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EXTENSIONS, DILATIONS AND
FUNCTIONAL MODELS OF SINGULAR

STURM-LIOUVILLE OPERATORS

BILENDER P. ALLAHVERDIEV

ABSTRACT. A space of boundary values is constructed for
minimal symmetric singular Sturm-Liouville operator acting
in the Hilbert space L2

w [a, b), −∞ < a < b ≤ ∞, with defi-
ciency indices (2, 2) (in Weyl’s limit-circle case). A description
of all maximal dissipative, maximal accretive, self-adjoint, and
other extensions of such a symmetric operator is given in terms
of boundary conditions at end points a and b. We investi-
gate maximal dissipative operators with general (coupled or
separated) boundary conditions. We construct a self-adjoint
dilation of the maximal dissipative operator and its incoming
and outgoing spectral representations, which makes it possi-
ble to determine the scattering matrix of the dilation. We
also construct a functional model of the maximal dissipative
operator and determine its characteristic function. We prove
the theorem on completeness of the system of eigenfunctions
and associated functions of the maximal dissipative operators.

1. Introduction. The theory of extensions of symmetric operators
is one of the basic directions in operator theory. The first fundamental
results in this theory were obtained by von Neumann [17], although
the apparent origins can be found in the famous works of Weyl, see
[22]. The theorems on representation of linear relations turned out
to be useful for the description of various classes of extensions of
symmetric operators. The first result of this type is due to Rofe-Beketov
[18]. Kochubei [11] and Bruk [3] independently introduced the term
‘space of boundary values’ and in terms of this notion all maximal
dissipative, maximal accretive, self-adjoint, and other extensions of
symmetric operators, see [9] (also in the survey article [8]). However,
regardless of the general scheme, the problem of the description of the
maximal dissipative (accretive), self-adjoint and other extensions of a
given symmetric operator via the boundary conditions is of considerable
interest. This problem is particularly interesting in the case of singular
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differential operators, because at the singular ends of the interval under
consideration the usual boundary conditions in general are meaningless.

The theory of dilations with application of functional models repre-
sents a new trend in the spectral analysis of dissipative (contractive)
operators [13, 15]. A central part in this theory is played by the charac-
teristic function, which carries the complete information on the spectral
properties of the dissipative operator. Thus, in the spectral represen-
tation of the dilation, the dissipative operator becomes the model. The
problem of the completeness of the system of eigenvectors and associ-
ated vectors is solved in terms of the factorization of the characteristic
function. The computation of the characteristic functions of dissipative
operators is preceded by the construction and investigation of a self-
adjoint dilation and of the corresponding scattering problem, in which
the characteristic function is realized as the scattering matrix.

In this paper, we consider the minimal symmetric singular Sturm-
Liouville operator L0 acting in the Hilbert space L2

w [a, b), −∞ <
a < b ≤ ∞, with deficiency indices (2, 2) (in Weyl’s limit-circle case).
We construct a space of boundary values of the minimal operator L0

and describe all the maximal dissipative (accretive), self-adjoint, and
other extensions of such a symmetric operator in terms of boundary
conditions at end points a and b. We investigate maximal dissipative
operators with general (coupled or separated) boundary conditions.
In particular, if we consider separated boundary conditions, at the
points a and b the nonself-adjoint (dissipative) boundary conditions
are prescribed simultaneously. We construct a self-adjoint dilation
of the maximal dissipative operator and its incoming and outgoing
spectral representations, which makes it possible to determine the
scattering matrix of the dilation according to the scheme of Lax and
Phillips [14]. We also construct a functional model of the maximal
dissipative operator and define its characteristic function in terms of the
Titchmarsh-Weyl function of the corresponding self-adjoint operator.
We prove the theorem on completeness of the system of eigenfunctions
and associated functions of the maximal dissipative Sturm-Liouville
operators.

2. Self-adjoint and nonself-adjoint extensions of a minimal
symmetric operator. We consider the Sturm-Liouville differential
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expression with singular point b:

(2.1)
�y :=

1
w(x)

[(−p(x)y′(x))′ + q(x)y(x)]

x ∈ I := [a, b) ,−∞ < a < b ≤ +∞,

where p, q and w are real valued, Lebesgue measurable functions on
I, and p−1, q, w ∈ L1

loc(I), w > 0 almost everywhere on I. These
conditions for p, q and w are minimal; note that there is no sign
restriction on the coefficient p.

To pass from the differential expression to operators, we introduce
the Hilbert space L2

w(I) consisting of all complex valued functions y
such that ∫ b

a

w(x)|y(x)|2 dx <∞

with the inner product

(y, z) =
∫ b

a

w(x)y(x)z(x) dx.

Denote by D the linear set of all functions y ∈ L2
w(I) such that y and

py′ are locally absolutely continuous functions on I and �y ∈ L2
w (I).

We define the operator L on D by the equality Ly = �y.

For two arbitrary functions y, z ∈ D, we have Green’s formula
(2.2)∫ x

a

w(ξ)(�y)(ξ))z(ξ) dξ −
∫ x

a

w(ξ)y(ξ)(�z)(ξ)dξ = [y, z] (x)−[y, z] (a),

where [y, z] (x) := Wx(y, z) := (ypz′ − py′z) (x), x ∈ I. It is clear from
(2.2) that limit [y, z] (b) := limx→b− [y, z] (x) exists and is finite for all
y, z ∈ D. For any function y ∈ D, y (a) and (py′) (a) can be defined
by y(a) := limt→a+ y(t) and (py′) (a) := limt→a+(py′)(t). These limits
exist and are finite, since y and py′ are absolutely continuous functions
on [a, c], ∀ c ∈ (a, b).

We denote by D0 the set of all functions y in D which satisfy the
conditions

(2.3) y (a) = (py′) (a) = 0, [y, z] (b) = 0, ∀ z ∈ D.
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Further, we denote the restriction of the operator L to D0 by L0. The
operator L0 is a closed, symmetric operator with deficiency indices
(1, 1) or (2, 2), and L = L∗

0 [1, 4, 5, 6, 10, 16, 20, 21]. The operators
L0 and L are called the minimal and maximal operators, respectively.

Let symmetric operator L0 have deficiency indices (1, 1), so the
case of Weyl’s limit-point occurs for � or L0. Then, all the self-
adjoint extensions Lα of the operator L0 are described by the boundary
conditions: y (a) cosα+ (py′) (a) sinα = 0, α ∈ [0, π), y ∈ D, [1, 4, 5,
16, 20, 21].

Recall that a linear operator S, with dense domain D(S), acting in
some Hilbert space H is called dissipative (accretive) if Im (Sf, f) ≥ 0,
Im (Sf, f) ≤ 0, for all f ∈ D(S) and maximal dissipative (maximal
accretive) if it does not have a proper dissipative (accretive) extension.

All the maximal dissipative (accretive) extensions Lh of the operator
L0 are described by the boundary conditions: (py′) (a) − hy (a) = 0,
where Imh ≥ 0 or h = ∞, Imh ≤ 0 or h = ∞, y ∈ D. For h = ∞, the
corresponding boundary condition has the form y (a) = 0.

Further, we assume that L0 has deficiency indices (2, 2), so that
the Weyl limit-circle case holds for the differential expression � or the
operator L0, see [1, 4, 5, 6, 10, 16, 20, 21].

Denote by u(x) and v(x) the solutions (real-valued) of the equation

(2.4) �y = 0, x ∈ I

satisfying the initial conditions

(2.5) u(a) = 1, (pu′)(a) = 0, v(a) = 0, (pv′)(a) = 1.

It follows from the conditions (2.5) and the constancy of the Wronskian
that

(2.6) Wx(u, v) = Wa(u, v) = 1, a ≤ x ≤ b.

Consequently, u and v form a fundamental system of solutions of (2.4).
Since L0 has deficiency indices (2, 2), u, v ∈ L2

w (I) and, moreover,
u, v ∈ D.

Lemma 2.1. The Plücker identity. For arbitrary functions
y, z ∈ D, we have the equality

(2.7) [y, z] (x) = det
(

[y, u] (x) [y, v] (x)
[z̄, u] (x) [z̄, v] (x)

)
, a ≤ x ≤ b.
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Proof. Since the functions u and v are real-valued and since
[u, v] (x) = 1 (a ≤ x ≤ b), one obtains

([y, u] [z̄, v] − [y, v] [z̄, u])(x)
= ((ypu′ − py′u) (z̄pv′ − pz̄′v))(x) − ((ypv′ − py′v) (z̄pu′ − pz̄′u))(x)
= (ypu′z̄pv′ − ypu′pz̄′v − py′uz̄pv′)(x)

+ (py′upz̄′v − ypv′z̄pu′ + ypv′pz̄′u+ py′vz̄pu′ − py′vpz̄′u)(x)
= ((−ypz̄′ + py′z̄) (pu′v − upv′))(x) = [y, z] (x).

The lemma is proved.

Theorem 2.2. The domain D0 of the operator L0 consists of
precisely those functions y ∈ D satisfying the following boundary
conditions

(2.8) y(a) = (py′)(a) = 0, [y, u] (b) = [y, v] (b) = 0.

Proof. As noted above, the domain D0 of L0 coincides with the set
of all functions y ∈ D satisfying (2.3). By virtue of Lemma 2.1, (2.3)
is equivalent to

(2.9) y(a) = (py′)(a) = 0, [y, u] (b) [z̄, v] (b) − [y, v] (b) [z̄, u] (b) = 0.

Further [z̄, v] (b) and [z̄, u] (b), z ∈ D, can be arbitrary, therefore
equality (2.9) for all z ∈ D is possible if and only if the conditions
(2.8) hold. The theorem is proved.

An important role in the theory of extensions is played by the concept
of the space of boundary values of the symmetric operator. The triplet
(H,Γ1,Γ2), where H is a Hilbert space and Γ1 and Γ2 are linear
mappings of D (A∗) into H, is called, see [3, 9, p. 152], [11], a space of
boundary values of a closed symmetric operator A, acting in a Hilbert
space H with equal (finite or infinite) deficiency indices if

i) (A∗f, g)H − (f,A∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H, for all f, g ∈
D (A∗), and

ii) for every F1, F2 ∈ H, there exists a vector f ∈ D (A∗) such that
Γ1f = F1 and Γ2f = F2.



RET
RAC

TE
D

372 B.P. ALLAHVERDIEV

Let us adopt the notation E := C2, and denote by Γ1 and Γ2 the
linear mappings of D into E defined by

(2.10) Γ1y =
( −y(a)

[y, u] (b)

)
, Γ2y =

(
(py′)(a)
[y, v] (b)

)
.

Then we have

Theorem 2.3. The triplet (E,Γ1,Γ2) defined according to (2.10) is
a space of boundary values of the operator L0.

Proof. The first requirement of the definition of a space of boundary
values holds in view of (2.2) and Lemma 2.1:

(Γ1y,Γ2z)E − (Γ2y,Γ1z)E = −y (a) (pz̄′) (a) + (py′) (a) z̄ (a)
+ [y, u] (b) [z̄, v] (b) − [y, v] (b) [z̄, u] (b)

= [y, z] (b) − [y, z] (a)
= (Ly, z) − (y, Lz) , ∀ y, z ∈ D.

The second requirement will be proved as the following lemma.

Lemma 2.4. For any complex numbers α0, α1, β0 and β1, there is a
function y ∈ D satisfying the boundary conditions:

(2.11) y (a) = α0, (py′) (a) = α1, [y, u] (b) = β0, [y, v] (b) = β1.

Proof. Let f be an arbitrary function in L2
w (I) satisfying

(2.12) (f, u) = β0 + α1, (f, v) = β1 − α0.

There is such an f even among the linear combination of u and v.
Indeed, if we set f = c1u+ c2v, then conditions (2.12) are a system of
equations in the constants c1 and c2 whose determinant is the Gram
determinant of the linearly independent functions u and v and is,
therefore, nonzero.

Denote by y (x) the solution of the equation �y = f (x), x ∈ I,
satisfying the initial conditions y (a) = α0, (py′)(a) = α1. We claim
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that y (x) is the desired function. We first observe that y (x) is
expressed by

y (x) = α0u (x) + α1v (x) +
∫ x

a

{u(x)v(ξ) − u(ξ)v(x)}w(ξ)f(ξ) dξ,

Observing that u, v ∈ L2
w (I), we have y ∈ L2

w (I) and, moreover,
y ∈ D. Further, applying Green’s formula (2.2) to y and u, we obtain
(f, u) = (�y, u) = [y, u] (b) − [y, u] (a) + (y, �u). But �u = 0, and
thus (y, �u) = 0. Moreover, since y (a) = α0, (py′) (a) = α1, we have
[y, u] (a) = y (a) (pu′) (a) − (py′) (a)u (a) = −α1. Therefore,

(2.13) (f, u) = [y, u] (b) + α1.

Then, from (2.12) and (2.13) we obtain [y, u] (b) = β0.

Analogously,

(2.14) (f, v) = (�y, v) = [y, v] (b) − [y, v] (a) + (y, �v) = [y, v] (b) − α0.

Then, from (2.12) and (2.14) we obtain [y, v] (b) = β1. Lemma 2.4 is
proved and consequently, so is Theorem 2.3.

Using Theorem 2.3 and [3, 9, Theorem 1.6, p. 156], [11], we can state
the following theorem.

Theorem 2.5. For any contraction K in E, (= C2), i.e., ‖K‖E ≤ 1,
the restriction of the operator L to the set of functions y ∈ D satisfying
the boundary condition

(K − I) Γ1y + i (K + I) Γ2y = 0(2.15)

or

(K − I) Γ1y − i (K + I) Γ2y = 0(2.16)

is, respectively, a maximal dissipative or a maximal accretive extension
of the operator L0. Conversely, every maximal dissipative (maximal
accretive) extension of L0 is the restriction of L to the set of vectors
y ∈ D satisfying (2.15) ((2.16)), and the contraction K is uniquely
determined by the extensions. These conditions give self-adjoint exten-
sion if K is unitary. In the latter case (2.15) and (2.16) are equivalent
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to the condition (cosA) Γ1y− (sinA) Γ2y = 0, where A is a self-adjoint
operator (hermitian matrix) in E. The general form of the dissipative
and accretive extensions of the operator L0 is given by the conditions

(2.17) K (Γ1y + iΓ2y) = Γ1y − iΓ2y, Γ1y + iΓ2y ∈ D (K)

(2.18) K (Γ1y − iΓ2y) = Γ1y + iΓ2y, Γ1y − iΓ2y ∈ D (K)

respectively, where K is a linear operator, with domain D (K) ⊆ E,
in E with ‖Kf‖ ≤ ‖f‖, f ∈ D (K). The general form of symmetric
extensions is given by the formulae (2.17) and (2.18), where K is an
isometric operator.

In particular, the boundary conditions

(py′) (a) − h1y (a) = 0(2.19)
[y, v] (b) + h2 [y, u] (b) = 0(2.20)

with Imh1 ≥ 0 or h1 = ∞, and Imh2 ≥ 0 or h2 = ∞, Imh1 ≤ 0 or
h1 = ∞, and Imh2 ≤ 0 or h2 = ∞ describe all the maximal dissipative
(maximal accretive) extensions of L0 with separated boundary condi-
tions. The self-adjoint extensions of L0 are obtained precisely when
Imh1 = 0 or h1 = ∞, and Imh2 = 0 or h2 = ∞. Here for h1 = ∞,
(h2 = ∞), condition (2.19) ((2.20)) should be replaced by y (a) = 0,
([y, u] (b) = 0).

In the sequel we shall study the maximal dissipative operator LK ,
where K is the strict contraction in E, i.e., ‖K‖E < 1, generated by
the expression � and boundary condition (2.15). It is obvious that the
boundary condition, generally speaking, may be coupled. In particular,
if we consider separated boundary conditions (2.19) and (2.20), then
at points a and b there are simultaneously nonself-adjoint (dissipative)
boundary conditions, i.e., Imh1 > 0 and Imh2 > 0.

Since K is a strict contraction, the operator K+I must be invertible,
and the boundary condition (2.15) is equivalent to the condition

(2.21) Γ2y + TΓ1y = 0,

where T = −i (K + I)−1 (K − I), ImT > 0, and −K is the Cayley
transform of the dissipative operator T . We denote by L̃T (= LK) the
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maximal dissipative operator generated by the expression � and the
boundary condition (2.21).

Let

T =
(
h1 0
0 h2

)
,

where Imh1 > 0, Imh2 > 0. Then the boundary condition (2.21)
coincides with the separated boundary conditions (2.19) and (2.20).

We should note that a numerous research is devoted to spectral
analysis of the self-adjoint singular Sturm-Liouville operators in Weyl’s
limit-circle case, see [1, 2, 4, 5, 12, 16, 20, 21, 23].

3. Self-adjoint dilation of the maximal dissipative operator.
Let us add to space H := L2

w (I) the ‘incoming’ and ‘outgoing’ channels
D− := L2((−∞, 0);E) and D+ := L2 ((0,∞) ;E). We form the
orthogonal sum H = D− ⊕H ⊕D+ and call it the main Hilbert space
of the dilation. The elements of H are three-component vector-valued
functions f = 〈ϕ−, y, ϕ+〉. In H we shall consider the operator LT

generated by

(3.1) L〈ϕ−, y, ϕ+〉 =
〈
i
dϕ−
dξ

, � y, i
dϕ+

dς

〉

on the set of vectorsD (LT ) satisfying the conditions: ϕ− ∈W 1
2 ((−∞,0);

E), ϕ+ ∈W 1
2 ((0,∞);E), y ∈ D,

(3.2) Γ2y + TΓ1y = Cϕ− (0) , Γ2y + T ∗Γ1y = Cϕ+ (0) ,

where C2 := 2 ImT , C > 0, and W 1
2 is the Sobolev space. Then we

have

Theorem 3.1. The operator LT is self-adjoint in H and it is a
self-adjoint dilation of the maximal dissipative operator L̃T (= LK).

Proof. Let f, g ∈ D (LT ) and f = 〈ϕ−, y, ϕ+〉, g = 〈ψ−, z, ψ+〉. Then
we have
(3.3)

(LT f, g)H−(f,LT g)H = i (ϕ− (0) , ψ− (0))E − i (ϕ+ (0) , ψ+ (0))E

+ [y, z] (b) − [y, z] (a).
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Using the boundary conditions (3.2) and (2.7), we obtain by direct
computation

i (ϕ− (0) , ψ− (0))E − i (ϕ+ (0) , ψ+ (0))E + [y, z] (b) − [y, z] (a) = 0.

Thus, the operator LT is symmetric, and D(LT ) ⊆ D(L∗
T ).

It is easy to check that LT and L∗
T are generated by the same

expression (3.1). Let us describe the domain of L∗
T . We shall compute

the terms outside the integral sign, which are obtained by integration
by parts in bilinear form (LT f, g)H , f ∈ D (LT ) , g ∈ D (L∗

T ). Their
sum is equal to zero:

(3.4) [y, z] (b)−[y, z] (a)+i (ϕ− (0) , ψ− (0))E−i (ϕ+ (0) , ψ+ (0))E = 0.

Further, solving the boundary conditions (3.2) for Γ1y and Γ2y, we find
that

Γ1y = −iC−1 (ϕ− (0) − ϕ+ (0)) ,
Γ2y = Cϕ− (0) + iTC−1 (ϕ− (0) − ϕ+ (0)) .

Therefore, using (2.7) and (2.10), we find that (3.4) is equivalent to the
equality

i (ϕ+ (0) , ψ+ (0))E − i (ϕ− (0) , ψ− (0))E

= [y, z] (b) − [y, z] (a)
= [y, u] (b) [z̄, v] (b) − [y, v] (b) [z̄, u] (b) − [y, u] (a) [z̄, v] (a)

+ [y, v] (a) [z̄, u] (a)
= (Γ1y,Γ2z)E − (Γ2y,Γ1z)E

= −i (C−1 (ϕ− (0) − ϕ+ (0)) ,Γ2z
)
E
− (Cϕ− (0) ,Γ1z)E

− i
(
TC−1 (ϕ− (0) − ϕ+ (0)) ,Γ1z

)
E
.

Since the values ϕ± (0) can be arbitrary vectors, a comparison of
the coefficients of ϕi± (0), i = 1, 2, on the left and right of the last
equality proves us that the vector g = 〈ψ−, z, ψ+〉 satisfies the boundary
conditions (3.2): Γ2z + TΓ1z = Cψ− (0), Γ2z + T ∗Γ1z = Cψ+ (0).
Therefore, D (L∗

T ) ⊆ D (LT ), and hence, LT = L∗
T .

The self-adjoint operator LT generates the unitary group Ut =
exp [iLT t], t ∈ R := (−∞,∞), on H. Denote by P : H → H
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and P1 : H → H the mappings acting according to the formulae
P : 〈ϕ−, y, ϕ+〉 → y and P1 : y → 〈0, y, 0〉, respectively. Let us
define Zt = PUtP1, t ≥ 0. The operator family {Zt}t≥0 is a strictly
continuous semigroup of completely nonunitary contractions on H, see
[13, 14, 15]. Let us define the generator of this semigroup by BT . We
shall show that L̃T = BT .

To do this, we first prove that the equality

(3.5) P (LT − λI)−1 P1y =
(
L̃T − λI

)−1

y, y ∈ H, Imλ < 0

holds. Let us define g by (LT − λI)−1
P1y = g = 〈ψ−, z, ψ+〉. Then

(LT − λI) g = P1y, and �z − λz = y, ψ− (ξ) = ψ− (0) e−iλξ, ψ+ (ς) =
ψ+ (0) e−iλς . Since g ∈ D (LT ), hence ψ− ∈ W 1

2 ((−∞, 0) ;E) and
so ψ− (0) = 0 and, consequently, z satisfies the boundary condition
Γ2z + TΓ1z = 0. Therefore, z ∈ D(L̃T ), and since a point λ
with Imλ < 0 cannot be an eigenvalue of dissipative operator, then
z = (L̃T − λI)−1y. Thus for y ∈ H and Imλ < 0 we have

(LT − λI)−1
P1y =

〈
0,

(
L̃T − λI

)−1

y, C−1 (Γ2y + T ∗Γ1y) e−iλς
〉
.

Next, applying the mapping P to this equality, we obtain (3.5). In view
of (3.5) we get

(
L̃T − λI

)−1

= P (LT − λI)−1
P1 = −iP

∫ ∞

0

Ute
−iλt dtP1

= −i
∫ ∞

0

Zte
−iλt dt = (BT − λI)−1 , Imλ < 0.

Hence L̃T = BT , and the theorem is proved.

4. Scattering theory of the dilation and functional model of
the maximal dissipative operator. The unitary group {Ut} has an
important property which allows us to apply the Lax-Phillip’s scheme
[14], namely, it has the orthogonal ‘incoming’ and ‘outgoing’ subspaces
D− = 〈L2 ((−∞, 0) ;E) , 0, 0〉 and D+ = 〈0, 0, L2 ((0,∞) ;E)〉 with the
following properties:

(1) UtD− ⊂ D−, t ≤ 0; UtD+ ⊂ D+, t ≥ 0;
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(2) ∩t≤0UtD− = ∩t≥0UtD+ = {0};
(3) ∪t≥0UtD− = ∪t≤0UtD+ = H;

(4) D− ⊥ D+.

Property (4) is obvious. We shall prove the property (1) for D+ (for
D−, the proof is analogous). Let Rλ = (LT − λI)−1. For all λ with
Imλ < 0 and for all f = 〈0, 0, ϕ+〉 ∈ D+, we have

Rλf =
〈
0, 0,−ie−iλξ

∫ ξ

0

eiλsϕ+ (s) ds
〉
.

So we have Rλf ∈ D+. Therefore, if g ⊥ D+, then

0 = (Rλf, g)H = −i
∫ ∞

0

e−iλt (Utf, g)H dt, Imλ < 0.

From this we have (Utf, g)H = 0 for all t ≥ 0. Consequently,
UtD+ ⊂ D+ for t ≥ 0 and the property (1) is proved.

To prove the property (2) we define P+ : H �→ L2 (R+;E)
(bfR+ := [0,∞)) and P+

1 : L2 (R+;E) �→ D+ as mappings with
P+ : 〈ϕ−y, ϕ+〉 �→ ϕ+ and P+

1 : ϕ �→ 〈0, 0, ϕ〉 respectively. Ob-
serve that the semigroup of isometries U+

t = P+UtP
+
1 , t ≥ 0, is

the one-side shift in L2 (R+;E). Indeed, the generator of the semi-
group of the shift Vt in L2 (R+;E) is the differential operator id/dξ
with the boundary condition ϕ (0) = 0. On the other hand, the
generator B of semi-group of isometries U+

t , t ≥ 0, is the operator
Bϕ = P+LTP

+
1 ϕ = P+LT 〈0, 0, ϕ〉 = P+〈0, 0, i(dϕ/dξ)〉 = i(dϕ/dξ),

where ϕ ∈ W 1
2 (R+;E) and ϕ (0) = 0. But since a semi-group is

uniquely determined by its generator, it follows that U+
t = Vt, and

hence,
∩t≥0UtD+ = 〈0, 0,∩t≥0VtL

2 (R+;E)〉 = {0} ,
i.e., the property (2) is proved.

In the scheme of the Lax-Phillips scattering theory, the scattering
matrix is defined in terms of the theory of spectral representations. We
proceed to construct them. Along the way, we also prove property (3)
of the incoming and outgoing subspaces.

We recall that the linear operator A, with domain D(A), acting in the
Hilbert space H is called totally nonself-adjoint (or simple) if invariant
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subspace M ⊆ D(A), M �= 0, of the operator A on which restriction A
on M is self-adjoint does not exist.

Then we have

Lemma 4.1. The operator L̃T (LK) is totally nonself-adjoint
(simple).

Proof. Let H0 ⊂ H be a subspace where the operator L̃T indicates
the self-adjoint operator L̃′

T , i.e., the subspace H0 is invariant with
respect to semigroup of isometries Vt = exp

(
iL̃′

T t
)
, V ∗

t = exp
(−iL̃′

T t
)
,

V −1
t = V ∗

t , t > 0. If f ∈ H0 ∩D
(
L̃T

)
, then f ∈ D

(
L̃∗

T

)
, and

0 =
d

dt

∥∥∥exp
(
iL̃T t

)
f
∥∥∥2

H

= −2
(
ImTΓ1

(
exp

(
iL̃T t

)
f,Γ1 exp

(
iL̃T t

)
f
))

E
, ImT > 0.

Consequently, we have Γ1

(
exp

(
iL̃T t

)
f
)

= 0. For eigenvectors yλ ∈ H0

of the operator L̃T , we have Γ1yλ = 0. Using this result with
boundary condition Γ2y + TΓ1y = 0, we have Γ2yλ = 0, i.e., yλ (a) =
0, (py′λ) (a) = 0. Then by the uniqueness theorem of the Cauchy
problem for the equation �y = λy, x ∈ I, we have yλ ≡ 0. Since
all solutions of �y = λy (x ∈ I) belong to L2

w (I), it can be concluded
that the resolvent Rλ

(
L̃T

)
of the operator L̃T is a Hilbert-Schmidt

operator, and hence the spectrum of L̃T is purely discrete. Hence, by
the theorem on expansion in eigenfunctions of the self-adjoint operator
L̃′

T , we have H0 = {0} , i.e., the operator L̃T is simple. The lemma is
proved.

To prove the property (3), we set

H− = ∪t≥0UtD−, H+ = ∪t≤0UtD+,

and first prove

Lemma 4.2. The equality H− +H+ = H holds.

Proof. Taking into account the property (1) of the subspaces D±, we
shall show that the subspace H′ = H � (H− +H+) is invariant with



RET
RAC

TE
D

380 B.P. ALLAHVERDIEV

respect to the group {Ut} and has the form H′ = 〈0, H ′, 0〉, where H ′

is a subspace of H. Therefore, if the subspace H′, and hence also H ′,
were nontrivial, then the unitary group {U ′

t} restricted to this subspace,
would be a unitary part of the group {Ut}, and therefore, the restriction
L′

T of the operator LT toH ′ would be the self-adjoint operator ofH ′. It
follows from simplicity of the operator L′

T thatH ′ = {0}, i.e., H′ = {0}.
So, the lemma is proved.

We denote by ϕ and ψ those solutions of the equation �y = λy, x ∈ I,
with initial conditions
(4.1)

ϕ (a, λ) = 0, (pϕ′) (a, λ) = −1, ψ (a, λ) = 1, (pψ′) (a, λ) = 0.

We denote by M (λ) the matrix-valued function satisfying the condi-
tions

(4.2) M (λ) Γ1ϕ = Γ2ϕ, M (λ) Γ1ψ = Γ2ψ.

It can be directly verified that M (λ) has the form

(4.3) M (λ) =
(

m∞ (λ) −1/ [ϕ, u] (b)
−1/ [ϕ, u] (b) [ϕ, v] (b)/ [ϕ, u] (b)

)
,

where m∞ (λ) is the Titchmarsh-Weyl function of the self-adjoint op-
erator L∞ generated by the expression � with the boundary conditions
y (a) = 0 and [y, u] (b) = 0. Then we have

m∞ (λ) = − [ψ, u] (b)
[ϕ, u] (b)

.

It is easy to show that the matrix-valued functionM (λ) is meromorphic
in C with all its poles on real axis R, and that it has the following
properties:

(a) ImM (λ) ≤ 0 if Imλ > 0, and ImM (λ) ≥ 0 if Imλ < 0;

(b) M∗ (λ) = M (λ) for all λ ∈ R, except for the poles of M (λ).
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We denote by χj (x) and θj (x), j = 1, 2, the solutions of the equation
�y = λy, x ∈ I, which satisfy the conditions

(4.4)
Γ1χj = (M (λ) + T )−1

Cej ,

Γ1θj = (M (λ) + T ∗)−1 Cej , j = 1, 2,

where e1 and e2 are the orthonormal basis for E.

Let U−
λj , j = 1, 2, be defined by

U−
λj (x, ξ, ς)

=
〈
e−iλξej , χj (x) , C−1 (M(λ) + T ∗) (M(λ) + T )−1 Ce−iλςej

〉
.

It must be noted that vectors U−
λj , j = 1, 2, for all λ ∈ R do not belong

to H. However, U−
λj , j = 1, 2, satisfies the equation LU = λU and the

boundary conditions (3.2).

The transformation F− : f → f̃− (λ) for the vectors f = 〈ϕ−, y, ϕ+〉
is determined using the vectors U−

λj , j = 1, 2, by the formula

(F−f) (λ) := f̃− (λ) :=
2∑

j=1

f̃−j (λ) ej ,

where ϕ− (ξ) , ϕ+(ς) and y (x) are smooth, compactly supported func-
tions, and

f̃−j (λ) =
1√
2π

(
f, U−

λj

)
H
, j = 1, 2.

Lemma 4.3. The transformation F− isometrically maps H− onto
L2 (R;E). For all vectors f, g ∈ H−, the Parseval equality

(f, g)H =
(
f̃−, g̃−

)
L2

=
∫ ∞

−∞

2∑
j=1

f̃−j (λ) g̃−j (λ) dλ,

and the inversion formula

f =
1√
2π

∫ ∞

−∞

2∑
j=1

U−
λj f̃

−
j (λ) dλ,
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hold, where f̃− (λ) = (F−f) (λ), g̃− (λ) = (F−g) (λ).

Proof. We shall show that the transformation F− mapsD−toH2
− (E).

Here and below, H2
±(E) denote the Hardy classes in L2(R;E) consist-

ing of the vector-valued functions analytically extendible to the upper
and lower half-planes, respectively. For f, g ∈ D−, f = 〈f−, 0, 0〉,
g = 〈g−, 0, 0〉, f−, g− ∈ L2 ((−∞, 0) ;E), we have

f̃−j (λ) =
1√
2π

(
f, U−

λj

)
H

=
1
2π

∫ 0

−∞

(
f− (ξ) , e−iλξej

)
E
dξ ∈ H2

−,

f̃− (λ) =
2∑

j=1

f̃−j (λ) ej ∈ H2
− (E) ,

and the Parseval equality:

(f, g)H =
(
f̃−, g̃−

)
L2

=
∫ ∞

−∞

2∑
j=1

f̃−j (λ) g̃−j (λ) dλ.

Now, we want to extend this equality to the whole H−. To this end
consider in H ′

− the dense set H− of vectors, obtained on smooth,
compactly supported functions belonging to D− in the following way:
f ∈ H ′

−, f = Utf
f0, f0 = 〈ϕ−, 0, 0〉, ϕ− ∈ C∞

0 ((−∞, 0) ;E). For
these vectors, noting LT = L∗

T and using the fact that U−tf ∈
〈C∞

0 ((−∞, 0) ;E) , 0, 0〉, and (U−tf, U
−
λj)H = e−iλt(f, U−

λj)H, j = 1, 2,
for t > tf , tg, we have

(f, g)H = (U−tf, U−tg)H

=
1
2π

∫ ∞

−∞

2∑
j=1

(
U−tf, U

−
λj

)
H

(
U−tg, U

−
λj

)
H
dλ

=
∫ ∞

−∞

2∑
j=1

f̃−j (λ) g̃−j (λ) dλ.

By taking the closure, we obtain the Parseval equality for the whole
space H−. The inversion formula follows from the Parseval equality if
all integrals in it are understood as limits in the mean of the integrals
on a finite interval. Finally,

F−H− = ∪t≥0F−UtD− = ∪t≥0eiλtH2− (E) = L2 (R;E) ,
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i.e., F− maps H− onto whole L2 (R;E). So, the lemma is proved.

Let us define U+
λj , j = 1, 2, by

U+
λj (x, ξ, ς) =

〈
ST (λ) e−iλξej , θj (x) , e−iλςej

〉
,

where

(4.5) ST (λ) = C−1 (M (λ) + T ) (M (λ) + T ∗)−1
C.

Using the vectors U+
λj (j = 1, 2), we will see that the transformation

F+ : f → f̃+ (λ) for the vectors f = 〈ϕ−, y, ϕ+〉 is determined by the
formula

(F+f) (λ) := f̃+ (λ) :=
2∑

j=1

f̃+
j (λ) ej ,

where ϕ− (ξ) , ϕ+(ς), and y(x) are smooth, compactly supported func-
tions, and

f̃+
j (λ) =

1√
2π

(
f, U+

λj

)
H
, j = 1, 2.

The proof of the next result is analogous to that of Lemma 4.3.

Lemma 4.4. The transformation F+ isometrically maps H+ onto
L2 (R;E). For all vectors f, g ∈ H+, the Parseval equality

(f, g)H =
(
f̃+, g̃+

)
L2

=
∫ ∞

−∞

2∑
j=1

f̃+
j (λ) g̃+

j (λ) dλ,

and the inversion formula

f =
1√
2π

∫ ∞

−∞

2∑
j=1

U+
λj f̃

+
j (λ) dλ,

are valid, where f̃+
j (λ) = (F+f) (λ), g̃+ (λ) = (F+g) (λ).

It is obvious that the matrix-valued function ST (λ) is meromorphic
in C and all poles are in the lower half-plane. Then, it is trivial from
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(4.5) that ‖ST (λ)‖E ≤ 1 for Imλ > 0 and ST (λ) is the unitary matrix
for all λ ∈ R.

Since ST (λ) is the unitary matrix for λ ∈ R, then, it follows from
the definitions of the vectors U+

λj and U−
λj that

U+
λj =

2∑
k=1

Sjk (λ)U−
λk, j = 1, 2,

where Sjk (λ), j, k = 1, 2, are entries of the matrix ST (λ). According to
Lemma 4.2, from the last equality, it then follows that H− = H+ = H.
Hence, property (3) of the incoming and outgoing subspaces presented
above has been established.

Thus the transformation F− maps

(i) H isometrically onto L2 (R;E),

(ii) the subspace D− onto H2
− (E), and

(iii) the operators Ut are carried into the operators of multiplication
by eiλt.

It means that F− is the ‘incoming’ spectral representation of group
Ut. Similarly, F+ is the ‘outgoing’ spectral representation of the
group Ut. It follows from the formulas for U−

λj and U+
λj , j = 1, 2,

that the transition from F− -representation of the vector f ∈ H to
its F+ -representation is realized as follows: f̃+ (λ) = S−1

T (λ) f̃− (λ).
According to [14], we have now proved the following theorem.

Theorem 4.5. The matrix S−1
T (λ) is the scattering matrix of the

group Ut (of the operator LT ).

Let S(λ) be an arbitrary inner matrix-valued function [15] on the
upper half-plane. Define K = H2

+ �SH2
+. Then K �= {0} is a subspace

of the Hilbert space H2
+. We consider the semigroup of the operators

Zt, t ≥ 0, acting in K according to the formula Ztϕ = P
[
eiλtϕ

]
,

ϕ := ϕ(λ) ∈ K, where P is the orthogonal projection from H2
+ onto

K. The generator of the semigroup {Zt} is denoted by B : Bϕ =
limt→+0(it)−1(Ztϕ−ϕ), which is a maximal dissipative operator acting
in K and with the domain D(B) consisting of all vectors ϕ ∈ K, such
that the limit exists. The operator B is called a model dissipative
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operator (we remark that this model dissipative operator, associated
with the names of Lax and Phillips [14], is a special case of a more
general model dissipative operator constructed by Sz.-Nagy and Foias
[15]). The basic assertion is that S(λ) is the characteristic function of
the operator B.

From the explicit form of the unitary transformation F− that, under
the mapping F−, we have:

H −→ L2 (R;E) , f → f̃− (λ) := (F−f) (λ) , D− → H2
− (E) ,

D+ −→ STH
2
+ (E) , H� (D− ⊕D+) → H2

+ (E) � STH
2
+ (E) ,

Utf −→
(
F−UtF

−1
− f̃−

)
(λ) = eiλtf̃− (λ) .

These formulas show that the operator L̃T (LK) is a unitary equiva-
lent to the model dissipative operator with the characteristic function
ST (λ). Thus we have proved the following theorem.

Theorem 4.6. The characteristic function of the maximal dissipa-
tive operator L̃T coincides with the matrix-valued function ST (λ) de-
termined by formula (4.5). The matrix-valued function ST (λ) is mero-
morphic in the complex plane C and is an inner function in the upper
half-plane.

5. The spectral analysis of a maximal dissipative operator.
Questions of the spectral analysis of the maximal dissipative operator
LK

(
L̃T

)
can be solved in terms of the characteristic function. Thus,

for example, the absence of the singular factor s (λ)in the factorization
detST (λ) = s (λ)B (λ) (B (λ) is the Blaschke product) ensures the
completeness of the system of eigenfunctions and associated functions
of the operator L̃T (LK) in the space L2

w (I), see [7, 13, 15].

We first use the following lemma.

Lemma 5.1. The characteristic function S̃K (λ) of the operator LK

has the form

S̃K (λ) := ST (λ)

= X1 (I −K1K
∗
1 )−1/2 (θ (ξ) −K1) (I −K∗

1θ (ξ))−1

· (I −K∗
1K1)

1/2X2,
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where K1 = −K is the Cayley transformation of the dissipative operator
T , and θ (ξ)is the Cayley transformation of the matrix-valued function
M (λ), ξ = (λ− i) (λ+ i)−1, and

X1 := (ImT )−1/2 (I −K1)
−1 (I −K1K

∗
1 )1/2 ,

X2 := (I−K∗
1K1)

−1/2 (I−K∗
1 ) (ImT )1/2 , |detX1|= |detX2|=1.

Proof. In view of Theorem 4.6, we have

ST (λ) = (ImT )−1/2 (M (λ) + T ) (M (λ) + T ∗)−1 (ImT )1/2
.

Then

ImT =
1
2i

(T − T ∗)

(5.1)

=
1
2

[
(I−K1)

−1 (I+K1) + (I+K∗
1 ) (I−K∗

1 )−1
]

=
1
2

[
(I−K1)

−1 + (I−K1)
−1K1 + (I−K∗

1 )−1 +K∗
1 (I−K∗

1 )−1
]

=
1
2

[
(I−K1)

−1 + (I−K1)
−1 − I + (I−K∗

1 )−1 + (I−K∗
1 )−1 − I

]

= (I −K1)
−1 + (I −K∗

1 )−1 − I

= (I −K1)
−1 [I −K∗

1 + I −K1 − (I −K1) (I −K∗
1 )] (I −K∗

1 )−1

= (I −K1)
−1 (I −K1K

∗
1 ) (I −K∗

1 )
−1

.

Similarly,

(5.2) ImT = (I −K∗
1 )−1 (I −K∗

1K1) (I −K1)
−1 .

Let us denote by θ1 (λ) the Cayley transformation of the accretive
operator M (λ) for Imλ > 0. Then we have

M (λ) = −i (I − θ1 (λ))−1 (I + θ1 (λ)) ,
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so, we obtain

M(λ)+T =−i
[
(I−θ1 (λ))−1 (I+θ1 (λ)) − (I−K1)

−1 (I+K1)
](5.3)

=−i
[
− (I−θ1 (λ))−1 (I−θ1(λ)−2I)+(I−K1)

−1(I−K1−2I)
]

=−i
[
−I + 2 (I−θ1 (λ))−1 + I − 2 (I−K1)

−1
]

=−2i
[
(I−θ1 (λ))−1 − (I−K1)

−1
]

=−2i (I−K1)
−1 (θ1 (λ) −K1) (I−θ1 (λ))−1

.

Similarly,

M (λ) + T ∗ = −2i (I −K∗
1 )−1 (I −K∗

1θ1 (λ)) (I − θ1 (λ))−1

and

(5.4) (M (λ) + T ∗)−1 = − 1
2i

(I − θ1 (λ)) (I −K∗
1θ1 (λ))−1 (I −K∗

1 ) .

In view of (5.1) (5.4), we have

S̃K (λ) := ST (λ)

= X1 (I−K1K
∗
1 )−1/2 (θ (ξ) −K1) (I−K∗

1θ (ξ))

· (I−K∗
1K1)

1/2X2,

where

θ (ξ) := θ1

(
−i (ξ + 1) (ξ − 1)−1

)
, X1

:= (ImT )−1/2 (I −K1) (I −K∗
1K1)

1/2 ,

X2 := (I −K∗
1K1)

−1 (I −K∗
1 ) (ImT )1/2 .

It is evident that |detX1| = |detX2| = 1. Hence, the lemma is proved.

It is known [7, 15] that the inner matrix-valued function S̃K (λ) is
a Blaschke-Potopov product if and only if det S̃K (λ) is a Blaschke
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product. Then it follows from Lemma 5.1 that the characteristic
function S̃K (λ) is a Blaschke-Potopov product if and only if the matrix-
valued function

XK (ξ) = (I−K1K
∗
1 )−1/2 (θ (ξ) −K1) (I−K∗

1θ (ξ))−1 (I−K∗
1K1)

1/2

is a Blaschke-Potopov product in a unit disk.

In order to state the completeness theorem, we will first define a
suitable form for the Γ-capacity [7, 19].

Let Ẽ be an m-dimensional (m <∞) Euclidean space. In Ẽ, we fix
an orthonormal basis e1, e2, . . . , em and denote by Ek, k = 1, 2, . . . ,m,
the linear span of vectors e1, e2, . . . , ek. If M ⊂ Ek, then the set
of x ∈ Ek−1 with the property Cap {λ : λ ∈ C, (x+ λek) ∈M} > 0
will be denoted by Γk−1M . (CapG is the inner logarithmic capacity
of the set G ⊂ C). The Γ-capacity of the set M ⊂ Ẽ is a number
Γ − CapM := sup Cap {λ : λ ∈ C, λe1 ⊂ Γ1Γ2 · · ·Γm−1M}, where the
sup is taken with respect to all orthonormal basics in Ẽ, see [7, 19].
It is known [19] that every set M ⊂ Ẽ of zero Γ-capacity has zero
2m-dimensional Lebesgue measure (in the decomplexified space Ẽ),
however, the converse is false.

Denote by [E] the set of all linear operators in E
(
= C2

)
. To convert

[E] into the 4-dimensional Euclidean space, we introduce the inner
product 〈T, S〉 = trS∗T for T, S ∈ [E] (trS∗T is the trace of the
operator S∗T ). Hence, we may introduce the Γ-capacity of a set of [E].

We will utilize the following important result of [7].

Lemma 5.2. Let X (ξ), |ξ| < 1, be a holomorphic function with
the values to be contractive operators in [E], i.e., ‖X (ξ)‖E ≤ 1. Then
for Γ -quasi-every strictly contractive operators K in [E], i.e., for all
strictly contractive K ∈ [E] with the possible exception of a set of Γ-
capacity zero, the inner part of the contractive function

XK (ξ) := (I−KK∗)−1/2 (X (ξ) −K) (I−K∗X (ξ))−1 (I−K∗K)1/2

is a Blaschke-Potopov product.

Summarizing all the obtained results for the maximal dissipative
operators LK

(
L̃T

)
, we have proved the following theorem.
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Theorem 5.3. For Γ-quasi-every strictly contractive K ∈ [E], i.e.,
for all strictly contractive K ∈ [E] with the possible exception of a set
of Γ-capacity zero, the characteristic function S̃K (λ) of the maximal
dissipative operator LK is a Blaschke-Potopov product, and the spec-
trum of LK is purely discrete and belongs to the open upper half-plane.
For Γ-quasi-every strictly contractive K ∈ [E], the operator LK has
a countable number of isolated eigenvalues with finite multiplicity and
limit point at infinity, and the system of eigenfunctions and associated
functions of this operator is complete in the space L2

w(I).

Remarks. 1. Since a linear operator S in Hilbert space H is maximal
accretive if and only if −S is maximal dissipative, all results concern-
ing maximal dissipative operators can be immediately transferred to
maximal accretive operators.

2. The results are valid for regular Sturm-Liouville operators (with
regular end points a and b). In this case space of boundary values for
minimal symmetric operator L0 has the form (C2,Γ1,Γ2), where

Γ1y =
(−y(a)

y(b)

)
, Γ2y =

(
(py′)(a)
(py′)(b)

)
, y ∈ D.
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