and elements m; € M, 1 < i < k,
such that M = Rmy + --- + Rmy. Since M # Rm,;, it follows
that rad Rm,; is a semiprime submodule of M for each 1 < ¢ < &k
and M = rad Rmy + --- + rad Rmg. Thus, {(M) is generated by
{V(N) : N is a proper submodule of M}. Apply Corollary 1.6. O

In [6] it was shown that in case M is cyclic, ((M) is generated by

{V(M)}.

2. Free modules. In the sequel tv will always denote the prime
radical of the zero ideal of the ring R. Recall that v is the intersection
of all prime ideals of R and consists of all nilpotent elements of R.
An element ¢ of R is called regular if ¢r # 0 for every nonzero
element » € R. For any ideal a of R, we set C(a) = {¢ € R :
¢ + a is a regular element of the ring R/a}. For example, if p is any
prime ideal of R, then C'(p) = R\p.

Recall that F' is a free R-module. For each element x of F', we set
S(x) ={y € F:cy € Rx + wF for some ¢ € C(w)}. Note that S(z) is
a submodule of F and Rz C S(z) for each z € F.

Lemma 2.1. Let F be a free R-module, and let x € F. Then
Rz ~ aS(x) where a is the ideal (Rx +wF : S(x)) of R.

Proof. Since tv is a nil ideal, it follows that wF C P for all P € spec F'.
Now aS(z) C Rz + wF gives that V(Rz) = V(Rz +wF) C V(aS(z)).
Conversely, suppose that Q@ € V(aS(z)). Then aS(z) C @ implies
that aF C @ or S(z) C Q. Suppose that aF C @ and let y € S(x).
Furthermore, let {f; : ¢ € I'} be a basis of F'. There exist a finite subset
JofI, zi,y; € R,i€J,ce C(w) and r € R such that x = ), ; 2;f;,
Y= cs¥ifi and cy = rz + w, where w = ), ; w; f; € wF for some
w; €w, i€ J. Clearly cy; = rz; + w;, i € J.

Now c¢(z;y — yiz) = zi(re + w) — (rz; + w;))z = z,w — w;x € wF
so that z;y — y;x € wF for all i € J. Thus, for each i € J, we have
ziy € Re +wF, ie,z; €a,i € J. Hence z € aF C Q. In any case,
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Rz C Q and Q € V(Rz). Thus V(aS(z)) C V(Rz). It follows that
V(Rz) = V(aS(z)), as required. o

Corollary 2.2. Let z;, 1 < i < k, be elements of F for some
positive integer k. For each 1 < i < k, let a; = (Rx; + wF : S(x;)).
Then Rxl + -+ ka, ~ alS(ml) + -+ akS(Ik).

Proof. By Lemmas 1.5 and 2.1. O

Lemma 2.3. Let R be a Noetherian ring, and let F' be of finite rank.
Then the varieties V(S(z)), where x € F\wF, generate ((F).

Proof. Let N be any submodule of F. Then N = Rzq + -+ + Rzy,
for some positive integer k£ and elements z; € N, 1 < ¢ < k. If
z; € wF, 1 < i <k, then N C wF and hence V(N) = V(nF) =
V(0) = V(0S(z)) for any x € F\wF. Otherwise, we can suppose
without loss of generality that there exists 1 < m < k such that
z; ¢ wWF, 1 < i< m,and 2; € wF, m+1 < i < k. It follows
that V(N) = V(Rz1 + -+ + Rzy,) = V(a1S(z1) + -+ + apS(@)),
where a; = (Rz; + wF : S(z;)), 1 <i <m, by Corollary 2.2. O

Let M be any R-module and let p be a prime ideal of R. By a p-
prime submodule P of M, if it exists, we mean a prime submodule
P such that p = (P : M). In Corollary 1.7 we saw that if M is a
finitely generated noncyclic R-module, then {(M) is generated by the
varieties V(S) of semiprime submodules S of M. Now we show that in
Lemma 2.4, for each € F\wF, the submodule S(z) is semiprime in
case F has finite rank n > 2.

In the remainder of this paper we shall assume that R is a Noetherian
ring with minimal prime ideals p;, 1 < 7 < k, for some positive
integer k, and F is a free R-module of finite rank n > 2. Note
that wv = py N---Npg. Let € F. We have already defined
S(z) ={y € F:cy € Rz + wF for some ¢ € C(w)}, and we now
set Pi(x) ={y € F :cy € Rz + p;F for some c € C(p;)}.
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Lemma 2.4. With the above notation, for any x € F, P;(z) is a p;-
prime submodule of F' for each 1 < i < k and S(x) = Pi(z)N- - -NPg(x).
In particular, S(z) is a semiprime submodule of F'.

Proof. Let 1 < i < k and let € F. Note that P;(z) is a submodule
of F. If F = P;(z), then the R/p;-module F/p;F is uniform, which
contradicts the fact that rank F' > 2. Thus, P;(z) is a proper submodule
of F, p;F C P;(z) and F/P;(z) is a torsion-free R/p;-module. Hence
P;(z) is a p;-prime submodule of F.

Next note that w = pyN- - -Npg and hence C'(p1)N---NC(px) C C ().
Let ¢ € C(w). Let r € R such that ¢r € p;. Then cr(p2N---Npg) C 1o
so that r(pa N ---Npg) C p; and hence r € p; since p; € p1, 2 < i < k.
Thus ¢ € C(p1). Similarly, ¢ € C(p;) for all 2 < ¢ < k. It follows that
C(r) = C(p1) N--- N C(pg). Furthermore, since wF C p;F for every
1 <i <k, we now have S(z) C Pi(z) N---N Py(x).

Let y € Pi(xz) N---N Py(z). For each i, 1 <7 < k, there exists ¢; €
C(p;) such that ¢;y € Rz + p;F and there exists d; € C(p;) N (Nj.b;)
and hence c;d;y € Rx + wF. Let ¢ = cidy + --- + cgdr. Then
¢ € C(w) and cy € Rz + wF. Thus, y € S(z). It follows that
Pi(z)Nn---N Py(z) € S(z). Therefore, S(z) = Pi(z) N--- N Pg(x)
and S(z) is a semiprime submodule of F. O

Let P be any prime submodule of the R-module M. Then we say that
P has height n, where n is a nonnegative integer, provided there exists
achain P=PFy 2 P D -+ 2 P, of prime submodules P;, 0 <1 < n, of
M but no longer such chain. We now investigate the submodules P;(z)
where 1 < i < k and z is any element of the free R-module F. Note
that if p is any prime ideal of R, then pF is a prime submodule of F'.

Lemma 2.5. Let1 < ¢ < k and let x+ € F. Then the following
statements are equivalent.

(i) Pi(z) = piF.
(ii) @ € p; F.
(iii) P;(z) is a height 0 p;-prime submodule of F.

Proof. This is an easy consequence of the fact that p; FF C P;(x). a
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Lemma 2.6. Letl < i < k. Then P is a height 1 p;-prime submodule
of F if and only if P = Pi(z) for some x € F\p;F. In this case
P = P,(2) for any z € P\p;F.

Proof. Suppose first that P = P;(z) for some € F\p;F. Then P is
a p;-prime submodule of F' by Lemma 2.4. Moreover, P D p;F gives
that P has height > 1. Suppose that P = Py 2 P, 2 P, is a chain of
prime submodules of F. Note that (P, : F) C (P : F) = p; so that
(P, : F) = p;, because p; is minimal, and p;F C P, C P;. It follows
that P/P; is C(p;)-torsion and hence P = P;. Thus P has height 1.
Let z € P\p;F. Then p,F C P;(z) C P gives P = P;(2).

Conversely, suppose that P is a height 1 p;-prime submodule of F'.
Then P D p;F by Lemma 2.5. Let z € P\p;F. Then p;F C P;(z) C P
and hence P = P;(x). o

Corollary 2.7. Let1 < ¢ < k and let z,y € F. Then either
Pi(z) = Pi(y) or Pi(z) N Pi(y) = p;F.

Proof. Suppose that P;(z) N P;(y) # p;F and choose z € P;i(z) N
P;(y)\p;F. By Lemma 2.6, P;,(z) = P;(z) = P;(y). O

Let ¢ € F\rF. In Lemma 2.4, we saw that S(z) = Pi(z)N- - -NPg(x).
Let J ={j:1<j<kx¢ p;F} and note that J is a nonempty
subset of {1,...,k}. Now let I = {1,...,k}\J and observe that
Pi(z) = p,F for all i € I. We define S*(zr) = NjcsPj(zr). Thus
S(z) = (NierpiF) N S*(z).

Lemma 2.8. Let J be a nonempty subset of {1,... ,k}, and let P; be
a height 1 pj-prime submodule of F' for each j € J. Then there exists
z € F\wF such that S*(z) = NjcsP;.

Proof. Let j € J. Note that [[,.;pi € p; and P; # p;F. Thus
(Hi;éj pz)P] Z p;F and hence (ﬂiygjpiF) N P; gz p;F. Choose z; €
(ﬂi;,éjpiF) N Pj and let z = ZjeJ zj. Then z € (ijJPj) N (niEIpiF)a
where I = {1,... ,k}\J. Moreover, z ¢ p,;F, j € J. Thus, S*(z) =
ﬂjeJP]-. ]
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We shall call a submodule S of F' a x-semiprime submodule of F
if $ = S8*(z) for some z € F\roF. We next show that *-semiprime
submodules of F' have a unique expression as an intersection of height
1 p;-prime submodules.

Lemma 2.9. Let J be a nonempty subset of {1,... ,k}, and let P; be
a height 1 p;-prime submodule of F' for each j € J. Leti € {1,... ,k}
and let P be a height 1 p;-prime submodule of F' such that Njc s P; C P.
Then i € J and P = P;.

Proof. Note first that [ [, ;p; C (Njes P : F) C (P : F) = p; so that
p; € p; for some j € J and hence j = ¢. Moreover,

< I1 m)&gﬂpng

seJ\{i} jedJ

gives P; C P and hence P = P;. a

Combining Lemmas 2.8 and 2.9 we see that a submodule S of F' is
a *-semiprime submodule if and only if there exist a unique nonempty
subset J of {1,... ,k} and unique p;-prime submodules P}, j € J, such
that S = NjecsP;. Now we come to our first main theorem.

Theorem 2.10. Let R be a Noethertan ring and let F' be of finite
rank n > 2. Then ((F) is generated by {V(S) : S is a *-semiprime
submodule of F'}.

Proof. Let x € F\wF. Then S(x) = aF'NS*(x) for some ideal a of R.
It can easily be checked that V(S(z)) = V(aF N S*(z)) = V(aS*(x)),
i.e., S(z) ~ aS*(x). By Corollary 1.6 and Lemma 2.1, {(F') is generated
by {V(S*(x)): z € F\roF}. u]

It is not clear in general how to “simplify” the generating set {V(.59) :
S is a *-semiprime submodule of F'} for ((F'). In the next section we
shall look at a special case which includes the case of domains.
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3. A special case. We begin this section with the following version
of Theorem 2.10 in the special case when R has only one minimal prime
ideal and in particular when R is a domain.

Theorem 3.1. Let R be a Noetherian ring which has only one
minimal prime ideal p, and let F be of finite rank n > 2. Then ((F) is
generated by {V(P) : P is a height 1 p-prime submodule of F'} but not
by any proper subset.

Proof. The first part follows by Theorem 2.10. Suppose that m
is a positive integer, P and P;, 1 < i < m, are height 1 p-prime
submodules of F and a;, 1 < i < m, are ideals of R such that
V(P) = V(mPL + -+ anPyp). Ifa Cp, 1 < i < m, then
P+ -+ a0, P, C pF so that pF € V(CllPl + -4 aum) but
pF ¢ V(P). Thus there exists 1 < j < m such that a; Z p. Then
a;P; C P gives P; C P and hence P = P;. It follows that no proper
subset of {V(P) : P is a height 1 p-prime submodule of F'} generates

((F). o

In general, if R has minimal prime ideals p;, 1 < ¢ < k, and {(F)
is generated by {V(P) : P is a height 1 p;-prime submodule of F' for
some 1 < ¢ < k}, then ((F) is not generated by a proper subset. This
can be seen by adapting the proof of Theorem 3.1.

Now suppose that R is a Noetherian UFD, for example, R could be
the polynomial ring in a finite number of indeterminates over a field
or over Z. Let F be of finite rank n > 2 with basis {f; : ¢ € I}. Let
0 # z € F. There exist a finite subset J of I and nonzero elements
z; € R, j € J,such that x = Z]-GJ x;f;. Let d be the greatest common
divisor of the elements z;, j € J. For each j € J, there exists y; € R
such that z; = dy;. It can easily be checked that P(z) = Ry. We call
the submodule Ry a principal prime submodule of F'. Now Theorem 3.1
gives the following result.

Corollary 3.2. Let R be a Noetherian UFD and let F be of finite
rank n > 2. Then ((F) is generated by {V(P) : P is a principal prime
submodule of F'} but by no proper subset.
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We have already observed in Section 1 that if V(N) = V(a3 Ny +---+
a, Ny ) for some positive integer k, ideals a;, 1 <14 < k, of a ring R and
submodules N, N;, 1 < i < k, of an R-module M, then the a;’s are
not unique in general. Even for a Noetherian UFD R, the submodules
N; are not unique. For, let R be a Noetherian UFD and let N be any
proper nonzero submodule of a free R-module F' of finite rank n > 2.
There exist a positive integer m and elements z; € N, 1 < ¢ < m,
such that N = Rx; + --- + Rx,,. Then it can easily be checked that
V(N)=V(P(x1)+---+ P(zm)) = V(P(z1)) +--- + V(P(2y,)). This
can lead to an infinite number of ways of expressing V(IN) as a sum of
varieties of principal primes, as the following example shows.

Example 3.1. Let R denote the ring Z of rational integers, let
F=R®Randlet N = R(3,2)+ R(3,5). Then N is a proper nonzero
submodule of F' and V(N) = V(R(3,2)) + V(R(3 + 3n,5 + 2n)) for all
positive integers n. Moreover, R(3,2) and R(3+3n,5+2n) are principal
prime submodules of F' for all positive integers n Z 2 (mod 3).

Proof. 1t is easy to check that N is a proper nonzero submodule of
F and that N = R(3,2) + R(3 + 3n,5 + 2n) for all positive integers n.
Thus V(N) = V(R(3,2) + R(3 + 3n,5 + 2n)) = V(R(3,2)) + V(R(3 +
3n,5+ 2n)) for all positive integers n.

Since 3 and 2 are coprime, it follows that R(3,2) is a principal prime.
Let n be any positive integer such that n # 2 (mod 3). Suppose that
3+ 3n and 5 + 2n are not coprime. Let p be any prime such that p
divides both 3+ 3n and 5+ 2n. Then p divides 3(1+n). Thus p =3 or
p divides 1 + n. But p = 3 implies that 5+2n =0 (mod 3), i.e., n = 2
(mod 3), a contradiction. Thus, p divides 1 + n and hence p divides
3 =(542n) —2(1 + n), a contradiction. Thus 3 + 3n and 5 + 2n are
coprime and hence R(3 + 3n,5 + 2n) is a principal prime. O

In case the ring R has only one minimal prime ideal, we have the
following uniqueness theorem.

Theorem 3.3. Let R be a Noetherian ring with only one minimal
prime ideal p and let F be of finite rank n > 2. Let P;, i € I, denote
the height 1 p-prime submodules of F'. Let N;, j € J, be submodules of
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F. Then ((F) is generated by {V(N;) : j € J} if and only if there exist
pairwise disjoint finite subsets J;, i € I, of J such that P; ~ ZjeJi N;
for alli € I. In this case, for each j € J;, there exists an ideal ¢; of R
such that N; ~ ¢;P;.

Proof. Suppose first that, for each ¢ € I, there exists a finite subset
J; of J such that P; ~ ZjeJi N;. Let N be any submodule of
F. By Theorem 3.1 there exist a finite subset I’ of I and ideals a;,
i € I', of R such that N ~ >, a;P;. Applying Lemma 1.5, we have
N~ ier 0idjen, Nj = 2ier 2jes, @lN;. Thus ((F) is generated
by {V(Nj) : j € UierJi}

Conversely, suppose that {V(N;) : j € J} is a set of generators of
C(F). Let i € I. Then V(P;) = V(b1 Nj1) + --- + b5 Nj(m)) for some
positive integer m, elements j(s) € J, 1 < s < m, and ideals b,
1 < s < m, of R. Without loss of generality, we can suppose that
bs € p and Nj(,) € pF for all 1 < s < m. Since bsN;(,) C F;, it follows
that N,y € Pi, 1 < s <m. Thus V(P;) = V(N +- -+ Njim)), e,
P~ Njqy+ -+ Njm)- We set J; = {j(1),...,5(m)}.

Suppose that 7,4’ are distinct elements of I. Then P; N Py = pF by
Corollary 2.7, and hence J; N J;» is empty. Thus, the finite sets J;
1 € I, are pairwise disjoint.

Finally, suppose that j € J; for some ¢ € I. Then N; C P;. By
Theorem 3.1 there exist a finite subset I"” of I and ideals ¢;, t € I”,
such that Nj ~ >, Py and ¢ € p, t € I". Now >, P C Py
gives I" = {i} by Corollary 2.7. Thus N; ~ cP; for some ideal ¢ of R,
as required. ]

Finally we determine when ((F) is generated by {V(P) : P is a height
1 p;-prime submodule of F' for some 1 < ¢ < k}, where R is a Noethe-
rian ring with minimal prime ideals p;, 1 < ¢ < k, and F is of finite
rank n > 2. We already know that this is the case when k = 1 (Theo-
rem 3.1). First we prove a preliminary result.

Let R be any ring with pairwise comaximal prime ideals q;, 1 < ¢ < ¢,
for some positive integer ¢. For each 1 < ¢ <¢, let §; = N;q;. Then
the ideals {g; : 1 <14 < ¢} are also comaximal, as can be readily seen.
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Lemma 3.4. Let q;, 1 < i < t, be pairwise comazimal prime ideals
of a ring R. Let M be an R-module, and let Q; be a q;-prime submodule
of M for each1 <i<t. ThenV(Q1N---NQ:) =V (§1Q1+ - +8:Q)-

Proof. Since §1Q1 + -+ §:Q¢ C Q1 N --- N Qy, it follows that
V(QinN---NQ:) C V(§1Q1 + -+ + 6:Q¢). Now suppose that P €
V(§:1Q1+ -+ + G:Qt). Let p = (P : M). By the remark immediately
preceding this lemma, there exists 1 < i < t such that q; € p. Then
q;Q; C P gives Q; C P and hence Q1 N---NQ; C P. Thus P €

V(le' . 'ﬂQt). It follows that V(E{lQ1+ . '+E{1Q1) - V(Qlﬁ' . -ﬂQt).
O

Theorem 3.5. Let R be a Noetherian ring with minimal prime tdeals
pi, 1 < i < Kk, for some positive integer k > 2. Then the following
statements are equivalent.

(i) R=R1 ®---® Ry, is a direct sum of rings R;, 1 <1 < k, each
having only one minimal prime ideal.

(i) pi+p; =R foralll <i<j<k.

(iii) For any positive integer n > 2 and any free R-module F' of rank n,
C(F) is generated by {V(P) : P is a height 1 p;-prime submodule of F
for some 1 < i < k}.

(iv) There exists a positive integer n > 2 and a free R-module F of
rank n such that ((F) is generated by {V(P) : P is a prime submodule

of F}.

Proof. (i) < (ii). This is a well-known consequence of the Chinese
Remainder Theorem.

(ii) = (iii). By Theorem 2.10 and Lemma 3.4.
(iii) = (iv). Clear.
(iv) = (ii). Suppose that (iv) holds and suppose that p; + (p2 N

~--Npg) # R. Let v = /p1 + (p2N---Npg) and let € F\vF. There
exist a positive integer m, ideals a;, 1 < ¢ < m, and distinct prime
submodules P;, 1 <4 < m, such that V(S(z)) = V(a1P1+- -+ a0, Py,)
and a; P; € wF, 1 < i < m, where again v = p; N --- N Pg.

Suppose that P, € P;(z), 1 < i < k. Then a1 P, C S(z) C Pi(z),
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by Lemma 2.4, gives a4 F C P;(z) for all 1 < i < k. Thus a; C
p1 N ---Npg = 10, a contradiction. Thus we can suppose without loss
of generality that P; C Py(x). Then (P : F) = p; and P, = p; F or
P, = Pi(z) by Lemmas 2.5 and 2.6. Next note that a; P, C P;(z),
2 < ¢ < k, by Lemma 2.4, so that ay C pa N --- N pg. Since
Py  wF, it follows that P, = Pi(z). Note further that a; Py C
(p2N-+-Npg)Pi(z). A similar argument will show that, by rearranging
if necessary, a;,P; C (N;xip;)Pi(z), 2 < i < k. It follows that m = k
and V(S(z)) = V((p2 N ---Npe) Pr(x) + -+ (b1 N - Npr—1) Pr())-

Since € F\tF, it follows that there exists a prime ideal q of R
such that py + (p2 N---Npx) C q but ¢ qF. Then qF € spec F and
(p2N---Npr)Pr(z)+---+(p1N---Npg_1)Pr(z) C gF. Thus S(z) C qF
and z € qF, a contradiction. It follows that p; + (p2 N---Npx) = R,
ie,pi+p; =R, 2 <4< k. Similarly, p;+p; = Rforall2 <¢ < j < k.
O
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