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EXTENSIONS, DILATIONS AND
FUNCTIONAL MODELS OF SINGULAR
STURM-LIOUVILLE OPERATORS

BILENDER P. ALLAHVERDIEV

minimal symmetric singular Sturm-Liouville oper:
in the Hilbert space L2 [a,b), —co < a < b <
ciency indices (2, 2) (in Weyl’s limit-circle case)
of all maximal dissipative, maximal accretive,
other extensions of such a symmetric operat

dilation of the maximal dissipative o
and outgoing spectral representatio
ble to determine the scattering mat

the theorem on completeness §
and associated functions of the

is one of the basic direcgio perator theory. The first fundamental

results in this theory, incd by von Neumann [17], although
the apparent origi be foul™ in the famous works of Weyl, see
[22]. The theor esentation of linear relations turned out
to be useful fi on of various classes of extensions of

symmetric o The first result of this type is due to Rofe-Beketov
[18] ruk [3] independently introduced the term
space o es’ and in terms of this notion all maximal
dissipag i accretive, self-adjoint, and other extensions of
sym , see [9] (also in the survey article [8]). However,
regard f the general scheme, the problem of the description of the

maximal diSQipative (accretive), self-adjoint and other extensions of a
given symmetric operator via the boundary conditions is of considerable
interest. This problem is particularly interesting in the case of singular
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differential operators, because at the singular ends of the interval under
consideration the usual boundary conditions in general are meaningless.

The theory of dilations with application of functional models repre-
sents a new trend in the spectral analysis of dissipative (contractive)
operators [13, 15]. A central part in this theory is played by thg
teristic function, which carries the complete information on

tation of the dilation, the dissipative operator becomes
problem of the completeness of the system of eigenv

function. The computation of the characteristic i ative
operators is preceded by the construction an

adjoint dilation and of the corresponding sca#@€ri blem, in which
the characteristic function is realized as theds

a < b < oo, with deficiency indices (2, 2)

We construct a space of boundar, minimal operator Lg

and describe all the maximal dissi Wapctive), self-adjoint, and
other extensions of such a symme perator in terms of boundary
conditions at end points a yvestigate maximal dissipative
operators with general cpfarated) boundary conditions.

In particular, if we copsi® Fparated boundary conditions, at the
points a and b the int (dissipative) boundary conditions
are prescribed si

of the maximal i operator and its incoming and outgoing
spectral represgftations, wiMeh makes it possible to determine the
scattering m he dilation according to the scheme of Lax and
Phillips [14 struct a functional model of the maximal
dissipatiygse define its characteristic function in terms of the
Titch tion of the corresponding self-adjoint operator.
We n on completeness of the system of eigenfunctions
and asSQufited functions of the maximal dissipative Sturm-Liouville
operators.

2. Self-adjoint and nonself-adjoint extensions of a minimal
symmetric operator. We consider the Sturm-Liouville differential
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expression with singular point b:

Py @) +a(w()

xel:=la,b),—00<a<b< +oo,

(2.1) b=

g

where p,q and w are real valued, Lebesgue measurable fyf#
I, and p~t,q,w € L} _(I), w > 0 almost everywhere on ¥

loc
conditions for p,q and w are minimal; note that t,

restriction on the coefficient p.

To pass from the differential expression to op
the Hilbert space L2 (I) consisting of all com
such that

b
/ w(@)ly(@)? da

with the inner product

(y,2) =

(I).

(©y(&)(l2)(€) dE = [y, 2] (x) =y, 2] (a),

= (ypz’ — py'z) (z), z € L. Tt is clear from
= lim, ;- [y, 2] (z) exists and is finite for all
ction y € D, y(a) and (py’) (a) can be defined
¢ and (py’) (a) := lim; .+ (py’)(t). These limits
exist and&ge finite, since y and py’ are absolutely continuous functions
on [a, ],

We denote by Dy the set of all functions y in D which satisfy the
conditions

(2.3) y(a)=(py')(a) =0, [y,2](b)=0, VzeD.
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Further, we denote the restriction of the operator L to Dy by Lg. The
operator Lg is a closed, symmetric operator with deficiency indices
(1,1)or (2,2),and L = Lj [1, 4, 5, 6, 10, 16, 20, 21]. The operators
Ly and L are called the minimal and mazimal operators, respectively.

case of Weyl’s limit-point occurs for £ or Lg. Then, a

conditions: y (a)cosa + (py’) (a)sina = 0, a € [0, 7),
16, 20, 21].

Recall that a linear operator S, with dense do
some Hilbert space H is called dissipative (accre

All the maximal dissipative (accretive) sions Ly, of the operator
L are described by the boundary con (a) — hy(a) = 0,
where Imh >0 or h =00, Imh <0 or K& o0, ¥ . For h = o0, the
corresponding boundary condition has the a) =0.

Further, we assume that Ly h
the Weyl limit-circle case holds for
operator Lo, see [1, 4, 5,

ifferential expression ¢ or the
, 21].

Denote by u(z) and v(
(2.4)

satisfying the initia

that
(2.6) w(u,v) =1, a<ax<h.

Conseqf# form a fundamental system of solutions of (2.4).
Since : jency indices (2,2), u,v € L2 (I) and, moreover,

Lemma 2.1. The Pliicker identity. For arbitrary functions
Y,z € D, we have the equality

2.7) [y, 2] (2) = det GZ ;ﬁ Eg Fé Z} Eg) . a<z<b
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Proof.  Since the functions u and v are real-valued and since
[u,v] () =1 (a < 2 < b), one obtains

(ly, u] [2, 0] = [y, 0] [Z, ul) ()
= ((ypu’ — py'u) (Zpv" — pz'v))(x) — ((ypv" — py'v) (Zpu’ —p,
= (ypu'zZpv’ — ypu'pz'v — py'uzpv’) (x)
+ (py'upz'v — ypv'zpu’ + ypv'pZ'u + py'vzpu’ — py'vpz
= ((—ypz' + py'z) (pu'v — upv")) (x) = [y, 2] (x).

The lemma is proved. a

Theorem 2.2. The domain Dy of the r Lo consists of

precisely those functions y € D satisfying the ing boundary
conditions
(2.8) y(a) = (py')(a) =0, [y, u] @ = [y,v]) = 0.

Proof. As noted above, the dom coincides with the set

of all functions y € D satisfying (2. y virtue of Lemma 2.1, (2.3)

is equivalent to

(2.9) y(a) = (py')(a) =

Further [z, ] (D)
equality (2.9) for
(2.8) hold. The

>0l (b) = [y, v] (b) [2, u] (b) = 0.

ved. O

is a Hilbert space and I'y and 'y are linear
into H, is called, see [3, 9, p. 152], [11], a space of

1) (A*fvg)H - (f7 A*g)H = (Flfv FQg)H - (Fvarlg)Ha for all fvg €
D (A*), and

ii) for every Fy, F» € H, there exists a vector f € D (A*) such that
Flf = F1 and Fgf = Fg.
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Let us adopt the notation F := C?, and denote by I'; and I'y the
linear mappings of D into F defined by

I O [ ) B (1))

Then we have

be pr as the following lemma.

The second requirement wi

Lemma 2.4. For any J BErs o, oy, By and (1, there is a

function y € D satisfui@ly the@undary conditions:

(2.11) y(a) =ap a) =ay, [y,u](d) =P, [y,v](b) =0

Proof. Letdfibe @ arbjgrary function in L2 (I) satisfying

= Go+ a1, (f,v)=0—.

even among the linear combination of u and wv.
Indeed, e set f = ciu + cov, then conditions (2.12) are a system of
e constants ¢; and ¢y whose determinant is the Gram
determinant of the linearly independent functions u and v and is,
therefore, nonzero.

Denote by y(x) the solution of the equation fy = f(z), z € I,
satisfying the initial conditions y (a) = ag, (py')(a) = ;. We claim
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that y(x) is the desired function. We first observe that y(x) is
expressed by

y (@) = aou (@) + oo (@ / {ule

(fru) = (Gyu) = [g,u] (0) — ] (@) + (5, )
thus (y,fu) = 0. Moreover, since y (a) = ap, (py’)

[y, u] (a) =y (a) (pu') (a) — (py') (a) u(a) = —.

(213) (f’ u) = [y’ u] (b) + aq,

Then, from (2.12) and (2.13) we obtain [y
Analogously,

(214) (f7’l)> = (€y7’l}) = [y,v] (b) - [977}] = [y7v] (b) — Q.

Then, from (2.12) and (2.14) we 0@
proved and consequently, so is The

Using Theorem 2.3 and |
the following theorem.

) = (1. Lemma 2.4 is

1.6, p. 156], [11], we can state

Theorem 2.5. Fi
the restriction of t
the boundary comlition

(= CQ)’ ie, |Klp <1,
or L to the set of functions y € D satisfying

(2.15) — DTy +i(K +I)Tay =0

— D)Tyy—i(K +I)Tay =0

18, Tespec , a maximal dissipative or a mazximal accretive extension
of the operal® Lo. Conversely, every mazimal dissipative (mazimal
accretive) extension of Lo is the restriction of L to the set of vectors
y € D satisfying (2.15) ((2.16)), and the contraction K is uniquely
determined by the extensions. These conditions give self-adjoint exten-
sion if K is unitary. In the latter case (2.15) and (2.16) are equivalent
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to the condition (cos A)T'1y — (sin A) ey = 0, where A is a self-adjoint
operator (hermitian matriz) in E. The general form of the dissipative
and accretive extensions of the operator Lo is given by the conditions

(217) K (Tywy+ilToy) =Ty —ilyy, Tiy+iley € D(K
(2.18) K (Thy —iTey) =T1y+ilyy, Thy—ily €D

in E with |Kf|| < ||fll, f € D(K). The general fg
extensions is given by the formulae (2.17) and (2.1
isometric operator.

In particular, the boundary conditions

(2.19) (py') (a) = hiy
(2:20) [y, v] (b) + h2 [y, u

e maximal dissipative
(mazimal accretive) extensions of wagparated boundary condi-
tions. The self-adjoint extensions NI are obtained precisely when

Imh; =0 or hy = o0, and, ) ho = oco. Here for hy = oo,
(ha = ), condition (2. & pBuld be replaced by y(a) = 0,
([y; u] (b) = 0).

In the sequel w tudy the maximal dissipative operator L,
where K is the

oundary conditions (2.19) and (2.20), then

at poi re simultaneously nonself-adjoint (dissipative)
bound ditions,y1.e., Imhy > 0 and Im Ay > 0.

Sincs ¥ a strict contraction, the operator K + I must be invertible,
and the b8@mdary condition (2.15) is equivalent to the condition

(2.21) oy +TThy =0,

where T = —i (K +1)"" (K —1), InT > 0, and —K is the Cayley
transform of the dissipative operator T. We denote by Lt (= L) the
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maximal dissipative operator generated by the expression ¢ and the
boundary condition (2.21).

Let
_(h1 O
=% )
where Imh; > 0, Imhy > 0. Then the boundary condj
coincides with the separated boundary conditions (2.19)

We should note that a numerous research is dev
analysis of the self-adjoint singular Sturm-Liouville
limit-circle case, see [1, 2, 4, 5, 12, 16, 20, 21,

3. Self-adjoint dilation of the maxima
Let us add to space H := L2 (I) the ‘incomj
D_ := L*((-,0);E) and D, = [
orthogonal sum H = D_ & H ® Dy an
of the dilation. The elements of H are t
functions f = (p_,y,¢4+). In H
generated by

(3.1) L{p—,y,0

on the set of vectors D (
E)’ w4 € WQI((Ov OO);

(3.2)

where C? := T, C > 0,%and W is the Sobolev space. Then we
have

Proof. LORg g € D (Lr) and f = (p_,y,¢4), g = (-, 2,¢4). Then
we have

(3.3)
(Lrf, )3 —(fs L1g)yy = i (- (0),9-(0)) p — i (p+ (0), %+ (0))
+ [y, 2] (b) — [y, 2] (a).
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Using the boundary conditions (3.2) and (2.7), we obtain by direct
computation

i(p-(0),4-(0) g —i(e+ (0), ¥4 (0) g + [y, 2] (b) — [y, 2] (@) = 0.

Thus, the operator Ly is symmetric, and D(Lr) C D(L).

It is easy to check that L7 and L} are generated b
expression (3.1). Let us describe the domain of £}.. We
the terms outside the integral sign, which are obtain
by parts in bilinear form (Lrf,9), ,f € D(Lr),
sum is equal to zero:

(3-4) [y, 2] (0)=ly, 2] (a)+i (v (0), ¢ (0)) s 4

Further, solving the boundary conditions or I'yy a@ I'yy, we find
that

Ty =—iC™ (p- (0) — oy
Loy = Cop_ (0) +iT (0) ="+ (0))-

Therefore, using (2.7) and (2.10), we
equality

that (3.4) is equivalent to the

@, (0) can be arbitrary vectors, a comparison of
i+ (0), i = 1,2, on the left and right of the last
equality pro¥@s us that the vector g = (¢_, z, 1, ) satisfies the boundary
conditions (3.2): T'ez + TT1z = Cy_ (0), I'ez + T*T'12 = Cyp4 (0).
Therefore, D (L) C D (Lr), and hence, Lp = L.

The self-adjoint operator L1 generates the unitary group U; =
exp[ilrt], t € R := (—00,00), on H. Denote by P : H — H
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and P, : H — 'H the mappings acting according to the formulae
P : {p_,y,py) — yand P, : y — (0,y,0), respectively. Let us
define Z; = PU,P;,t > 0. The operator family {Z;},., is a strictly
continuous semigroup of completely nonunitary contractions on H, see
[13, 14, 15]. Let us define the generator of this semigroup by e
shall show that Ly = Br.

To do this, we first prove that the equality

~ —1
(35) P(Lr— M) ' Py= (LT - AI) v,

holds. Let us define g by (L — M) ™' Py =
(Lr —Al)g = Py, and £z — Xz =y, ¥_ (§)

I'sz + TT'yz = 0. Therefore, z €
with Im A < 0 cannot be an eigenvalu
2= (Ly — M)~ 'y. Thus for y € H and I

since a point A\
ve operator, then

(Lr—A) ' Py = <o, (ET Y C Loy + T'T1y) e*M<>.

his e

Next, applying the mappi lity, we obtain (3.5). In view

of (3.5) we get

4. eory of the dilation and functional model of
the maX§inal dissipative operator. The unitary group {U;} has an
important erty which allows us to apply the Lax-Phillip’s scheme

[14], namely, it has the orthogonal ‘incoming’ and ‘outgoing’ subspaces
D_ = (L?((—00,0); E),0,0) and Dy = (0,0, L* ((0,00) ; E)) with the
following properties:

(1) UD_cD_, t<0; UtD+ CD+, t > 0;
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(2) Mi<oUsD_ = Ny>oUr Dy = {0};

(3) Up>oUiD_ = Ui<oU Dy = H;

(4) D_ L D,.

Property (4) is obvious. We shall prove the property (1) for or

D_, the proof is analogous). Let Ry = (L — )\I)fl. For
ImA < 0 and for all f =(0,0,¢,) € D4, we have

, £
Ryf = <0,0, —ie_“\g/ e, (s)d
0
So we have Ryf € D, . Therefore, if g L D, t

0= (Rxf,9)y = —i/ e (U, <0.
0

From this we have (Upf,g)x = 0 fofall ¢ >W0. Consequently,
U;D, C Dy for t > 0 and the property i

To prove the property (2) wi H — L?>(Ry;E)
(bfR, = [0,00)) and Pt : L?( D, as mappings with
Pt {p_y,p4) — 4 and (0,0, ¢) respectively. Ob-
serve that the semigroup Ut = PtUP, t > 0, is
the one-side shift in L2 2d, the generator of the semi-
group of the shift V; i ; E) is the differential operator id/d¢
with the boundary
generator B of se

of isometries U;”, ¢t > 0, is the operator
0,p) = P(0,0,i(dp/d§)) = i(dp/dE),
: ) and'¢ (0) = 0. But since a semi-group is
its generator, it follows that U;" = V;, and

proceed to construct them. Along the way, we also prove property (3)
of the incoming and outgoing subspaces.

We recall that the linear operator A, with domain D(A), acting in the
Hilbert space H is called totally nonself-adjoint (or simple) if invariant
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subspace M C D(A), M # 0, of the operator A on which restriction A
on M is self-adjoint does not exist.

Then we have

Lemma 4.1. The operator Ly (Lg) is totally nonsg
(simple).

Proof. Let Hy C H be a subspace where the operat
the self-adjoint operator fjif, i.e., the subspace Hy i
respect to semigroup of isometries V; = exp (ii/Tt),
Vil =Vr, t>0.If f € Hyn D(Ly), then f €

o e ()
= -2 (Im T, (exp (iiTt) 1,1 exp, Tt) f 5’ ImT > 0.

Consequently, we have I'y ( exp (if/Tt) f ) For gienvectors y) € Hy

of the operator Ly, we have '@ 0. ing this result with
boundary condition I'oy + TT1y = Toyn = 0, ie., yx(a) =
0,(pyy) (@) = 0. Then by the u ess theorem of the Cauchy
problem for the equation I, we have yy = 0. Since
all solutions of fy = \y i (I), it can be concluded
that the resolvent R [ e operator l~/T is a Hilbert-Schmidt
operator, and hence
the theorem on expjg
Eif, we have Hy =

0 of Ly is purely discrete. Hence, by

proved. ]
To prove th ertyfl3), we set
H = Up>oUD_, H, =Ui<oUi Dy,
and fi ve

Lemma 4.2. The equality H_ + H, = H holds.

Proof. Taking into account the property (1) of the subspaces Dy, we
shall show that the subspace H' = H © (H_ + Hy) is invariant with



380 B.P. ALLAHVERDIEV

respect to the group {U;} and has the form H’ = (0, H',0), where H’
is a subspace of H. Therefore, if the subspace H’, and hence also H’,
were nontrivial, then the unitary group {U] } restricted to this subspace,
would be a unitary part of the group {U;}, and therefore, the restriction
LY of the operator Ly to H' would be the self-adjoint operator o Tt
follows from simplicity of the operator L/ that H' = {0}, i.e.
So, the lemma is proved. O

We denote by ¢ and v those solutions of the equati
with initial conditions

(4.1)
¢(a,\) =0, (p¢')(a, 1, 7

We denote by M () the matrix-valuedunction @atisfying the condi-
tions

(4.2) M (N) Ty =T, = Iy

It can be directly verified t s the form

=1/ [p,u]
4.3 M (A )
3 W el 00 1o )

where mqo (A) i
erator Lo, gengfted by the eXpression ¢ with the boundary conditions

y(a) =0 an . Then we have
_ Ul (b)
"= )

It is easy tO@Row that the matrix-valued function M () is meromorphic
in C with all*its poles on real axis R, and that it has the following
properties:

(a) InM (A) <0if ImA >0, and ImM (A\) > 0if Im A < 0;
(b) M* (X)) =M () for all A € R, except for the poles of M (A).
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We denote by X; (z) and 8; (z), j = 1, 2, the solutions of the equation
ly = Ay, x € I, which satisfy the conditions

X, = (M) +T)" ' Ce;,

(4.4) - _
Flﬂj = (M ()\) +T ) C€j, 7=12

where e; and es are the orthonormal basis for E.
Let Uy;, 7 = 1,2, be defined by

Uy, (2:€:¢)
= (e7™e;, X (x), CTH (M) +T7) (M@ +T) “ej).

It must be noted that vectors U N Jd =12, forrall A do not belong
to H. However, U;j, j = 1,2, satisfies th tion LU = AU and the
boundary conditions (3.2).

The transformation F_ : f — f_ (\) f
is determined using the vectors Uy, j

he vecirs f = (p_,y, ¢4)

where ¢ (§),¢4(c) a

tions, and

Lemma e tro@sformation F_ isometrically maps H_ onto
s f,g € H_, the Parseval equality
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hold, where f— (\) = (F_f) (A), §- (\) = (F_g) ().

Proof. We shall show that the transformation F_ maps D_to H? (E).
Here and below, H% (E) denote the Hardy classes in L?(R; E) consist-
ing of the vector-valued functions analytically extendible to g8
and lower half-planes, respectively. For f,g € D_, f =
g=1{9-,0,0), f-,g— € L?((—00,0); E), we have

= (005), = 5 |- g gpe )

—0o0

[V

=317 (Ve € H (B),

=1

and the Parseval equality:

(fag)’}—{ = (f_,g_)Lz =
hole H_. To this end
ectors, obtained on smooth,
to D_ in the following way:
_ € C§°((—00,0); E). For
T ot using the fact that U_.f €
U m = e MU ms 5= 1,2,

Now, we want to extend this equ
consider in H’ the dense set H_
compactly supported functig

fen, f=U,fo fo &

By taking closure, we obtain the Parseval equality for the whole
space H_. The inversion formula follows from the Parseval equality if
all integrals in it are understood as limits in the mean of the integrals
on a finite interval. Finally,

F_H_ =UoF UD_ = U>pei*H? (E) = L* (R, E),
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i.e., F_ maps H_ onto whole L? (R; E). So, the lemma is proved. i

Let us define U;\"j, ji=1,2, by
Uy (2,6,6) = (St (A) e~ %¢;,0; (x) e Pe;),

where

(4.5) Sr(A)=C" (M) +T) (M) +T),

Using the vectors U;j (j =1,2), we will see th ation
Fo:f— f4 (A) for the vectors f = (p_,y,¢ by the
formula

2

(Frf) N o= fr () = YT (N ey,

1

where ¢_ (£),04+(s), and y(z) are smootNacompadtly supported func-
tions, and

fi o= \/% (1 Ny 12

to that of Lemma 4.3.

The proof of the next resul

Lemma 4.4. The ation Fy isometrically maps Hy onto
L? (R;E). For all v , the Parseval equality

and the ingerst

1[G s
_ E/_ SUSE ) ax,
are valid, where [} (\) = (Fy f)(N), 3+ (A) = (Frg) (A).

It is obvious that the matrix-valued function St (A) is meromorphic
in C and all poles are in the lower half-plane. Then, it is trivial from
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(4.5) that ||St (M) ||g < 1 for ImA > 0 and Sy (A) is the unitary matrix
for all A € R.

Since St (A) is the unitary matrix for A € R, then, it follows from
the definitions of the vectors U ;r] and Uy that

2
U= Sig(N Uy, =12
k=1

where Sji (A), j, k = 1,2, are entries of the matrix S . ording to
Lemma 4.2, from the last equality, it then follows = H.
Hence, property (3) of the incoming and outgoi sented
above has been established.

Thus the transformation F_ maps
(i) ‘H isometrically onto L? (R; E),
(i) the subspace D_ onto H? (E), an

(iii) the operators U, are carried jnto the
by ei)\t.

rs of multiplication

group U;. It follows frouy
that the transition fro )

U;.  Similarly, F, is the @ i pectral representation of the

Ppresentation of the vector f € H to
realigad as follows: f, (\) = S (N) f- (V).

t space Hi We consider the semigroup of the operators
acting in K according to the formula Z;p = P [ei)‘tgp],
0 = p(\) , where P is the orthogonal projection from H? onto
K. The generator of the semigroup {Z;} is denoted by B : By =
lim; 4 o(it) "1 (Zyp — ), which is a maximal dissipative operator acting
in K and with the domain D(B) consisting of all vectors ¢ € K, such
that the limit exists. The operator B is called a model dissipative
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operator (we remark that this model dissipative operator, associated
with the names of Lax and Phillips [14], is a special case of a more
general model dissipative operator constructed by Sz.-Nagy and Foias
[15]). The basic assertion is that S(A) is the characteristic function of
the operator B.

From the explicit form of the unitary transformation F_
the mapping F_, we have:

H—L*(R;E), f—[ (N=(F[ ), D .
Di — SpH? (E), Ho(D_-®Dy)— H; (E\ESri#. (E
Uf — (F,UtF:lf,) (\) = eMF_(A).

These formulas show that the operator f/T( ) unitary equiva-
lent to the model dissipative operator with the chara®@sjstic function

Theorem 4.6. The characteristic fun
tive operator L coincides with ths

e maximal dissipa-
function St(X\) de-
unction St () is mero-

half-plane.

5. The spectral a
Questions of the spe

a maximal dissipative operator.
of the maximal dissipative operator

A) (B(A) is the Blaschke product) ensures the
of eigenfunctions and associated functions
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where K1 = —K s the Cayley transformation of the dissipative operator
T, and 0 (§)is the Cayley transformation of the matriz-valued function
M), E=M\—i)(A+141) ", and

X1 = (ImT) Y2 (I - K\)" (I - K K5)Y?,
Xy = (I=K{K:) 2 (1=K7) (Im 1), |det Xy| =|d

Proof. In view of Theorem 4.6, we have
Sr(A) = ImT)" Y2 (M (\)+T) (M (N ~ (I TY/?.
Then

(5.1)
ImT = — (T —T%)

_ l\DI»—ll\DI)—lwl)—l[;) —_

Il
—~ o~
~N N~

Similarl

(5.2) Im7 = (I —K) ' (I-K/Ky)(I—K) ™',

Let us denote by 61 (A) the Cayley transformation of the accretive
operator M (M) for Im A > 0. Then we have

M) =—i(I-0,(N)" (I+6(N),
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S0, we obtain

(5.3)
M) +T=—i [(T=01 (3) " (T+01 (V) = (T - K1) ™ <I+K1 }

= [_(1_91( N I—61 (A +(I-Ky)~
— i [—1+2(1—91 W)+ T—2(-Ky)~
— 9 [(1—91( )= (K1)~

= —2i (I-K1) ™" (61 (A

Similarly,
M) 4T =—-2i(I—-K)~ C (I -

and

(54) (M) +T) " =~ K6, (V)7 (- K)

where
o i€+ (E-17) X

mT) 2 (I - K)) (I - KiK)"Y?,
¥ (1 - K{Ky) (I - K7) (ImT)2.

It is eviden t |det X;| = |det X2| = 1. Hence, the lemma is proved.

]

It is known [7, 15] that the inner matrix-valued function Sk (\) is
a Blaschke-Potopov product if and only if det Sk (A) is a Blaschke
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product. Then it follows from Lemma 5.1 that the characteristic
function Sk () is a Blaschke-Potopov product if and only if the matrix-
valued function

Xi (&) = (I-KK7) "2 (0(6) — K1) (I-K70(€)) ™ (I- K Eg'/

is a Blaschke-Potopov product in a unit disk.

In order to state the completeness theorem, we will
suitable form for the I'-capacity [7, 19].

Let E be an m-dimensional (m < oo) Euclidean fix
an orthonormal basis e, es, ... ,e,, and denote b , M,
the linear span of vectors ej,es,...,ex. If the set
of x € FEj_; with the property Cap {A: A Aep) € M} > 0

will be denoted by T'y,_1M. (CapG is the j
of the set G C C). The T'-capacity of
I' = Cap M :=supCap {\: A € C, ey
sup is taken with respect to all orthono
It is known [19] that every set D
2m-dimensional Lebesgue measu
however, the converse is false.

is a number
—_1M}, where the
in E, sce [7, 19)].
-capacity has zero
ecomplexified space E),

ace, we introduce the inner
] (tr S*T is the trace of the
wtroduce the I-capacity of a set of [E].

product (T,S) = trS*
operator S*T).

We will utilize t ing important result of [7].

&l < 1, be a holomorphic function with
operators in [E, i.e., | X (§)||p < 1. Then
contractive operators K in [E], i.e., for all

strictly AoRucti [E] with the possible exception of a set of T'-
capac' e inner part of the contractive function
is a Blaschke-Potopov product.

Summarizing all the obtained results for the maximal dissipative
operators Lx (Lr), we have proved the following theorem.
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Theorem 5.3. For I'-quasi-every strictly contractive K € [E], i.e.,
for all strictly contractive K € [E] with the possible exception of a set
of T-capacity zero, the characteristic function Sk (A\) of the mazimal
dissipative operator L is a Blaschke-Potopov product, and the spec-
trum of Lk is purely discrete and belongs to the open upper hq,

a countable number of isolated eigenvalues with finite mulf
limit point at infinity, and the system of eigenfunctions
functions of this operator is complete in the space L2,

ing maximal dissipative operators can be i
maximal accretive operators.

2. The results are valid for regular Stfifm-Liougille operators (with
regular end points a and b). In this cas undary values for
minimal symmetric operator Ly has the 1,1'2), where

rly—<_y%‘)l)>, Tay " )>, y € D.
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