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A SIMPLER FUBINI PROOF
H.S. BEAR

ABSTRACT. We give a new and simpler proof of the Fubini
theorem. The proof uses a different definition of measurability
which allows for a more geometric approach than usual.

1. Introduction. The definition of the product outer measure is
straightforward. The measure of a set in the product is the infimum of
outer approximation by sums of rectangular areas. The difficulties, and
they are substantial, arise in the proof of the “obvious” relationship
between the integral with respect to the product measure and the
iterated integrals with respect to the measures on the two spaces. The
basic problem is to show that if A = u x v, and E is A-measurable, then

(1) A(E) = / / X (@, y) dv(y) d(z).

Equation (1) is the simplest case of the Fubini theorem, and also its
essential core, for the general result follows easily from the special case
(1).

The difficulty in verifying (1) lies in showing that the sections of a
A-measurable set E' are measurable with respect to p and v, and that
J Xe(z,y) dv(y) is a measurable function of z. If there is a suitable
topology available, as for instance in [0,1] x [0, 1], then compactness
can be used to simplify matters. In the general (non-topological) case,
the standard arguments all involve a skein of set theory which effectively
hides the geometry. See, e.g., [1, pp. 135-147], [2, pp. 143-148], [3, pp.
303-310], [4, pp. 147-151].

We give here a proof for a general product which gives a clearer
picture of how close approximation of a product set by rectangles
forces a close approximation to sections by measurable sets in the
factor spaces. The proof depends on a formally weaker condition for
measurability than the usual Carathéodory condition. This condition
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is less mystical than the usual one and allows a more geometric proof
that sections are measurable.

2. Product measure. We start with two complete finite measure
spaces, (X,S,u) and (Y,7,v), where for simplicity we assume that
w(X) = v(Y) = 1. Our approach provides some simplification even
in the case X = Y = [0,1], where compactness is usually used to
advantage.

Define an outer measure A on X x Y by

(2) ME) = inf { > u(Av(By): E | A x BZ},

where the A; and B; are measurable sets in X and Y. We will refer to
aset Ax Bwith A€ S and B € T as a rectangle.

The essence of the Fubini theorem is the identity (1). A function
f(z,y) which is A-measurable can be approximated above and below
by countable-valued simple functions

where the {F;} partition X x Y into disjoint sets, and there are
partitions which make u(z,y) —{(z, y) uniformly small. The A-integrals
of u(z,y) and I(x, y) are upper and lower Darboux sums for the integral

of f:

(4) /ud)\ > MA(E; /ld)\ > mAE

If (1) holds, then the iterated integrals of u(z,y) and l(x,y) also equal
the upper and lower Darboux sums (4). Hence the Fubini formula

(5) [ = //fxydu ) dyu(z)

follows easily from the special case (

3. Properties of A\. The function X\ defined on subsets of X xY by
(2) is clearly an outer measure. To see that A(A x B) = u(A)v(B), let
{A; x B;} be a covering of E = A x B by rectangles. Then

(6) Xe(z,y) = Xa(z ZXA
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Integrating first with respect to y and using the monotone convergence
theorem, we get

(7) Xa(@)v(B) < ) Xa, (@)v(By).

Now integrate with respect to x and get

(8) p(Aw(B) < Y u(Ai)v(By).

Hence the one-rectangle covering of A x B by itself is optimal, and
MA x B) = u(A)v(B). The same integration argument shows that if
A x B = UA; x B;, where the A; x B; are disjoint, then A\(A x B) =
> pu(A;)v(B;). Thus A is finitely and countably additive on rectangles
whose union is a rectangle. We will need that fact later.

We define a set £ C X X Y to be measurable, with respect to A,
provided

(9) AE) +A(E) =1,

where E’ is the complement of F in X x Y. This is essentially
Lebesgue’s original definition for sets on the line, with some transliter-
ation and the topology rinsed off [1, p. 41]. We will use this formally

weaker definition in all three spaces, X, Y, X XY, to show that sections
of A-measurable sets are measurable.

Lemma. Rectangles are measurable.

Proof. For the rectangle A x B we have
(10) (AxB)Y =(AxB)U(A" xB)U (4" x B),
and the rectangles on the right are disjoint. By subadditivity of A,

AMA x B) <AAx B')+ MA"x B)+ M\A" x B')
= p(A)(1=v(B)) + (1— p(A)w(B) + (1- p(A))(1-v(B))
=1—u(A)r(B).
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Thus
(11) AMA x B)+AAx B) <1,
and A x B is measurable. O

Lemma. If E is a measurable subset of X XY, then for every set
TCXXY,

(12) MENT)+ NE'NT) = XT).

Proof. We show first that measurable sets must split rectangles
additively, and use this to show that they split every set additively.
The following argument is the two dimensional version of the argument
for subsets of [0,1]. (See [1, pp. 28-31].)

Let Ry = A x B be any rectangle, and let {r;} = {a; x b;} be a
covering of the measurable set E by rectangles, with

(13) Do) = plai)v(b) < A(E) +e.

LetRlexB, RQZAXB/, R3:A/><B, R4:A’><B’,sothe
rectangle X x Y is the disjoint union of the rectangles Ry, Ry, R3, R4.
For j =1,2,3,4, let r;; = 7N R, so for fixed j, the rectangles r;; cover
E N R;. Moreover, for each 1,

(14) rin Urig Umiz Urig = 14,

and the r;; are disjoint, so

(15) A1) + Mrig) + A(1i3) + Arig) = A(ry).
Hence

AE)+e > ) Ary)

(16) = Z )\(Til) +-- Z /\(7"1‘4)

> MENR) 4+ AENRy)
> \E).
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Since € is arbitrary,

(17) ME)=AENR) +AMENR)+AENR3)+ A(ENRyY).
By the same argument,

(18) XE")=AE' NR1)+ AE' N R2) + AE'NR3) +AE' N Ry).

Combining (17) and (18) and using the fact that F is measurable, we
have

(19)
1=\E)+ AE)
= [MENR)+AXE NRy)|+-+ [M(ENRy) + A(E'NRy)|
> AMRy)+ -+ AMRy)
= 1.

Hence equality holds in (19), and for each j = 1,2, 3,4,
(20) MENR;)+ ME' NR;) = MR;).

Since R; was an arbitrary rectangle, F splits all rectangles additively.

Now let T be any set and let {r;} be rectangles which cover T with

(21) ANT)+e > > Ari).
Then ENT CU(ENr;) and E'NT C U(E' Nry), so
MENT) <Y MENT),
(22) AE'NT) <> AE'Nr),
MENT)+AE'NT) < > [MENT) +AE Nry)]

= Z )\(’I“l)

(23) < MT) +e.

Since ¢ is arbitrary, and subadditivity is the other inequality, a mea-
surable set F satisfies the Carathéodory criterion. O
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By standard arguments, e.g., [1, pp. 31-35], we now know that the
A-measurable sets form a o-algebra, and \ is countably additive on the
measurable sets.

4. The Fubini theorem. We want to show that almost all sections
of a A\-measurable set are measurable. To discuss the “measure” of a
set in X or Y which is not assumed to be in S or 7 we go backwards
and define outer measures p* and v* in terms of p and v. If the
measures p and v are obtained from outer measures, as for example if
X =Y =10,1] and p = v is Lebesgue measure, then p* and v* are the
usual outer measures.

For any set A C X, let
(24) p*(A) =inf{u(B): AC B € S}.

If {B,} is a sequence of measurable sets in X which contain A, with
w(Bp) — p*(A), then A C NB,, and p*(A) = p(NB,). Thus every set
A C X is enclosed in a measurable set B with u(B) = p*(A).

Notice that p* is indeed an outer measure on X : p*(¢) = 0,
p*(A) > 0 for all A, and p* is monotone. To verify subadditivity,
let A,, C B, with u*(A,) = u(B,) and B,, measurable. Then

(25)
u*(UAn) < u*(UBn) =M(UBn) <D B =) pi(An).

Lemma. A set A in X is measurable, i.e., in S, if and only if

(26) i (A) + pf(A) = 1.

Proof. Let p*(A) = u(B) and p*(A") = u(C) where A C B, A’ C C,
and B, C are measurable. Assume p*(A) + p*(A’) = 1. Then since
BUC = X,

(27)  1=p (4)+u'(A) = u(B) + u(C) > p(BUC) = 1.

Therefore u(B N C) = 0, and A, A’ differ from the measurable sets
B and C by sets of measure zero. Since p and v are assumed to be
complete measures, A and A’ are measurable. o
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For any set £ C X xY and any « € X, let E(x) be the vertical
section of E through z, i.e.,

(28) E(z)={yeY:(x,y) € E}.

If E=AxB, then E(z)=Bifx € A, and E(z) =@ if x ¢ A. Hence
for F = A x B, with B measurable,

(29) v(E(z)) = {S(B) ii Z i

If A and B are measurable, then v(E(z)) is a measurable step function
on X, and

(30) / v(B(x)) du(x) = ju(A)w(B) = A(A x B).

Theorem. If E is a measurable subset of X xY, then E(x) is a
measurable subset of Y for almost all x, and v(E(z)) is a measurable
function on X, and

(31) [ vE@) dute) = A(E)

Proof. Assume F is measurable, so A(E) + A(E’) = 1. For each n, let
{rni} be a covering of E by rectangles with

1
(32) B+ > TAow)
Let {s,:} be a covering of E' by rectangles with
1
33 ME') + — A(Sni)-
(33) () + 5 > 32 Alon

For each n and each x € X, the sets {r,;(z)} cover E(x) and the sets
{sni(x)} cover E'(z). Therefore, for each x,

v (E(x) <Y v(ri(x) = pa(),
(34) "
v (E'(z)) < Zl/(sm(a:)) = o, ().

i



398 H.S. BEAR

Hence, for each x and each n,

(35) 1 <v*(E(z)) + v (E'(2)) < pu(@) + on(2).

For each n and i, let r,; = an; X by and s,y = cps X dpi, where anp;,
bni, Cni, dn; are measurable sets in X or Y. For each (n,i), by (30) we
have

(36) [ #lrita)) dia) = ans ) bus) = A
Similarly,
(37) [ i) ) = pcaros) = Ao

The functions p,(x), o, (x) defined in (34) are sums of measurable step
functions, so measurable, and

[ @ dnt) =Y [ vlrte) dute)
= Z )\(’I“»m)

(38) <ME)+ L,

3|~

(39) / on(z) du(z) < A(E') +

Let pl,(x) = min{p1 (), ..., pn(x)} and o}, (x) = min{o1(z),... ,on(z)},
so pl,, o), decrease to measurable functions p(x), o(z), with

[ pla)dute) < x(E)
(40)
/o(x) du(z) < MNE').
From (35) we have p(z) + o(z) > 1, so

(4) 1< / (p(e) + o(2)) dulx) < A(E) + A(E') = L.



A SIMPLER FUBINI PROOF 399

It follows that p(x) + o(x) = 1 almost everywhere and that equality
holds in (40). From (35) we have

1=v*(E(x)) +v"(E'(x)) ae.

Therefore E(x) is measurable for almost all z, and

(42) [ rE@) dute) = [ o) dua) = N(B).

Equation (42) is the same as

[ Xt dviw) dute) = M),

The argument is symmetric in x and y, so the other iterated integral
also equals \(E). O
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