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SOME AMPLIFICATIONS AND
A CORRECTION OF TARROBINO’S CONSTRUCTION
OF LOCAL PARAMETERS ON Hilbg,
k

MARK E. HUIBREGTSE

ABSTRACT. Let k be an algebraically closed field of char-
acteristic 0, Pz the projective plane over k and Hilbg2 =H"™
k

the Hilbert scheme whose k-points [Z] parameterize the 0-
dimensional closed subschemes Z C P% of length n. It is well
known that H™ is a nonsingular variety of dimension 2n. In
his memoir [8], Iarrobino describes a procedure for construct-
ing local parameters about any k-point [Z] € H™. The key
step is to construct local parameters in case Z is supported
at a single point of Pi, which we can assume is the origin of
a standard affine patch Spec (k[z,y]) C Pi); in this case, Iar-
robino claims to construct a map ¢ : U — H™ with source an
open neighborhood of the origin 0 in the 2n-dimensional affine
space AZ", such that 0 — [Z] € H™ and such that ¢ is étale
at 0. Unfortunately, Iarrobino’s procedure does not work for
all Z (the map ¢ is sometimes left undefined); the subscheme
defined by the ideal (z®,z%y,y?) C k[z,y] of colength 9 is an
example in which his procedure fails. On the other hand, Iar-
robino’s procedure works very well for some important classes
of ideals, including the ideals of “generic type” and the “fat
point” ideals (z,y)", » = 1,2,...; in these cases, the map
¢ Aﬁ" — H is globally defined and an open immersion.

1. Introduction. We fix an algebraically closed ground field k
of characteristic 0. Let Hilbg2 = H™ denote the Hilbert scheme

parameterizing zero—dimensionalk closed subschemes of the projective
plane Pi having length n; if Z C Pi is such a closed subscheme, we
write [Z] € H™ for the associated point. It is well known that H™
is irreducible and nonsingular of dimension 2n [5]; a new proof has
recently been given by Haiman [7], who notes that H"™ “has received
particular attention” for these special properties, “neither of which is
true for Hilb"(A™) for general m.”
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In his memoir [8], Iarrobino describes a procedure for constructing
local parameters about any k-point [Z] € H™. The key step is to
construct local parameters in case Z is supported at a single point
of P?, which we can assume is the origin of a standard affine patch
Spec (k[z, y]); by localizing at the maximal ideal of the origin and then
completing, we can write Z = Spec (R/I), where R = k[[z,y]] is the
ring of power series in z and y, and I C R is an ideal of colength
n, that is, dimy(R/I) = n (larrobino studies families of such ideals
in [8]). Iarrobino shows that I has a distinguished set of polynomial
generators fo,. .., f4, called “standard generators” (their construction
may require an initial linear change of the local coordinates z,y). From
these, he produces polynomials fo(X),..., f4(X) € k[z,y, X], where
X = {Xjj.} is a set of 2n indeterminates indexed to correspond to
a particular k-basis of the tangent space THfy ~ Hompg(I, R/I); the
polynomials f;(X) specialize to the standard generators f; when each
Xiju is set to zero. Setting I(X) = (fo(X),..., fa(X)), we obtain a
map

Spec (lz,y, X]/1(X)) = Spec (k[X]) = AZ"

which Iarrobino shows is quasi-finite and flat over a neighborhood U of
the origin 0 of its target.

If the map F is in addition finite over U, it defines a finite and flat
family of zero-dimensional subschemes of Spec (k[z,y]) C P37 having
length n, which by the universal property of H™ corresponds to a map

¢$:U— H", 0—[Z];

one can then show that the induced map on tangent spaces

TU, 2% TH,

is an isomorphism, which implies that ¢ is étale in a neighborhood
of 0. The indeterminates X;;, then correspond to the desired local
parameters at [Z] € H™. (The details of this construction are given in
the proof of Proposition 3.1.)

Iarrobino asserts [8, Theorem 4.16, p. 72] that the map ¢ is always
defined when F' is quasi-finite over U, but this is not the case. In
Section 5 we give examples of ideals I for which the map F' is not finite
in any neighborhood U of 0; indeed, the family of subschemes defined
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by F has members of the wrong length arbitrarily close to Z = F~1(0).
Therefore, the map ¢ is not defined in these cases. On the other hand,
in several important cases, the map F' is globally finite over Spec (k[X])
and the induced map

¢ : Spec (k[X]) = A2" — H"

is an open immersion, yielding an open neighborhood of [Z] isomorphic
to A?". Ideals enjoying this good behavior include the ideals of “generic
type” and the “fat point” ideals (z,y)", r = 1,2,.... There are also
“intermediate” cases for which the map ¢ is only defined on a proper
open subset U C Spec (k[X]); an example is given in Section 5.

Having provided an overview of the paper’s contents, we turn next to
a section-by-section outline of its structure. We lay the groundwork
on which we build in Sections 2 and 3: the first of these sections
summarizes the concepts and notation from [8] that are needed for
a thorough understanding of Iarrobino’s approach to local parameters;
the second gives a detailed proof that Iarrobino’s construction succeeds
when F' is finite over U, and presents a free resolution of the ring
['(F~Y(U)) that is needed in the sequel.

Our main results reside in Section 4, which is devoted to a study
of conditions under which the map ¢ : U — H™ is an open immer-
sion and/or globally defined. Theorem 4.2 shows that ¢ is an open
immersion provided that F is finite over U and each of the generators
f1(X) has the “pullback uniqueness property,” see Definition 4.1; note
that this property depends on U. We establish a convenient condition
for verifying that these hypotheses hold globally in Proposition 4.5;
namely, if each of the f;(X) has “good form”, see Definition 4.3, then
the hypotheses of Theorem 4.2 hold for U = Spec (k[X]). Consequently,
the map ¢ is a globally defined open immersion, Corollary 4.6. Propo-
sition 4.8 then gives a simple condition, depending only on the “type,”
see Section 2, of the original ideal I C R, for verifying that the f;(X)
all have good form. In particular, this condition holds when I is of
“generic type” or a “fat point” ideal, Examples 4.12 and 4.13.

The final section of the paper comprises several examples, some of
which have already been mentioned. Examples 5.1, 5.2 and 5.3 show
that Iarrobino’s procedure does not always lead to a well-defined map
¢ : U — H". Example 5.5 shows that the condition that all the
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generators f;(X) of I(X) have “good form,” although sufficient, is not
necessary for the conclusion that the map ¢ be a globally defined open
immersion. The final example 5.6 shows that the map ¢ is sometimes
defined only on a proper subset U C Spec (k[X]); in this example, ¢
turns out to be an open immersion on U. We have no example in which
the map ¢ : U — H" is defined and not an open immersion; we end
the paper with the conjecture that no such example exists.

We note that the aforementioned paper [7] of Haiman includes an-
other approach to local parameters on H™: for any point [Z] € H" that
corresponds to a monomial ideal I C k[z,y], Haiman exhibits a list of
2n functions that give a k-basis of my /m[zz]. It follows that H™ is
smooth at all such [Z], which are the fixed points of a certain torus ac-
tion on H™; from this Haiman deduces that H™ is everywhere smooth.
In [3, Section 2.5], Cheah constructs an explicit basis of the tangent
space TH[, ~ Homp (I,R/I) for Z again defined by a monomial ideal
I; from this basis, one can recover Haiman’s local parameters at [Z].

By contrast with these results, Iarrobino’s tangent space basis and
local parameter construction are not restricted to monomial ideals;
unfortunately, however, the latter construction does not always work,
not even for monomial ideals (the counterexamples given in Section 5
are all monomial ideals). It is of interest to construct local parameters
at all points of H". The positive results of this paper, which give
conditions under which the map

¢ : Spec (k[X]) = A" — H"

is a globally-defined open immersion, are a step in this direction, since
in such cases, the indeterminates X;;,, € X give rise to local parameters
at all points [Z] € im (¢).

In a forthcoming paper we give a description of certain open affine
subschemes whose union covers H™ (these are the U, discussed in
[7]); in particular, we express the coordinate ring Oy, explicitly as
a quotient of a polynomial ring. Generalizing the results proved here,
we show that in certain cases U, is an affine cell, that is, isomorphic to
A?" with coordinate ring generated by functions giving the Haiman
local parameters at the cell’s “origin” [Z], a point corresponding to a
monomial ideal. In these cases we again obtain local parameters at all
points of U,,.
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2. Summary of Iarrobino’s approach to local parameters on
Hilbg,. In this section of the paper, we summarize the construction,
k

given in Iarrobino’s memoir [8], of local parameters about a k-point
[Z] of Hilby, = H". Recall at the outset that the ground field
k

k is algebraically closed and of characteristic 0. We first observe
that it suffices to construct local parameters whenever Z, the length-
n closed subscheme of Pi corresponding to [Z], is supported at a
single point P. Indeed, if Supp(Z) = {Pi,...,P.}, then Z may
be written as the coproduct of r subschemes Z1,Zs,...,Z, having
lengths nq,mn9,...,n,, respectively, with Z;Zl n; = n. The natural
rational map []’_, H" — H"™ is defined and étale in a neighborhood
of the point ([Z1]7, [Z2],- .. ,[Z,]) lying over [Z]; if we can construct local
parameters about each point [Z;] € H™, we can in turn construct local
parameters about [Z] € H" [8, p. 74].

Consider therefore a closed subscheme Z C P% of length n concen-
trated at a point P which we may, without loss of generality, take to be
the origin of a standard affine patch Spec (k[z, y]) of PZ. Passing to the
completion of the local ring Op at its maximal ideal, we associate Z
to an ideal I of colength n in the ring of power series k[[z,y]]. Families
of such ideals are the main focus of Iarrobino’s memoir [8], from which
we now recall the concepts and results needed in the sequel.

2.1 Basic concepts: Type, pattern, standard generators. Let
m = (z,y) denote the maximal ideal of R = k[[z,y]], R; = m!/m‘+L
the vector space of forms of degree i and I; = (m* N I)/(m‘*1N1I), the
vector space of forms of degree ¢ which are initial forms, i.e., of minimal
degree, of elements of I. The type of I is the Hilbert function of R/I,
that is, the sequence

T(I) = (to,tl,. .. ,tj,. . ) where tj = dlmk(R]/IJ)

The initial degree of I is the least j such that I; # 0 or, equivalently,
such that ¢; < j+ 1. For I of colength n, one has that m” C I [8,
Lemma 1.1, p. 6]; consequently, t; = 0 for j > n. Furthermore, one has
that
1)

T(I)=(1,2,...,d,tq,... ,tp—1,0,0,...), where 0 <t¢; <j+1,

dti=n and d>tg>->ta
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8, 1.2, p. 1].

We next describe a distinguished basis of the k-vector space R/I, with
respect to which we can choose a distinguished set of generators of I.
Let P be a set of monomials in the variables z, y, (P) the k-span of P
in R, in which infinite sums are allowed if P is infinite, and P; = PNR;
the subset of monomials in P of degree j. The type of P is by definition
the sequence T(P) = (#Py, #P1,...). We say that I has pattern P if
any one of the following equivalent conditions is satisfied [8, Lemma
14, p. 9]

(i) for all j, (PNm?) @ (INm!) =m7;
(2) (ii) for all j, (P;) ® I; = Rj;
(i) (PYNI=o and T(P)=T(I).

In particular, if I has pattern P, then P is a basis of R/I; we call the
monomials in P pattern monomials.

We now order the monomials using the graded lexicographical order
with z > y, that is,

(3) O<y<z<y’l<ay<a®<---.

With respect to this order, the normal pattern of type T = (to,t1,...) s
the set of polynomials P such that P; consists of the last {; monomials
of degree j. For example, the pattern

(4) P={l1,z,y,2° 2y, 2°}

is the normal pattern of type T' = (1,2,2,1,0,0,...). It can be helpful
to visualize normal patterns within the “Pascal triangle” of monomials,
as shown (the monomials in P are enclosed in a rectangular polygon;
the parenthesized monomials will be explained shortly):

y4
y* o wy?
(5) ) xy® 2Py’

y wy [ (%) %y
1 z 2° 3 | (z%)
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Conveniently, in this arrangement, the pattern monomials fall into
columns that form the “bar graph” of the type T.

Let I C R be an ideal of type T, initial degree d, and colength n. If
char (k) = 0, as we are assuming, or is “sufficiently large,” Iarrobino
proves that an ordered set of local parameters (y, z) for R can be chosen,
from a finite list obtained by linear changes of the original coordinates,
such that I has the normal pattern P of type 1" with respect to the
corresponding ordered system of monomials (3) [8, Proposition 3.2,
p- 32]. Assuming this is done, we may construct the unique set of
standard generators fo, f1,-..,fq of I, corresponding to P, as follows
[8, pp. 10-12]: For 0 < [ < d, let z*'4' be the leftmost monomial on
the [th row of the Pascal triangle which is not in P; we call these the
leading monomials. For example, in (5), the leading monomials have
been enclosed in parentheses; note that k; is equal to the number of
pattern monomials on the [th row. We then deduce from (2) that the [th
leading monomial is congruent mod I to a unique k-linear combination
of elements in P N mF*!; that is, the ideal I contains d 4+ 1 uniquely
determined polynomials of the form

(6) fi = z¥1y' + an element of (PNm~ ™), 0<1<d.

By [8, Theorem 1.5, p. 11], the f; generate I. We remark that the
leading monomial z*y' is minimal with respect to the monomial order
(3) among the monomials which appear with nonzero coefficients in fj;
furthermore, the standard generators are indexed by the y-degrees of
their leading monomials. Combining the definition with the conditions
(1), one finds that fo = z*°, where kg = j + 1 is one greater than
the index of the last nonzero entry ¢; in the type of I, and that, as [
increases from 0 to d, the total degree of the leading term decreases,
not necessarily strictly, from k¢ down to d.

As an example, let P be the normal pattern displayed in (4) and (5).
Then, for each choice of scalars p,q,r,s, we obtain an ideal I(, 4, s)
having normal pattern P and standard generators

fO = LL‘4,
(7) fr =2y +pa®,
f2 =y + quy + ra® + sz*;

moreover, it can be shown that the map (p,q,7,s) = I(; qrs) is one-
to-one. It follows that the family of all ideals of type T = T'(P) =
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(1,2,2,1) in R is a (connected) union of four-dimensional affine spaces.
Note that the coefficients cannot always be chosen arbitrarily, as in this
example; in general, some of the coefficients can be chosen freely and
the others are then determined. In any case, Iarrobino shows in this
way that the locus of all ideals of a given type in R is a connected union
of affine spaces of dimension equal to the number of coefficients which
can be freely chosen. See [8, Chapter 2] for a thorough discussion of
these results; similar results are proved by Briancon in [2].

2.2 Standard presentation of I, tangent space at [Z]. Let
I € R be an ideal having normal pattern of type T with respect to the
monomial order (3), and let fo, f1,..., fa be the standard generators
(6). The latter satisfy d, uniquely determined, relations of the form

i—1
(8) —yfia+a i+ Y iifi =0,

Jj=0

where 1 < ¢ <d, w; = k;—1 — k; >0, and «; ; € k[z]; in fact, Iarrobino
proves that these relations freely generate the full syzygy module of
relations among the f’s [8, pp. 50-52]. To express this in another way,
let M denote the d x (d 4+ 1) matrix of coefficients, that is,

a0 — Y ¥t 0 0
Qa2 0 Q21— Y rW2 0 Ce
9 M= . : ,
00 e 0442 Qdd-1—Y TV

and let N denote the (d+1) x 1 matrix obtained by listing the standard
generators in a column. Then R/I has the following free resolution of
length 2, we view the elements of R? and R**! as row vectors on which
the matrices act by right multiplication:

(10) 0— R M pitt My R R/IT—0.

By a special case of the Hilbert-Burch theorem, see, e.g., [4, pp.
501-503] or [11, pp. 670-673], the “f; are up to sign the d x d minors of
M, and the above presentation is typical of that for a Cohen-Macaulay
ideal of depth 2 in a local ring...” [8, p. 52]. Precisely, if we let r;
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denote the jth row of the matrix M (9), e; the standard unit vector
with 1 in the lth position, and (e;, 71,... ,74) the (d4+1) x (d+1) matrix
having the indicated rows, then we have that

(11) fi =det(er,r1, 72, .. ,74).

For example, consider, for a given choice of the scalars, the ideal
I(p.q,r,s) With standard generators fo, f1, f2 defined by (7). One checks
easily that fy, f1, f2 satisfy the relations given by the rows of the matrix

x? 0

e
(12) M= pr—y 2|

-r+plg—-p)—sz (p—qr—-y =

and that the f’s are recovered using formula (11).

It is well known that the tangent space at the k-point [Z] € H"
corresponding to the ideal I is given by the module

(13) TH{y = Hompg(I, R/I).

By a result of Schaps [11, Corollary 3, p. 677], the latter module is
generated as an R-module by the entries of a d x (d + 1) matrix (6; ;)
defined as follows:

(14) ai,j(fl) = det(ej,rl, oo 3 Ti—15€1 Ti41y o - ,'I‘d) I’IIOd I

(it suffices to define each map 6; ; on the generators fo, f1,..., fq of
I in a way that respects the relations {r;} among the f’s). Iarrobino
extends this result by proving that the set

(15) {xll 'eiJ | 0 <p< Wmax(i,5)» 1<:i< d, 0<5< d}

is a k-basis of T'H[;, (the {w;} are those appearing in the relations (8));
he shows that this set, of cardinality

dimk(TH[”Z]) = dim(H") = 2n,

is linearly independent over k [8, Theorem 4.15, p. 69].

2.3 Construction of local parameters at [Z] ¢ Hilby,. Let I,
k
Z, etc., be as in the preceding paragraphs, and let U denote an open
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neighborhood of the origin 0 € A?". Our goal is to construct local
parameters at [Z] € Hilb’lgi = H™; that is, we seek to construct a map
¢ : U — H™ with 0 — [Z] such that ¢ is étale in a neighborhood of
0. By the universal property of H", the map ¢ will correspond to a
family of subschemes W C U x P? that is finite and flat of rank n over
U. Here is Iarrobino’s procedure for constructing such a family [8, p.

72] (modulo slight notational changes):

We choose the local parameters z,y on P7 at P [the point at
which Z is supported] so that Spec (k[z,y]) describes an affine
plane neighborhood Ai of P in Pi. We now regard the matrix
M [ie., matrix (9)] for I as having its entries in k[z,y], the
polynomial ring. Given 8 = {8;;,} with B;;, € k and ,j,p
satisfying [the inequalities in (15)], consider the matrix M (f)
whose entries are

M(B)ij; = M;; + Zﬁzjul‘“
o

and with rows 7;(8). M(B) also has entries in k[z,y]. We let
I(B) C k[z,y] be the ideal

1(B) = (fo(B),- -, fa(B)),
fl(ﬁ) = det(ei,rl(ﬁ), . ,T‘d(,B))

generated by the d x d minors of M(8). The ideal I(3) is Cohen-
Macaulay by Schaps [[11]], since it is determinantal. We let k[X]
denote the polynomial ring on variables X;;, corresponding to
Biju, With 4,7, u [satisfying the inequalities in (15)]. Then we
have a morphism F

Spec (k[z,y, X]/I(X)) £, Spec (k[X]) ~ AZ"

whose fiber over the closed point 8 is Spec (k[z,y]/I(8)). By
Schaps [[11]], Corollary 2, and its proof, F is flat over any
neighborhood U of 0 in A?" for which the closed fibers of F' have
codimension two. This fact depends on the following lemma [11,
Lemma, p. 675]:

Lemma 2.1. Let f : Z — Y be a morphism of algebraic
schemes, f of finite type, Z Cohen-Macaulay, Y regular, and
the closed fibers equidimensional. Then f is flat.
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Tarrobino proceeds to demonstrate the existence of a neighborhood U of
0 € Spec (k[X]) over which the closed fibers of F have codimension 2,
that is, F' is quasi-finite over U, and argues that the resulting map
¢ : U — H™ will be étale at 0 since, by construction, ¢ induces an
isomorphism of tangent spaces there [8, Theorem 4.16, p. 72].

Unfortunately, there is a gap in Iarrobino’s argument: the map F|,
even if quasi-finite and flat near 0, need not be finite there, meaning
that the map ¢ need not be defined. In Section 5 we give three examples
in which the family of subschemes defined by F' contains members of
the wrong length arbitrarily close to F~1(0) = Z. On the other hand,
Tarrobino’s procedure works very well—that is, the map ¢ : A" — H"
is globally defined and an open immersion—in several important cases,
including the ideals of “generic type” T'=(1,1,...,1,0,0,...) and the
“fat point” ideals I =m", r = 1,2,...; this is the subject of Section 4.
We continue our preparations for these results in the next section.

3. Consequences of (quasi)finiteness for F. At the end of the
previous section, we asserted that Iarrobino’s construction of the map
¢ sometimes fails because the map F' can fail to be finite over any
neighborhood of 0 € A%". Our first goal in this section is to confirm
that Iarrobino’s construction succeeds whenever F' is finite over some
neighborhood U of zero. Following this, we present a free resolution of
the A-module T'(F~'(U)) = B which is needed in Section 4, see (18)
for the notation; this resolution exists whenever F' is quasi-finite over
U.

Let I C k[[z,y]] be an ideal of colength n having type T', normal
pattern P with respect to the monomial order (3), associated standard
generators fo, ..., fs, and matrix of relations M, as in Sections 2.1
and 2.2. Following Iarrobino’s procedure quoted in Section 2.3, we
introduce the set of variables X = {Xj;,}, form the matrix M(X) =
(ri1(X),...,ra(X)), with entries given by

Wmax(i,j) —

1
(16) M(X)ij =M+ >, Xt
pn=0

and define, for 0 <[ < d,

(17) fi(X) =det (e, r1(X), ... ,rqa(X)).
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We set
I(X) = (fO(X)’ 7fd(X)) - k[xaan]a

and consider the map
Spec (k[z,y, X]/1(X)) = Spec ([ X]).

If there exists an open set U of the target over which F' is finite and
flat of degree n, then F' induces a map

¢:U — Hilbp, = H",

by the universal property of H™. We of course want U to contain the
origin 0 € Spec (k[X]) = A", which will then map under ¢ to the k-
point [Z] € H™ corresponding to the ideal I; we also want ¢ to be étale
at zero. To achieve these ends, it suffices that U be a neighborhood of
0 over which the map F' is finite; we state this as

Proposition 3.1. Let U = Spec (C) be an open neighborhood of the
origin 0 € Spec (k[X]) over which the map F is finite. Then F is also
flat over U of rank n, and the induced map ¢ : U — H" is étale at
zero.

Remark 3.2. The proof which follows is merely a fleshing out of the
arguments given by Iarrobino, which we sketched in Section 2.3.

Proof. We write

(18) A=Cla,y),
B =T(2(U)) = A/ (fo(X),.. , fa(X)):

Since F' is by hypothesis finite over U, and therefore quasi-finite, we
have that every component of Z(U) has codimension > 2 (the fibers
of F over U are all zero-dimensional). On the other hand, because the
ideal I(X) is defined by the d x d subdeterminants of a d X (d+1) matrix,
every component of Z(U) has codimension < (d—d+1)((d+1)—d+1) =
2, see, e.g., [4, Example 10.9, p. 244]; whence, every component has
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codimension equal to (d—d+1)((d+1) —d+1) and Z(U) is therefore a
determinantal scheme. It now follows from the theorem of Eagon and
Hochster, see, e.g., [11, p. 670] or [4, p. 463], that

(19) Z(U) = Spec (B) is Cohen-Macaulay.
Therefore, by Lemma 2.1, we have that the map

Since F|z(y) is finite and flat, we have that the ring B is locally free
over C, by [10, Proposition 7, p. 43]. To compute the rank of B over
C, tensor with the residue field k of the origin 0 € U:

B®c k ~ klz,y|/1(0) =T'(Oz).

Since Z, the subscheme corresponding to the ideal I we started with,
has length n, and U C A?" is connected, we see that

(21) B is locally free of (constant) rank n over C.

The universal property of the Hilbert scheme H™ now yields a map
¢ : U — H™; by definition, the image of the k-point 8 = (8;;,) € U is

¢(8) = [Z2(B)],
Z(B) = Spec (B @c kg) = Spec (k[z, y]/1(B)),

where kg denotes k viewed as the residue field of 3, and I(5) the ideal
obtained from I(X) by replacing each Xj;;, with §;;,. It remains to
prove that ¢ is étale at 0 € U. Since the source and target of ¢ are
nonsingular schemes of the same dimension, it suffices to show that the
induced map on tangent spaces

TU, 2% THY,
is surjective (and therefore an isomorphism) [1, Proposition 5.2, p. 148].

To do this, we will show that each of the elements in Tarrobino’s k-basis
(15) of TH[”Z] is in the image of ¢{; indeed, we claim that

0
(22) ot =5~ )
J 0 aXz],u
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for0§u<wmax(i,j)algigdaOSde-

Proof of claim. Let k[e] be the dual numbers, i.e., €2 = 0. We
will express the lefthand side and righthand side of (22) as maps
Spec (k[e]) — H™, that is, as families of subschemes over Spec (k[e]),
and observe that these families are the same.

We first consider the lefthand side. The proof of (13) shows that the
tangent vector v € Homg(I, R/I), when viewed as a map Spec (k[e]) —
H", corresponds to the closed subscheme of Spec (k[¢][z, y]) cut out by
the ideal

(fO +e€ 'U(fO)a"' afd+5'v(fd))a

see, e.g., [11, p. 677]. Therefore, the lefthand side of (22) corresponds
to the ideal

(23) (fo+e-a*0i;(fo)y---, fat+e-a" 0;;(fa))-

We now consider the righthand side. First note that the tangent
vector v = —(0/0X;;,) at 0 € U C Spec (k[X]) corresponds to the
map Spec (k[e]) — Spec (k[X]) which is given on rings by

(24) Xiju— —e and Xy, —> 0 otherwise.

The composition

Spec (k[e]) = U -25 H™,
by definition of ¢, corresponds to the closed subscheme of Spec (k[e][z, y])
cut out by the pullback of the ideal (fy(X),..., fs(X)); that is, the
ideal (fo(g), ..., fa(€)) obtained by making the substitutions (24). Re-

calling the definition (17) of the f;(X), and that the row r, is obtained
from the row r,(X) by setting X,q, to zero for all ¢, i1, we see that

fi(e) = det(es,m1,... ,ric1, i + —€-x* - €, i1, ,Ta).

Using linearity of the determinant in the ith row, the determinantal
description (11) of the standard generators f;, and the definition (14),
we obtain
file) = fi—e-axt-det(e,r1,... ,75-1,€5,Tit1,.-. ,Tq)
= fi+e-a"-det(ej,r1,... ,Tic1,€,Tit1,... ,Td)
= fite-a"-0;;(fi).
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In other words, the generators of the ideal corresponding to the right-
hand side are the same as the generators of the ideal (23) corresponding
to the lefthand side; whence, the claim.

The proof of the proposition is now complete. a

Remark 3.3. In Theorem 4.2, we give a condition under which the
map ¢ : U — H"™ is an open immersion.

Our second goal in this section is to present a free resolution of the
A-module B which specializes to the free resolution (10) of k[[z,y]]/I.
This resolution exists whenever the map F' is quasi-finite over U =
Spec (C') (we continue to use the notation (18)); the quasi-finiteness
ensures, as in the proof of Proposition 3.1, that B is Cohen-Macaulay
(19). As noted in Section 2.3, Iarrobino showed that the map F is
quasi-finite over some neighborhood U of the origin in Spec (k[X]) for
every I; therefore, the resolution is available in every case, not just
when F' is finite over U. In addition to being interesting for its own
sake, the resolution plays an important role in the next section.

We begin by defining the maps

a: A — AT (aq,. .. aq) — (a,. .. aq) - M(X),
(25) a
§: A 5 A, (a,-.. ,ad+1)l—>2ai-fi(X);
i=0

recall that M (X) = (r1(X),...,rq(X)) is the d x (d + 1) matrix (16)
whose d x d minors yield the generators f;(X) up to sign. These fit
into the sequence

(26) A% % AL A B = A/(fo(X),..., fa(X)) — 0.
We will show that « is injective and that
im () = ker (4), the first syzygy module of the {f;(X)};

this will yield the desired free resolution of B.

To prove that « is injective, first recall from the construction of M (X)
that its ith row has the form
ri(X) = (9i,0(2),9i,1(2), .., —y + gii-1(), gii (),

(27) Gii1(@), - gi.a(x)),
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where g; j(z) € C[z]; in particular, the only appearance of the variable
y in r;(X) occurs in the (i — 1)st component, as shown (the term z*¢ is
included in g; ;(z)). Choose a nonzero element (vi,...,7qs) € A% and
consider its image under «, that is,

(28) 1o (X) 42 e (X) + - g ra(X) € AT

Viewing the elements of A = Clz,y] as polynomials in y over C|z],
choose v; # 0 of maximum y-degree among the <;’s and consider the
(j — 1)th component of (28):

(~y+955-1(2) 7 + >_(9i-1(7) - %)
i#j

A moment’s reflection shows that the term of maximum y-degree in
—y-7; cannot cancel out of this sum, which implies that o(y1,... ,7vq) #
0, that is, « is injective.

Remark 3.4. The argument just given, borrowed from [8, Proof of
Proposition 4.1, p. 51], shows that any nontrivial A-linear combination
of the rows r;(X) must involve y nontrivially in at least one component,
in fact, with index 0 < j < d—1.

To prove that im («) = ker () in (26), we first observe that im () C
ker (§) since, for each i, 1 < ¢ < d, we have that

6(ri(X)) = ri(X) - (fo(X), ..., fa(X))
= det (T‘i(X),Tl(X),T‘Q(X),... ,T‘d(X)) =0

(use linearity of the determinant in the first row and recall the definition
of the f;(X)). Next we consider the exact sequence

0— ker(d) — At 54 B0
and its localization
0 —> ker (6)on — AL 5 Agy — Boy — 0

at any maximal ideal 9T of A, and quote portions of the proof of [11,
Theorem 1, pp. 671-673]:
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Since Bgy is Cohen-Macaulay [(19)], either Bgn = 0 or the
homological dimension of Bygy is equal to its codimension, that
is, two. Thus ker (dgn) is projective, and since Agy is a local
ring, it must in fact be free. Passing to the quotient field K
of A shows that rank ker (6)op = d. Thus ker (§) is locally
free of rank d. ... [Since the question of whether the inclusion
im (a) < ker (6) is an isomorphism is local, we may replace A
by a localization over which ker (§) is free. We then| have a
resolution

0— A — 441 254 B0

[bly Burch’s theorem, we can choose a basis rf,... 7/, € A%+
of ker (¢) such that

fi(X) = det (e, 71, ... ,7h),

foralll =1,...,d, as follows ... [the passage goes on to prove
the existence of the 7} using an argument having [9, p. 148] as
citation].

Let R’ = (r{,...,r)) denote the d x (d+ 1) matrix with rows r}, and

recall that M(X) = (r1(X),...,ra(X)). We previously showed that
im (o) C ker (9); it follows that there exists a unique d x d matrix (a;;)
with entries in A such that

M(X) = (aij) - R,

i.e., each 7;(X) € im () can be uniquely expressed as an A-linear
combination of the ;. Now observe that the Ith d x d minor of M (X),
which is f;(X) up to sign, is equal to det (a;;) - ({th d X d minor of R').
That is,

filX) = det (ai;) - fi(X).

Since A is a domain, we have that det (a;;) = 1, which implies that
(a;j) is invertible (at least one of the f;(X) must be nonzero, since
the matrix M (X) has rank d). It follows that the r} can be expressed
as A-linear combinations of the r;(X); whence, im (o) = ker (9), as
desired.

We have now established the desired free resolution of B. We
summarize the preceding discussion in
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Theorem 3.5. Let U = Spec(C) be an open neighborhood of the
origin 0 € Spec (k[X]) over which the map F is quasi-finite, and let

A:C[l'ay]’ B:A/(fO(X)7 7fd(X))a

as in Proposition 3.1. We have that the sequence
0— A% 2 441 254 B0

is a free resolution of the A-module B, where the maps o and § are

defined in (25).

Corollary 3.6. Under the hypotheses of the theorem, we have that
for any C-module N, the sequence obtained from the free resolution of
B by applying the functor (-) ®c N is ezact.

Proof. Since A = C[z,y], we have that the free resolution of the
theorem is a free resolution of B as a C-module. Therefore, the modules
Torg (N, B) are the homology modules of the tensored sequence. But
since B is flat over C' (20), we have that

Tor{ (N, B) ~ Tor$ (B, N) = 0;

whence, the corollary. ]

4. Cases in which Iarrobino’s method works well. Once
again, let I C k[[z,y]] be an ideal of colength n having type T,
normal pattern P with respect to the monomial order (3), associated
standard generators fy,...,fq, and matrix of relations M. As in
Section 3, we introduce the set of variables X = {Xj;,}, form the
matrix M(X) = (r1(X),...,rq¢(X)), and define

fi(X) =det (e, r1(X),...,rqa(X)), 0<1<d,
I(X):(fO(X)’7fd(X))gk[xaan]a and the map
Spec (k[z, y, X]/T(X)) - Spec (k[X)).

Note that f;(X) has the same leading monomial z*'y' as f; (6), since
fi(X) — fi as all X;5, — 0.
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The main goal of this section is to identify certain classes of ideals I
for which the map F is globally finite and the induced map (globally
defined by Proposition 3.1)

é : Spec (k[X]) = AZ" — Hilbg, = H"

is an open immersion. In overview, we proceed as follows. First, in
Theorem 4.2, we give conditions that ensure that the map ¢ is defined
and an open immersion on an open neighborhood U = Spec (C) of
0 € Spec (k[ X]), as promised in Remark 3.3. We then show that these
conditions hold for U = Spec (k[X]) if all the f;(X) have “good form,”
Definition 4.3, Corollary 4.6. Finally we present a condition, depending
only on the type of I, sufficient to ensure that the f;(X) all have good
form, Proposition 4.8; this condition subsumes the ideals of generic
type and the fat point ideals, Examples 4.12 and 4.13. We will use the
notation (18) and in addition will write

for the extension of I(X) to A.

Definition 4.1. We say that g € I(U) has the pullback uniqueness
property provided that the following condition holds. Whenever we are
given a k-algebra D and two maps s,¢: C' — D such that

I(s) = I(t) € Dlz,y],

where I(s) and I(t) are the extensions of I(U) via the induced maps
§,t: Clz,y] = Dlz,y], then

Our main result is

Theorem 4.2. Suppose that Clz,y]/I(U) = B is finite over C and
that each of the generators fo(X),..., fa(X) € I(U) has the pullback
untqueness property. Then the map ¢ : U — H"™ induced by the
universal property of H™ is an open immersion.
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Proof. Since B is finite over C, Proposition 3.1 yields that B is locally
free of rank n over C (21), the map ¢ : U — H™ is defined, and ¢ is
étale at the origin. We are out to prove that ¢ is an open immersion
or, equivalently, that ¢ is étale (everywhere) and radicial [1, Theorem
5.5, p. 121].

Recall that ¢ is radicial, provided that it is universally injective or,
equivalently, that for any field K, the induced map ¢(K) : U(K) —
H"(K) of K-points is injective ([6, p. 246] or [1, Proposition 5.2, p.
119]); we proceed to show that ¢ satisfies the latter criterion. Let
s and t be two K-points of U; we write s,t : C — K for the
comorphisms of the inclusion maps Spec (K) — U = Spec(C). If
these points have the same image under the map ¢(K), then the ideals
I(s) and I(t) in Klz,y|, obtained by extending I(U) via the induced
maps 3,t : C[z,y] — K][z,y|, respectively, are equal. Since we are
assuming that the generators fo(X),..., fa(X) each have the pullback
uniqueness property, we have that

(29) 5(fuX)) = H(fi(X)), 0<I<d.

We now exploit the free resolution of B developed in the last section,
and summarized in Theorem 3.5: this is the exact sequence

0— A9 25 4441 25 4B,

where A = C[z,y] and the maps o and ¢ are given in (25). We write
K, for K viewed as a C-algebra via the map s; M(s) for the matrix
obtained from M (X') by making the substitutions X;;, — s(X;;,); and
r;(s) for the ith row of the matrix M (s); and likewise for the point ¢ (we
view X;;,, € k[X] as an element of C' via the comorphism k[X] — C
of the inclusion map U — Spec (k[X])). By Corollary 3.6, if we apply
the functor (-) ® ¢ K to the preceding resolution, we obtain an exact
sequence

0 —s K[z, 9]¢ 2 Kz, y]+* 2 Kle,y] — K[z, y]/I(s) — 0,

where a(s) is defined by the matrix M (s) and §(s) by the generators
5(fo(X))y---,8(fa(X)) of I(s). In particular, the rows r;(s) of M(s)
are a K|z, y]-basis of ker (§(s)). Repeating this argument for ¢, we find
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that the rows 7;(t) of M (¢) are a K[z, y]-basis of ker (§(¢)). But by (29),
we have that §(s) = 6(t); whence, each row r;(¢) lies in the K|z, y]-span
of the r;(s) and vice versa. For 1 < i < d, consider the element

ri =ri(s) —ri(t) € ker (6(s)) = ker (§(¢)).

Recalling the form (27) of the rows 7;(X), we see that the vector r}
does not involve y. By the same argument that led to Remark 3.4, we
conclude that r} must be zero, since otherwise it would be a nontrivial
K[z, y]-linear combination of the r;(s) and therefore would involve y
nontrivially. In other words, we have that r;(s) = r;(¢) for 1 < i < d,
that is, M(s) = M(t). Recalling (16), we see that this implies that
5(Xiju) = t(Xyju) for all 4, j, p. It follows at once that ¢(K) is injective,
which completes the proof of radiciality.

The proof that ¢ is étale uses the same idea as the proof of radiciality.
Since the source and target of ¢ are nonsingular schemes of dimension
2n, it suffices to show that the tangent space mapping

A n
TU, —= TH¢(S)

is injective, and therefore an isomorphism, at each k-point s = (s;5,) €
U. Choose tangent vectors v,w € TUs; these correspond to maps
Spec (k[e]) — U C Spec (k[X]), whose comorphisms, which we shall
denote by v and w, are given by

(30) Xiju = Siju + € Viju,  Xiju — Siju +€ - Wijp,

respectively. If ¢'(v) = ¢'(w), then the ideals I(v) and I(w) in
K|e][z,y], obtained by extending I(U) via the induced maps 0,w :
Clz,y] — kle][z,y], respectively, are equal. The argument now pro-
ceeds exactly as in the foregoing proof of radiciality. From the hy-
pothesis that the f;(X) all have the pullback uniqueness property, we
have that 9(f;(X)) = w(fi(z)) for all I. Tt follows that the rows of
each of the matrices M (v) and M (w), obtained from M (X) by apply-
ing the substitutions (30), respectively, constitute a k[e][x, y]-basis of
the first syzygy module of the #(f;(X)). From this we deduce that
M (v) = M(w), which yields v = w; that is, ¢/ is injective, as desired.
This completes the proof of the theorem. o
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For the theorem to be useful, we need to have cases for which its
hypotheses hold. We proceed to develop one particularly nice family
of cases for which the hypotheses of the theorem hold globally, that is,
with U = Spec (k[X]).

Definition 4.3. Let I(X) = (fo(X),..., fa(X)) be as above. We
say that the generator f;(X) has good form provided that

ki a k[X]-linear combination of monomials

Ji(X) =2y + < in the pattern P '

Lemma 4.4. Suppose that all of the generators fi(X) of I1(X) have
good form. Then the pattern monomials generate k[z,y, X]/I1(X) as a
E[X]-module. Consequently, k[z,y, X]/I(X) is finite over k[X].

Proof. 1t suffices to show that every monomial in z and y is congruent
modulo I(X) to a k[X]-linear combination of pattern monomials.
This is trivially true for the pattern monomials themselves, and the
hypothesis that each of the generators f;(X) has good form implies that
it is true as well for the leading monomials z*o, z*1y, ...  zka-1yd=1 4d
of the generators. Let (P) denote an arbitrary k[X]-linear combination
of pattern monomials. We claim that, for r =1,2,...,

z" - (P)=(P)mod I(X) and y"-(P)=(P)mod I(X).

To see this, choose a pattern monomial m and note that = - m is
either again a pattern monomial or one of the leading monomials, for
example, consider (5); the first statement therefore follows by induction
on 7. The second statement now follows in the same way from the
observation that y - m is either a pattern monomial or of the form z"-
(leading monomial). Since any x, y-monomial m’ other than a pattern
monomial or a leading monomial can be written in the form " - y*-
(leading monomial), we have that m' = (P) mod I(X), as desired.
O

Proposition 4.5. Suppose that all of the generators fi(X) of
I(X) have good form. Then klz,y, X|/I(X) is a free k[X]|-module of
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dimension n, with the set of pattern monomials constituting a basis.
Moreover, the fi(X) all have the pullback uniqueness property.

Proof. By Lemma 4.4, we have that k[z,y, X]/I(X) = B is generated
as a k[X] = C-module by the pattern monomials and is therefore
finite over C; consequently, by (21) in the Proof of Proposition 3.1,
we have that B is locally free of rank n over C. Since the n pattern
monomials generate B over C, they generate the localization S~'B
over S~1C, where we may choose the latter, by the local freeness, to
be the coordinate ring of a nonempty open subscheme of Spec (C) such
that S~ !B is free of rank n over S~'C. We deduce that the pattern
monomials, viewed as elements of S~1B, give an S~!C-basis of this
module; in particular, they are S~!C-linearly independent. Since C is
an integral domain, it follows that the pattern monomials, viewed as
elements of B, are C-linearly independent and therefore constitute a
C-basis of B. (Alternatively, from the local freeness of B over C, we
conclude that B is free over C, of rank n, by the well-known theorem
of Quillen and Suslin, see, e.g., [4, p. 481]; then, since the pattern
monomials form a C-generating set of B of cardinality n, they must
constitute a basis.)

It remains to show that the f;(X) have the pullback uniqueness
property. Let D be a k-algebra and s,t : C' — D two maps such
that I(s) = I(t) C Dlz,y], where I(s) and I(t) are the extensions of
I(X) via the induced maps 3,% : C[z,y] — D[z,y], respectively. We
write Dy, respectively Dy, for D viewed as a C-algebra via the map s,
respectively, t. Since the pattern monomials constitute a C-basis of B,
they also constitute a D-basis of

B®c D, = Clz,y]/I(X) ®c D, = D[z, y]/I(s)
= D[z,y]/1(t) = B ®¢ D.
Furthermore, since the f;(X) all have good form, by hypothesis we see
that 3(f;(X)) and #(f;(X)) have “good form” as well; that is,

(5 or) #(fi(X)) = z¥9'+ a D-linear combination of monomials in P.

Therefore, since each leading monomial z*'y' can be uniquely expressed
as a D-linear combination of pattern monomials mod I(s) = I(t), it
follows that

5(fi(X)) = tH(fi(X)) for0<1<d;
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that is, the f;(X) all have the pullback uniqueness property. o
Combining Proposition 4.5 and Theorem 4.2, we obtain

Corollary 4.6. Suppose that the fi(X) all have good form. Then
the k[X]|-module k[z,y, X]|/I(X) is free of dimension n, with the set of
pattern monomaials P constituting a basis. Moreover, the map

¢ : Spec (k[X]) = A2" — H"

induced by the universal property of H™ is an open immersion. u]

Remark 4.7. In the next section we give an example (5.5) of an ideal
I for which the conclusion of the preceding corollary holds, even though
not all of the generators f;(X) have good form. In other words, the
hypothesis of Corollary 4.6 is a sufficient, but not necessary, condition
for its conclusion.

The remainder of this section is devoted to the identification of some
specific classes of ideals I which satisfy the hypothesis of Corollary 4.6;
namely, that the generators fo(X),..., fa(X) of I(X) all have good
form. The examples we present are subsumed by the following

Proposition 4.8. Let I C k[[z,y]] be an ideal of colength n having
type T, normal pattern P with respect to the monomial order (3),
associated standard gemerators fo,..., fq, and matriz of relations M.
If wy = wy = -+ = wy (8), then the generators fo(X),...,fa(X) of
the ideal I(X) all have good form.

For the proof, we need to bound the degrees of the polynomials
a;; € k[z] which appear in the matrix of relations M (9); a crude
bound sufficient for our purposes is given by

Lemma 4.9. Let I be as in the first sentence of the proposition (note
that we are not assuming here that the w; are all equal to one another).
Then, for1 <i<d,0<j<i—1, we have that

deg (o ;) < max(wq,ws, ... ,wq).
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Proof. First recall the form (6) of the standard generator f;: the
leading monomial z*y! is the unique monomial of maximal y-degree
among the monomials appearing in f;, and the other monomials ap-
pearing in f; are pattern monomials which are greater than the leading
monomial in the monomial order (3). It may be helpful to keep in mind
the “Pascal triangle” (5) of monomials.

Consider the relation (8) among the standard generators defined by
the ith row of M:

i—1
—yfi-1 + " fi + Zai,jfj =0.

Jj=0

Observe first of all that the relation contains two terms of y-degree i,
coming from —y - f;_1 and z%¢ - f;; these cancel out because

-ty =1 il

ki.yi:y.a’;ki—l.y

The proof now proceeds by descending induction on j; the key point
is that the polynomial o; ; is uniquely determined by the requirement
that all terms of y-degree j must cancel.

Suppose that the lemma has been established for o ji1,...,a4i—1,
with j > 0. Consider the terms of y-degree j in the relation; these fall
into several groups:

(a) the terms of y-degree j — 1 in f;_;, multiplied by —y (note that
this set is empty if j = 0);

(b) the terms of y-degree j in f;, multiplied by z*:;

(c) the terms of y-degree j in fj11,... , fi_1, multiplied by &; j41,...,
@1, respectively (note that this set is empty if j = ¢ — 1); and

(d) the leading monomial z¥iy’ of f;, multiplied by «; ;.

The maximum possible z-degree of a term of type (a), if j > 0,
is kj_1 — 1, and the maximum possible z-degree of a term of type
(b) is (kj — 1) + w;. From the induction hypothesis, the terms of
type (c) have maximum possible xz-degree strictly less than k; — 1 +
max(wy,wa, ... ,wy). Therefore, to produce a term of type (d) to cancel
the maximum z-degree term(s) of types (a), (b) and (c), a; ; must have
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a term of maximal degree bounded above by the maximum of

(k‘jfl—l)—k‘j:wj—l,
(k]-—l)—i—wi—kj:wi—l,

(k; — 1) + max(wi,ws, ... ,wq) — k; = max(wi, wa,... ,wq) — 1,

if 7 > 0 or simply by the maximum of the last two values if j = 0.
It follows at once that deg (; ;) < max(wi, ... ,wq), which completes
the induction step. The base case, 7 = ¢ — 1, follows in the same way;
in that case, there are no terms of type (c) and no terms of type (a) if
i=l=j=i-1=0. O

Remark 4.10. The conclusion of Lemma 4.9 is easily verified in
example (12).

Proof of Proposition 4.8. We are assuming that w; = wy = --+ =
wg = w. The lemma yields that deg(a;;) < w for all 1 < i < d,
0 < j < d. Therefore, when we form the matrix M(X) for I, recall
(16), we obtain a d x (d + 1) matrix of the form

~y+g10 T¥+g11 91,2 e 91,d
92,0 —y+g2.1 ¥ +g22 go3--- 92,d
: - : )
9gi—10 ' 9d-1,d-3 —Y+Gd—1d-2 TY+gi-1,d-1  gd-1.d
9d,0 x 9d,d—2 —yY+9dd—1 TY+Ygdd

in which each g; ; € k[X][z] has z-degree < w. We are out to show
that each

fi(X) = det (e, r1(X), ... ,ra(X))

has good form; that is, that f;(X) is the sum of its leading monomial
zFy! and a k[X]-linear combination of pattern monomials. Since
w; = w for all 7, we have that k; = (d — ) - w, and the set of pattern
monomials is

(31) P={z"y’|0<s<d, 0<r<(d-—s) w}

Up to sign, fi(X) is the determinant of the d X d matrix obtained
from M(X) by deleting the Ith column; for example, when d = 5 and
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I = 2, we have the matrix

—y+g10 TV +g11 91,3 g1,4 g1,5
92,0 —Y+g21 92,3 92,4 92,5
93,0 93,1 ¥+ 933 93,4 93,5
94,0 ga1 —y+g43 TV +Ggaa 94,5
95,0 95,1 95,3 —y+g54 T+ G55

We evaluate the determinant as a sum of signed products of d entries
of the matrix, drawn in such a way that each row and column is
represented exactly once in each product. By expanding the products
involving one or more binomial entries, —y + g; ;—1 or z* + g; ;, we can
express the determinant as a sum of signed products with d factors,
each factor being either y, % or one of the g; j. Using (31), we see that
any product having one or more of the g’s (which have z-degree < w)
as factors expands to a k[X]-linear combination of pattern monomials.
Moreover, if any product involves a factor of % fromrow ¢, 1 <7 <[—1,
i.e., from above the main diagonal, then one sees that any attempt to
avoid drawing one of the g’s for that product is doomed to failure: one
will be forced to draw one of the g’s from row [ to form the product.
Similarly, if any product involves a factor of y from row i, [ +2 <17 < d,
i.e., from below the main diagonal, then that product must also involve
one of the g’s.

In other words, the only product in the expansion of the determinant
that does not involve one or more of the g; ; is the product

g d-Dw .yl — ghiyl — Jeading monomial of f1(X),

which comes from the main diagonal. It follows that f;(X) has good
form, and the proposition is proved. a

In light of Proposition 4.8, Corollary 4.6 specializes to

Corollary 4.11. If I satisfies the hypotheses of Proposition 4.8, then
the k[X]-module k[z,y, X|/I(X) is free of dimension n = colength of
I, with the set of pattern monomials P constituting a basis. Moreover,
the map ¢ : Ai" — H™ induced by the universal property of H"™ is an
open 1mmersion. O
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To bring this section to a close, we highlight as examples two im-
portant families of ideals for which the hypotheses of Proposition 4.8
hold:

Example 4.12. Ideals of generic type. Recall that the generic
type of length n is

T=(1,1,...,1,0,...), withn Is.

The normal pattern of type 7" with respect to the monomial order (3)
is then
P={l,z,2%...,2" '}

If I has normal pattern P, then d = 1 and the standard generators are
n—1
f0:$n7 f1:y+2piwzv szk
i=1

There is only one exponent w;, namely, w; = n, so Proposition 4.8
applies. The matrix M (X) consists of one row, whose entries are, up
to sign, the generators f;(X) of the ideal I(X):

n—1 n—1 n—1
M) = { y— Y pia'+ Y (X) @t a" + Y X xu]'
i=1 pn=0 pn=0
In this case it is manifest that the generators of I(X) have good form.

Example 4.13. Fat point ideals m". Let

an ideal of colength n = r - (r + 1)/2. This ideal has normal pattern
P={a"y?|0<p+qg<r}
the standard generators are

fOZxrv flzwr_lya"'a fd:yT:yd7



IARROBINO’S CONSTRUCTION OF LOCAL PARAMETERS 1349

and each exponent w; = 1, so Proposition 4.8 applies. In this case the
ith row of the matrix M (X) has the form

(Xioy -+ s Xigiz2)s =y + Xigi—1y,  + Xii, Xi(ip1), - -+ » Xid),

where we write X;; as shorthand for X;o.

In the next section of the paper, we present three examples (5.1),
(5.2) and (5.3) of ideals I for which the map ¢ fails to be defined in a
neighborhood of the origin 0 € A?". It should not be surprising that
these examples are produced by causing large jumps in the sequence of
exponents w;.

5. Further examples of Iarrobino’s procedure. In this final
section of the paper, we apply larrobino’s construction of local pa-
rameters to several ideals, with mixed results. We begin with three
examples in which Iarrobino’s procedure fails: the first of these is dis-
cussed in detail; the second and third, being similar, are dealt with
more briefly. Iarrobino’s procedure succeeds in the remaining two ex-
amples. The penultimate shows that Iarrobino’s construction can yield
a globally-defined open immersion ¢ : Spec (k[X]) — H™, even though
the generators f;(X) do not all have good form. The final example is
one in which the map ¢ is not defined on all of Spec (k¥[X]), but is an
open immersion on a neighborhood U of the origin in Spec (k[X]).

Example 5.1. This is the first of three examples in which Iarrobino’s
construction of local parameters fails. We will show that the map

F : Spec (k[z,y, X]/I(X)) — Spec (k[X])

is not finite over any open subscheme U C Spec (k[X]) that contains
the origin; indeed, the family of subschemes defined by F contains
members of the wrong colength arbitrarily close to F~1(0).

ideal: I = (2°,2%y,9?) C R = k[[z,y]],
type: T = (1,2,2,2,2,0,...),
colength: 9,

w-sequence: wi; = 1, we = 4.
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This ideal has the normal pattern shown, as in (5), with respect to

which the standard generators are fy, = z°, fi = z*y and fo = 3>
(being leading terms, these monomials are shown in parentheses in the

diagram).

yto ayt
3 £L'y3 l'2y3
(y?) =xy? 2%y?  @dy?

y ay a2’y iy (ay)
1 z 22 2% '] (2

The matrix M (9) of relations among the f’s is the following:

-y =z 0
M_[O -y J;‘l]'

Following Iarrobino’s procedure described in Section 2.3, we introduce
the variables X = {X;;,} and build the matrix M (X) with rows

r1(X) = (=y + X100, + X110,
X0 + X121 - @ + Xy90 - 2% + Xi03 - 2°),

r2(X) = (X200 + X201 -  + Xo02 - 2% + Xogs - 22,
— Y+ Xaio + Xoi1 -« + Xoia - 2% + Xoy3 - 2°,

o + Xong + Xoo1 - @ + Xogo - 2 + Xopz - 2%);

(32)

we then form the ideal

1(X) = (fo(X), f1(X), f2(X)) C K[z, y, X]

with generators

f1(X) = det (e, 71 (X), r2(X)),
and consider the map
F : Spec (k[z,y, X]/I(X)) — Spec (k[ X]).

As shown in Section 3, Iarrobino’s construction of local parameters
will succeed if F' is finite over a neighborhood U of the origin in
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Spec (k[X]) = A%, 18 = 2n = 2-9. However, we claim that there
is no such neighborhood in this case.

Proof of claim. Consider the one-parameter subfamily of subschemes
obtained by pulling back the map F' over the map

A : Spec (k[t]) — Spec (k[X])
with comorphism A* : k[X] — k[t] given by
Xoiz —t, Xzt and X;j, — 0 otherwise.
The subfamily is cut out by the ideal
I(t) = (fo(2), f1(2), f2(1)) C K[z, y,1],
whose generators are obtained as before from the matrix

—y T ta

whence, we have that
(33)  fot) =2° +tay —t?a°,  fi(t) =y, fa(t) =o® —ta®y.

Note that when ¢t = 0, we recover the original ideal I, as we should,
since A maps the origin of its source to the origin of its target.

We now compute a Groebner basis for I(t) using the lexicographical
order with y > x > t (the Mathematica package was used):

GroebnerBasis[{x5 + tx®y — t?x% x*y,y? — tx3y}, {y,x, t}]

{—a8 + 227, 25 — 1225 + tady, xy, 2° — 225 + ).

The result yields a proof that the ring k[z,y,t]/I(t) is not finite over
k[t]: otherwise, the variable x would be integral over k[t]; whence, I(t)
would have to contain a monic polynomial

g:IT+’yT_1'IT71+---+"/O
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in ¢ with coefficients v; € k[t]. The (lex) leading term of this
polynomial, namely 2", would then have to be divisible by the (lex)
leading term of one of the members of the Groebner basis, but this is
manifestly impossible. It follows that the ring klz,y, X|/I(X) is not
finite over k[X].

Consider next the restriction of our one-parameter subfamily to the
open subset of Spec (k[t]) defined by ¢ # 0. Since we can divide by ¢
on this open subset, we can rewrite the pullback of I(t) over this open
subset as

1 1
I(t7t71) = <_t_2 ‘$6+$772'$5—t$6+$3y,$5—tzm6+y2>.

We write
B = k[z,y, t,t7]/I(t,t71),

C = k[t,t 7.

Since z7, 23y and y? are congruent to C-linear combinations of z° and

2%, we have that B is generated as a C-module by the following set of

ten monomials:
(34) {17 m’ y’ x27xy7 $3,$2y, m4,x5,x6}

(adapt the proof of Lemma 4.4). It follows at once that B is finite
over (; it further follows, as in the proof of Proposition 3.1, that B
is flat, and hence locally free, over C. Since Spec (C) is irreducible,
the colength of the ideal I(tg) C k[z,y], obtained by replacing ¢ by
any nonzero value tg € k, is constant, and so may be computed at
t = 1. Substituting this value in (33), we find that I(1) C k[z, y] has
generators

fo(1) = a® + 2y — 2% f1(1) = 2y, f2(1) = y* — 2°y.

Computing a Groebner basis for this ideal with respect to the lexico-
graphic order with y > z, we find:

GroebnerBasis[{x® + x*y — x% x%y,y? — x®y}, {y, x}]

{—28 + e, 2% — a8 + 23y, 2% — 2% + 21
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We can now see that the set of monomials (34) is k-linearly independent
mod I(1); if not, then a nontrivial k-linear combination of the monomi-
als in (34) would lie in I(1), and hence the (lex) leading term thereof
would be divisible by one of the leading monomials of the Groebner
basis of I(1). However, no monomial in (34) is divisible by any of the
leading monomials in the Groebner basis. Since we have already seen
that (34) generates B over C, and therefore generates k[x,y]/I(1) over
k, we conclude that I(1) has colength 10, whence I(¢y) has colength
10 for every nonzero value ty of t. Therefore, the family of subschemes
defined by F cannot induce a well-defined map ¢ : U — H? for any
open neighborhood U of the origin, since the family contains members
of length 10 arbitrarily close to F~1(0); equivalently, the map F' cannot
be finite over any such U. The proof of the claim is now complete. o

Example 5.2. This is the second of three examples in which
Tarrobino’s construction of local parameters fails. The problem is the
same as in the previous example.

ideal: I = (2% a%y,zy%y°) C R = k[[z,y]],
type: T =(1,2,3,1,1,1,0,...),
colength: 9,

w-sequence: wi =4, wy =1, wg = 1.

In this case, we consider the one-parameter subfamily of subschemes
obtained by pulling back the map F' over the map

A : Spec (k[t]) — Spec (k[X])
with comorphism A* : k[X] — kl[t] given by
X1z —t, Xozo——t and X;j, — 0 otherwise.
The subfamily is cut out by the ideal
I(t) = (fo(t), f1(2), f2(2), f3(1)) C K[z, y, 1]
whose generators are the (signed) maximal minors of the matrix
—y+tx® zt 0 0

M(t) = 0 -y x t|;
0 0 -y =z
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whence,

fot) =a +taty,  fi(t) = —ta® + 2Py — P2’y + t?,
f2t) = —taty + 2y®,  f3(t) = —tz®y® + y>.

Arguing as in the previous example, one can show that the subfamily
of subschemes is finite and flat over the complement of the origin in
Spec (k[t]); therefore, the colengths of the ideals I(to) C k[z, y], defined
by replacing t by any nonzero ty € k, are all the same. Setting ¢y to
1 and computing the Groebner basis of the f;(1) with respect to the
lexicographical ordering y > z, we find that

I(1) = (2% + 27, —2% + 2%y, —2® — 2% + 2%y + ¢?),

which has colength 10 # n = 9: one checks easily that the ten
monomials in (34) form a basis on the quotient k[z,y]/I(1). Once
again, the family of subschemes defined by the map F' has members

of the wrong colength arbitrarily close to the “original” subscheme
F~1(0).

Example 5.3. This is the third of three examples in which Iar-
robino’s construction of local parameters fails. The problem is the
same as in the previous examples.

ideal: I = (¢, 2'y,2°y% ¢%) C R = K[[z, y]],
type: T=1(1,2,3,3,3,3,3,2,2,2,2,2,0,...),
colength: 28,

w-sequence: wy = 1, wy = 6, w3z = 5.

We leave it to the reader to check that the one-parameter family of
subschemes defined by the substitutions

Xs —t, Xozgr—t, Xzu+——t and X;;, — 0 otherwise,

has colength 29 everywhere except at ¢t = 0, where the colength is
n = 28.

Remark 5.4. The foregoing examples show that [8, Theorem 4.16, p.
72] is false in full generality.



TARROBINO’S CONSTRUCTION OF LOCAL PARAMETERS 1355

Example 5.5. This example, promised in Remark 4.7, is one in
which the quotient k[z,y, X]/I(X) is free over k[X] with the pattern
monomials constituting a basis, and the induced map ¢ : Spec (k[X]) —
H™ is an open immersion, but for which the generators f;(X) do not
all have good form.

ideal: I = (z* zy,y%) C R = k[[z,y]],
type: T =(1,2,1,1,0,...),
colength: 5,

w-sequence: wi = 3, we = 1.

The ideal I has normal pattern
P = {17 m? y’ x27 mg}’

with respect to which the given generators are standard. The genera-
tors of the ideal I(X) are, up to sign, the 2 x 2 minors of the matrix
M(X) having rows

r(X) = (—y + X100 + X101 -  + X102 - 7%,
23+ X110 + X111 - ¢ + X112 - 22, X120),
r2(X) = (X200, =y + X210, ¢ + X220);

whence, we have

fo(X) = 2" — X120 X010 + X110X220 + 2 (X112 + X220)

+ 2%( X111 + X112 X220) + (X110 + X111 X220) + y X120,
f1(X) = @y + X120 X200 — X100X220 — 2° X102

+ 2% (— X101 — X102X220) + 2(— X100 — X101 X220) + y X220,
f2(X) = y2 - 1'2Z/X102 — 2y X101 — X110X200 + X100X210

— 2®Xa00 + 2% (— X112 X200 + X102X210)

+ 2(— X111 X200 + X101 X210) — ¥(X100 + X210)-

We see that fo(X) and f1(X) have good form, but that fo(X) contains,
in addition to its “leading term” 3%, two terms involving nonpattern
monomials in z and y, namely z2y and xy. We obtain immediately
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that z* and zy are each congruent to k[X]-linear combinations of pat-
tern monomials modulo I(X), and a brief computation shows that the
same is true of y?. The proof of Lemma 4.4 now yields that the ring
k[z,y, X]/I(X) is finite over k[X] with the pattern monomials consti-
tuting a generating set, and therefore, as in the proof of Proposition
4.5, a free k[X]-basis. By Proposition 3.1 we obtain a globally defined
map ¢ : Spec (k[X]) — H5 which is étale in a neighborhood of the
origin. It remains to prove that this map is an open immersion, for
which it suffices, by Theorem 4.2, to show that the generators f;(X)
all have the pullback uniqueness property.

Since the pattern monomials give a k[X]-basis of k[z,y, X]/I(X), we
can uniquely express each of the leading monomials as a k[X]-linear
combination of the pattern monomials modulo I(X). Doing this yields
the following distinguished elements of I(X):

90(X) = 2" — (Po) = fo(X),
91(X) = zy — (P1) = f1(X),
92(X) = y* — (P2) = f2(X) + Xioz * fo(X)

+ (X101 — X102 X220 + X102) - f1(X),
where (P;) denotes the appropriate k[X]-linear combination of pattern
monomials. (Since fo(X) and f;(X) have good form, they are equal to
g0(X) and g1 (X), respectively; one may check that the given expression

for g2(X) has the form y?+ a k[X]-linear combination of pattern
monomials.)

(35)

Assume now that we are given a k-algebra D and maps s,t : k[X]| —
D such that
I(s) = I(t) € Dlz,y],
where I(s) and I(t) are obtained by extending I(X) via the induced
maps §,t : k[X][z,y] — D[z,y], respectively. Arguing as in the proof
of Proposition 4.5, we see that the g;(X) have the pullback uniqueness
property; whence,

3(q(X)) =tHa(X)), 0<1<2
By inspection of g1 (X) (= f1(X)), we see that the preceding equation,
for [ = 1, implies that
s(X102) = t(X102), 5(Xa220) = t(X220),

(36) S(Xlol) = t(XIOI)'
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Now solve (35) for f2(X); from the result and the equalities (36), it
is clear that 5(f2(X)) = #(f2(X)), that is, f2(X) has the pullback
uniqueness property. Since fo(X), f1(X) and f2(X) all have the pull-
back uniqueness property, Theorem 4.2 now yields that the induced
map ¢ : Spec (k[X]) = A} — H? is an open immersion, as desired.

Example 5.6. The preceding examples represent the two extremes:
on the one hand, Iarrobino’s procedure sometimes fails to produce a
well-defined map ¢ : U — H™; on the other hand, the procedure some-
times leads to an open immersion ¢ : A" — H™. An “intermediate”
example, for which the map ¢ : U — H" is locally an open immersion
but not globally defined, is given by

ideal: I = (z* a%y,y*) C R = k[[z,y]),
type: T =(1,2,2,2,0,...),
colength: 7,

w-sequence: wi =1, we = 3.
The ideal I has the normal pattern
P= {17 Z,Y, 332, Y, 1173, $2y}7

with respect to which the given generators are standard. The matrix
M (X) is obtained from (32) by changing the value of wy from 4 to 3;
that is, by changing x* to x* in the last component of r5(X) and then
deleting all other terms of degree 3 in z. The generators of the ideal
I(X), that is, the signed 2 x 2 minors of M (X), are as follows:

fo(X) = z*(1 — X192 X212) — X120 Xa10 + X110 X220 + 2%y X120
+ $3(X110 — X122X011 — X121 X212 + X222) + yX120
+ 2(— X121 X210 — X120 X211 + X220 + X110 X201) + 2y X121
+ 2% (= X122 X210 — X121 X211 — X120 X212 + Xo21 + X110 X222),

f1(X) = 2%y + X120X200 — X100 X220 + 2* X122 X202 + y X220
+ 2%(— X100 + X122 X201 + X121 X202)
+ (X121 X200 + X120 X201 — X100X221) + 2y X021
+ 2% (X120 X200 + X121 X201 + X120 X202 — X100X222)
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+ 2%y Xo0a,

F2(X) =y* + X100 X210 — X110X200 — T° X202 — ¥(X100 + X210)
+ 2(— X200 — X110X201 + X100X211) — 2y Xo11
+ $2(—X201 — X110X202 + X100X212) - m2yX212-

We see by inspection that fo(X) is the only generator having good
form, which implies that y? is congruent modulo I(X) to a k[X]-linear
combination of pattern monomials. However, if C' is the localization of
k[X] defined by inverting (1 — X122 X212), then z* will be congruent to
a C-linear combination of pattern monomials modulo C[z,y] - I(X) =
I(U), where U = Spec (C); whence, the same is true of z3y. Arguing as
in the proof of Lemma 4.4, we obtain that the ring C[z,y]/I(U) = B is
generated over C by the pattern monomials and is therefore finite over
C, so Proposition 3.1 applies and yields a well-defined map ¢ : U — H’
which is étale at the origin; in particular, B is locally free of rank n over
C by (21). It is easy to see that k[z,y, X]/I(X) is not globally finite,
or even quasi-finite, over k[X]; indeed, if we specialize to the k-point
defined, for any 0 # a € k, by

X122 —a, X212 — l/a and Xijk — 0 otherwise,
we find that the subscheme lying above this point is

Spec (k[z,y])/I(a) = Spec (k[z,y]/(az’y, 2%y, —(zy/a) + y°))
= Spec (k[z,y]/(z*y,y?)),

which has the one-dimensional locus y = 0 as support. Therefore, the
map ¢ cannot be extended from U to all of Spec (k[X]).

(37)

To complete this example, we must show that the map ¢ : U — H”
is an open immersion. To do this, it suffices by Theorem 4.2 to show
that each of the f;(X) € I(U) has the pullback uniqueness property.
As a prelude, we note that this is not the case globally, that is, over
Spec (k[X]). Indeed, if a,b in (37) are distinct nonzero elements of k,
then the two extensions of I(X) satisfy

I(a) = I(b) = (¢*y,y),

but the two specializations of fo(X), namely, az?y and bx’y, are not
equal; the same is true of the two specializations of fo(X).
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The proof that the f;(X) € I(U) have the pullback uniqueness
property is similar to that used in the previous example. We begin
with the observation that C[z,y]/I(U) = B is free of rank n = 7 over
C with the pattern monomials constituting a basis. (Since B is locally
free of rank n over C and is generated as a C-module by the pattern
monomials, we may repeat the argument used at the start of the proof
of Proposition 4.5.) By expressing each of the leading monomials as a
unique linear combination of the pattern monomials modulo I(U), we
obtain the following distinguished elements of I(U):

(X) = ' = (R) = e fo(),
(X) =’y — (P1)
(38) g1
= fi(X) - X122 X202 Fo(X),

(1 = X122X212) '
92(X) = v — (B) = fo(X),

where (P;) denotes the appropriate C-linear combination of pattern
monomials.

Now suppose given a k-algebra D and maps s,t: C' — D such that
I(s) = I(t) € D[z, y],
where I(s) and I(t) are obtained by extending I(U) via the induced
maps 5,1 : C[z,y] — D|z,y], respectively. As in the preceding example,
we have that the ¢g;(X) have the pullback uniqueness property, that is,

§(g(X)) =tg(X)), 0<i<2

By inspection of g2(X) = f2(X), we see that the last equation, for
I = 2, implies that

(39) 5(X202) = t(X202), §(X212) = t(X212);

similarly, inspection of go(X) yields

s( X122 > _ t< X122 >
1— X120X012 1— Xi120X012 )’
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which, in light of (39), quickly simplifies to
(40) 5(X122) = t(X122).

Now solve the equations (38) for the f;(X); the results, together
with the relations (39) and (40), imply that 5(f;(X)) = £(f1(X)) for
0 <1 < 2; whence, the f;(X) have the pullback uniqueness property.
Theorem 4.2 now yields the desired conclusion; namely, that the map
¢:U — H7 is an open immersion.

Lacking a counterexample, we end this paper with the following

Conjecture 5.7. Whenever the map F is finite over an open
neighborhood U of the origin in Spec (k[X]), the induced map ¢ : U —
H™ is an open immersion.
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