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ALMOST SURE CONVERGENCE OF
AQSI SEQUENCES IN DOUBLE ARRAYS

MI-HWA KO, TAE-SUNG KIM AND JONG-IL BAEK

ABSTRACT. For double arrays of constants {ani, 1 ≤ i ≤
kn, n ≥ 1} and a sequence {Xn, n ≥ 1} of asymptoti-
cally quadrant sub-independent (AQSI) random variables the

almost sure convergence of
∑kn

i=1
aniXi/ log kn is derived.

The Marcinkiewicz strong law of large numbers for AQSI
sequence is also obtained by applying this result.

1. Introduction. Let (Ω,F , P ) be a probability space, and let
{Xn, n ≥ 1} be a sequence of random variables defined on (Ω,F , P ).

Lehmann [5] introduced the notion of positive quadrant dependence:
A sequence {Xn, n ≥ 1} is said to be pairwise positive quadrant
dependent if, for s, t ∈ R,

(0.a) P{Xi > s, Xj > t} − P{Xi > s}P{Xj > t} ≥ 0,

or

(0.b) P{Xi < s, Xj < t} − P{Xi < s}P{Xj < t} ≥ 0.

Dropping the assumption of positive dependence, but using the mag-
nitude of the lefthand sides in (0.a) and (0.b) as a measure of de-
pendence, Birkel [1] introduced the notion of asymptotic quadrant in-
dependence: A sequence {Xn} of random variables is called asymptot-
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ically quadrant independent (AQI) if there exists a nonnegative se-
quence {q(m)} such that, for all i �= j and s, t ∈ R,

(1.a) |P{Xi > s, Xj > t} −P{Xi > s}P{Xj > t}| ≤ q(|i−j|)αij(s, t),

(1.b) |P{Xi < s, Xj < t} −P{Xi < s}P{Xj < t}| ≤ q(|i−j|)βij(s, t),

where q(m) → 0 and αij(s, t) ≥ 0, βij(s, t) ≥ 0.

Chandra and Ghosal [3] considered a dependence condition which is
a useful weakening of this definition of AQI proposed by Birkel [1]: A
sequence {Xn, n ≥ 1} of random variables is said to be asymptoti-
cally quadrant sub-independent (AQSI) if there exists a nonnegative
sequence {q(m)} such that q(m) → 0, and for all i �= j,

(2.a) P{Xi > s, Xj > t} − P{Xi > s}P{Xj > t}
≤ q(|i − j|) αij(s, t), s, t > 0,

(2.b) P{Xi < s, Xj < t} − P{Xi < s}P{Xj < t}
≤ q(|i − j|) βij(s, t), s, t < 0,

where αij(s, t) and βij(s, t) are nonnegative numbers. This AQSI
condition is satisfied by AQI sequences as well as by pairwise m-
dependent and pairwise negative quadrant dependent sequences.

There are two well-known results; namely, the Kolmogorov strong
law of large numbers and the Rademacher-Mensov strong law of large
numbers, e.g., [7, p. 114], [6, Section 36], [8, Chapter 3], Hall and
Heyde [4, p. 22]. Chandra and Ghosal [3] proved the strong law of large
numbers for weighted averages of AQSI sequences by using an extension
of the well-known Rademacher-Mensov inequality, see Lemma 2.1 in
Section 2.

In this paper we obtain the almost-sure convergence of a triangular
array of weighted sum of AQSI random variables. A result of this type
has not been established in the literature.

We will use the following concept in this paper. Let {Xn, n ≥ 1} be
a sequence of random variables, and let X be a nonnegative random
variable. If there exists a constant C, 0 < C < ∞, satisfying
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supn≥1 P (|Xn| > t) ≤ CP (X ≥ t) for any t ≥ 0, then {Xn, n ≥ 1} is
said to be stochastically dominated by X (briefly {Xn, n ≥ 1} ≺ X).

Throughout the remainder of this paper, C will stand for a constant
whose value may vary from line to line.

2. Results. The following result is an extension of the well-known
Rademacher-Mensov inequality. A proof of this result can be found in
Theorem 10 of [2].

Lemma 2.1 [3]. Let X1, . . . , Xn be square integrable random vari-
ables such that there exist numbers c2

1, . . . , c2
n satisfying

(3) E(Xm+1 + · · · + Xm+p)2 ≤ c2
m+1 + · · · + c2

m+p, ∀m, p.

Then we have

(4) E

(
max

1≤k≤n

( k∑
i=1

Xi

)2)
≤ ((log n/ log 3) + 2)2

n∑
i=1

c2
i .

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of mean zero,
square integrable and asymptotically quadrant sub-independent random
variables with

∑∞
m=1 q(m) < ∞ and, for all i �= j,

(5)
∫ ∞

0

∫ ∞

0

αij(s, t) ds dt ≤ D(1 + EX2
i + EX2

j ),

(6)
∫ ∞

0

∫ ∞

0

βij(s, t) ds dt ≤ D(1 + EX2
i + EX2

j ).

Then we have

(7) E

( n∑
i=1

Xi

)2

≤ C
n∑

i=1

(1 + EX2
i ),

and

(8) E

(
max

1≤k≤n

( k∑
i=1

Xi

)2)
≤ ((log n/ log 3) + 2)2

n∑
i=1

(1 + EX2
i ).



1586 M.-H. KO, T.-S. KIM AND J.-I. BAEK

Proof. By Lemma 2 of [5] we have

Cov (X+
i , X+

j ) ≤ Dq(|i − j|)(1 + EX2
i + EX2

j ).

So

Var
( n∑

i=1

X+
i

)
≤ C

n∑
i=1

(1 + EX2
i ) for all n.

Similarly

Var
( n∑

i=1

X−
i

)
≤ C

n∑
i=1

(1 + EX2
i ) for all n.

Thus

Var
( n∑

i=1

Xi

)
≤ 2 Var

( n∑
i=1

X+
i

)
+ 2 Var

( n∑
i=1

X−
i

)

≤ C

n∑
i=1

(1 + EX2
i ) for all n.

Hence the proof of (7) is complete. Equation (8) follows from (7) and
Lemma 2.1 .

From (8) of Lemma 2.2 we have the following maximal inequality.

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of mean zero, square
integrable AQSI random variables with

∑∞
m=1 q(m) < ∞, satisfying (5)

and (6). Then

(9) P

{
max

1≤k≤n
|

k∑
i=1

Xi| ≥ ε

}
≤ C((log n/ log 3) + 2)2

n∑
i=1

(1 + EX2
i ).

The following theorem is the main result:

Theorem 2.4. Let {Xn, n ≥ 1} be a sequence of mean zero,
square integrable AQSI random variables with

∑∞
m=1 q(m) < ∞ and

satisfying (5) and (6). Let {Xn, n ≥ 1} be stochastically dominated by
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a nonnegative random variable X with EXr < ∞ for 0 < r < 2. Let
{kn, n ≥ 1} be an increasing sequence of integers. If {ani, 1 ≤ i ≤
kn, n ≥ 1} is an array of constants satisfying

(10)
kn∑
i=1

|ani − an,i+1| = O

(
1

k
1/r
n

)
,

where an,kn+1 = 0, then, as n → ∞,

(11)
1

log kn

kn∑
i=1

aniXi −→ 0 a.s.

3. Proof of Theorem 2.4. Without loss of generality, we suppose
that ani ≥ 0, i ≥ 1, n ≥ 1. Otherwise we assume that ani1 , . . . , anim

are
nonnegative, while anim+1 , . . . , anikn

are negative. It is easy to check
that if {anij

, 1 ≤ j ≤ m} and {anij
, m+1 ≤ j ≤ kn} satisfy (10), then

we only have to consider
∑m

j=1 anij
Xnij

and
∑kn

j=m+1 anij
Xnij

. Let

X ′
i = (−i1/r) ∨ (Xi ∧ i1/r), X ′′

i = Xi − X ′
i.

Since X ′
i and X ′′

i are increasing functions of Xi, both {X ′
n−EX ′

n} and
{X ′′

n − EX ′′
n} also form mean zero AQSI sequences. Let

S′
n =

kn∑
i=1

ani(X ′
i − EX ′

i), S′′
n =

kn∑
i=1

ani(X ′′
i − EX ′′

i ),

Ak =
k∑

i=1

(X ′
i − EX ′

i)

and assume 0 < r < 2. For fixed n, there exists t ∈ N such that
2t < kn ≤ 2t+1. Then from (10) we easily get

|S′
n| ≤ C(2t)−1/r max

1≤i≤2t+1
|Ai|
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by applying the Abelian transformation. Noticing that {X ′
n − EX ′

n,
n ≥ 1} is an AQSI sequence and applying Theorem 2.3, and for each
ε > 0,
∞∑

t=1

P (|S′
n| ≥ ε log kn for some kn ∈ (2t, 2t+1])

≤
∞∑

t=1

P

{
1

(2t)1/r
max

1≤i≤2t+1
|Ai| >

ε

C
t log 2

}

≤ C

∞∑
m=1

q(m)
∞∑

t=1

(t + 3)22−2t/r(t log 2)−2
2t+1∑
i=1

(1 + EX ′2
i )

≤ C
∞∑

t=1

2−2t/r
2t+1∑
i=1

(1 + EX
′2
i )

≤ C

∞∑
t=1

2−2t/r2t+1 + C

∞∑
t=1

2−2t/r
2t+1∑
i=1

EX ′2
i

≤ C

{ ∞∑
t=1

2−(2t/r)+t+1 +
∞∑

i=1

P (|Xi| > i1/r)

+
∞∑

i=1

i−2/rEX2
i I(|Xi| ≤ i1/r)

}

≤ C

{ ∞∑
t=1

2−(2t/r)+t+1 +
∞∑

i=1

P (X > i1/r)

+
∞∑

i=1

EX2
i I(|Xi| ≤ i1/r)

i2/r

}
,

where C depends only on ε. Obviously,
∑∞

t=1 2t+1−(2t/r) < ∞, and it
follows from the condition EXr < ∞ that

∑∞
i=1 P (X > i1/r) < ∞ and∑∞

i=1 i−2/rEX2I(X ≤ i1/r) < ∞, see the Appendix. Thus we have
∞∑

t=1

P (|S′
n| ≥ ε log kn for some kn ∈ (2t, 2t+1]) < ∞.

By the Borel-Cantelli lemma we conclude that

(12)
S′

n

log kn
−→ 0 a.s.



CONVERGENCE OF AQSI SEQUENCES 1589

On the other hand, since

∞∑
i=1

P (|Xi| ≥ i1/r) < C
∞∑

i=1

P (X ≥ i1/r) < ∞,

we have

(13) P (|Xi| > i1/r i.o) = 0.

From (10) and (13), we have

∣∣∣∣
kn∑
i=1

aniX
′′
i

∣∣∣∣ ≤
(

max
1≤i≤kn

∣∣∣∣
n∑

j=1

X ′′
j

∣∣∣∣
)( n∑

i=1

|ani − an,i+1|
)

≤ C

k
1/r
n

kn∑
i=1

|Xi|I(|Xi| ≥ i1/r) −→ 0 a.s.

By applying the Abelian transformation, that is, we have

(14)
kn∑
i=1

aniX
′′
i −→ 0 a.s.

(a) If 1 < r < 2, since {Xn} ≺ X and
∑∞

i=1 i−1/rEXI(X > i1/r) <
∞ we get that

∞∑
i=1

1
i1/r

E|X ′′
i | ≤ C

∞∑
i=1

i−1/rEXI(X > i1/r) < ∞.

By Kronecker’s lemma, we get

(15)
1

k
1/r
n

kn∑
i=1

E|X ′′
i | −→ 0.

(b) If r = 1,

E|X ′′
i | ≤ CEXI(X > i) −→ 0 as i → ∞,
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thus we have as well

(16)
1
kn

kn∑
i=1

E|X ′′
i | −→ 0.

From (10),(15) and (16) we have, for 1 ≤ r ≤ 2,

(17)

∣∣∣∣
kn∑
i=1

aniEX ′′
i

∣∣∣∣ ≤ C

kn
1/r

(
max

1≤i≤kn

∣∣∣∣
i∑

j=1

EX ′′
j

∣∣∣∣
)

≤ C

kn
1/r

kn∑
i=1

E|X ′′
i | −→ 0

by applying the Abelian transformation. From (14) and (17) it follows
that, for 1 ≤ r < 2,

S′′
n −→ 0 a.s.

Since Sn = S′
n + S′′

n, we obtain (11) for 1 ≤ r < 2.

(c) If 0 < r < 1, since (12) and (14) hold it remains to show that

kn∑
i=1

aniEX ′
i −→ 0.

From the Appendix we have

∞∑
i=1

1
i1/r

E|X ′
i|

≤ C

{ ∞∑
i=1

P (X ≥ i1/r) +
∞∑

i=1

1
i1/r

EXI(X ≤ i1/r)
}

< ∞.

Consequently, by the Kronecker lemma

1

k
1/r
n

kn∑
i=1

E|X ′
i| −→ 0 as i → ∞.
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It follows that
∣∣∣∣

kn∑
i=1

aniEX ′
i

∣∣∣∣ ≤ C

kn
1/r

(
max

1≤i≤kn

∣∣∣∣
i∑

j=1

EX ′
j

∣∣∣∣
)

≤ C

kn
1/r

kn∑
i=1

E|X ′
i| = 0(1).

Thus

(log kn)−1
kn∑
i=1

aniXi −→ 0 a.s.,

that is, (11) holds for 0 < r < 1. The proof is complete.

From Theorem 2.4 we get the following strong law of large number
for AQSI sequence.

Corollary 2.4. Assume that {X, Xn, n ≥ 1} is a sequence of
identically distributed, mean zero and square integrable AQSI random
variables with

∑∞
m=1 q(m) < ∞ and satisfying (5) and (6). If E|X|r <

∞ for 0 < r < 2, then

n−1/r(log n)−1
n∑

i=1

Xi −→ 0 a.s.

Acknowledgments. The authors would like to thank the referee
for his careful reading of the manuscript and for suggestions, which
improved the presentation of this paper.

Appendix

Lemma A. If {Xn} is stochastically dominated by a nonnegative
random variable X({Xn} ≺ X) with EXr < ∞ for 0 < r < 2 then we
have

(a)
∑∞

i=1 i−2/rE(X2
i I{|Xi|r ≤ i}) < ∞,

(b)
∑∞

i=1 i−1/rE(|Xi|I{|Xi|r ≤ i}) < ∞, if 0 < r < 1.
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Proof. The proof is based on certain ideas in [3]. Note that, for some
0 < r < 2

(A.1) E|X|r < ∞ ⇐⇒
∫ ∞

0

yr−1P{|X| > y} dy < ∞

and

(A.2) E|X|r < ∞ ⇐⇒
∞∑

n=1

P{|X|r > n} < ∞.

The proof of (a). Since {Xn} is stochastically dominated by a
nonnegative random variable X, we obtain

∞∑
i=1

i−2/rE(X2
i I{|Xi|r ≤ i})

≤ C

∞∑
i=1

∞∑
k=i

k−(2/r)−1E(X2
i I{|Xi|r ≤ i})

≤ C

∞∑
i=1

∞∑
k=i

k−(2/r)−1

∫ i1/r

0

yP ({|Xi| > y}) dy

≤ C

∞∑
k=1

k∑
i=1

k−(2/r)−1
i∑

n=1

∫ n1/r

(n−1)1/r

yP{|Xi| > y} dy

≤ C
∞∑

k=1

k∑
n=1

k−2/r

∫ n1/r

(n−1)1/r

y

(
k−1

k∑
i=1

P{X > y}
)

dy

≤ C
∞∑

n=1

∞∑
k=n

k−2/r

∫ n1/r

(n−1)1/r

yP{X > y} dy

≤ C
∞∑

n=1

n1−(2/r)

∫ n1/r

(n−1)1/r

yP{X > y} dy

≤ C

∞∑
n=1

∫ n1/r

(n−1)1/r

yr−1P{X > y} dy

≤ CEXr < ∞.



CONVERGENCE OF AQSI SEQUENCES 1593

The proof of (b). The proof is similar to that of (a).
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