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LOCAL CONNECTEDNESS IN HYPERSPACES

JANUSZ J. CHARATONIK AND ALEJANDRO ILLANES

ABSTRACT. Variants of local connectedness as local con-
nectedness, local arcwise connectedness, strong local connect-
edness and strong local arcwise connectedness at a point are
studied for the following hyperspaces of a compact Hausdorff
space X: Cn(X), C∞(X), Fn(X), F∞(X) and 2X .

1. Introduction. In [20] it is proved that if X is a Hausdorff com-
pact space, then local connectedness and local arcwise connectedness of
the hyperspace C(X) of all subcontinua of X and of the hyperspace 2X

of all nonempty closed subsets of X are equivalent at any point. In [21]
it is shown that for metric spaces the above properties are equivalent
to another one, namely to local k-connectedness. In the present pa-
per the above equivalences are studied for further hyperspaces: Cn(X)
of all members of 2X that have no more than n components, C∞(X)
of all members of 2X that have finitely many components, Fn(X) of
all members of 2X that have no more than n points, and F∞(X) of
all members of 2X that consist of finitely many points. The obtained
results complete not only the above mentioned papers [20] and [21],
but also a number of other ones related to the same topic of local con-
nectivity properties of hyperspaces as, e.g., [4 7, 9 12, 18, 19] and
others.

The paper consists of six sections. In the first one we collect, for
reader information and completeness of this paper, some known results
about local connectedness at a point of the hyperspace 2X , i.e., at a
nonempty closed subset of X. The second and the third sections are
devoted to variants of local connectedness at a point of the hyperspace
Cn(X). We study local connectedness, local arcwise connectedness,
strong local connectedness and strong local arcwise connectedness of
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these hyperspaces at a point. Section 4 deals with local k-connectedness
and LC∞ of Cn(X) at a point, for compact metric spaces X. In
Section 5 we discuss the same variants of local connectedness of the
hyperspace C∞(X) at a point. The last, sixth, section is devoted to
investigation of the same kind of problems for the hyperspaces of finite
subsets of X, i.e., for Fn(X) and F∞(X).

The symbol N stands for the set of all positive integers. All considered
spaces are assumed to be Hausdorff, and all mappings are continuous.
A continuum means a compact connected space.

A space X is said to be locally connected at a point p ∈ X provided
that for each open subset U of X such that p ∈ U the point p is an
interior point of a component of U , see [16, Section 49, p. 227]. Note
that some authors use the term connected im kleinen at a point in the
sense of “locally connected” as defined above, see e.g. [13, p. 113] or
[23, p. 132]. A space X is said to be strongly locally connected at a
point p ∈ X provided that for each open subset U of X with p ∈ U
there exists a connected open subset V of X such that p ∈ V ⊂ U
(some authors use the term locally connected at a point in the same
sense, see e.g., [23, p. 132]).

Observe that

(0.1) if X is compact and Hausdorff, then X is locally connected at
a point p if and only if X has a basis of neighborhoods at p composed
of continua, see e.g., [20, p. 120].

An arc means a continuum having exactly two noncut points, as de-
fined, e.g., in [28, p. 36] (and named a generalized arc in [14, p. 114]).
A space is said to be arcwise connected provided that every two of
its points can be joined by an arc contained in the space. A space
X is said to be locally arcwise connected at a point p ∈ X provided
that given an open neighborhood U of p in X there exists an open
neighborhood V of p with V ⊂ U such that if x ∈ V , then there is
an arc A ⊂ U joining p and x; equivalently, given an open subset U
of X such that p ∈ U , there exists an arcwise connected set W such
that p ∈ intX(W ) ⊂ W ⊂ U . A space is said to be locally arcwise
connected provided that it is locally arcwise connected at each of its
points. A space X is said to be strongly locally arcwise connected at a
point p provided that for each open neighborhood U of p in X there
is an open arcwise connected neighborhood V of p such that V ⊂ U
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(note that the term “locally arcwise connected at a point” is used in
the same sense in [11, p. 41]).

For a given point x in the Euclidean k-dimensional space Rk the
symbol ‖x‖ denotes the distance from x to the origin 0. We will
use the symbol Sk for the k-dimensional sphere, i.e., Sk = {x ∈
Rk+1 : ‖x‖ = 1}; the symbol Bk for the k-dimensional ball, i.e.,
Bk = {x ∈ Rk : ‖x‖ ≤ 1}; and N(x, ϕ), where ϕ > 0, for an ϕ-
neighborhood of the point x.

Let k ∈ {0} ∪ N. A space X is said to be locally connected in
dimension k at a point p ∈ X (briefly, we will write locally k-connected
at p) provided that for each open subset U of X such that p ∈ U
there exists an open set V with p ∈ V ⊂ U and such that each
mapping f : Sk → X for which f(Sk) ⊂ V has a continuous extension
f∗ : Bk+1 → X such that f∗(0) = p and f∗(Bk+1) ⊂ U , see [16,
Section 53, p. 346]. A space X is said to be locally connected in
dimension k provided that it has the above property at each of its
points. Note that

(0.2) local 0-connectedness (at a point) is equivalent to local arcwise
connectedness (at the point), compare [16, Section 53, p. 351] and [1,
Chapter 1, Section 17, p. 30].

It should be observed that local connectedness in dimension k at a point
p is sometimes understood in a slightly different way; the difference is
that the condition f∗(0) = p is not required, compare, e.g., [1, p. 30];
see [21, p. 30].

A space X is said to be an LCk-space (at a point p ∈ X), where
k ∈ {0}∪N, if X is locally i-connected (at p) for each i ∈ {0, 1, . . . , k};
and an LC∞-space (at a point p) means an LCk-space (at p) for every
k ∈ {0} ∪N.

Given a space X, we let 2X denote the hyperspace of all nonempty
compact subsets of X equipped with the Vietoris topology, see [23,
p. 10] and [14, Definition 1.1, p. 3] defined as follows. Given a finite
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collection, U1, U2, . . . , Um, of open sets of X, we define

〈U1, . . . , Um〉

=
{
A ∈ 2X : A ⊂

m⋃
k=1

Uk and A ∩ Uk �= ∅ for each k ∈{1, . . . ,m}
}
.

Then the family of all subsets of 2X of the form 〈U1, . . . , Um〉 forms a
basis for the Vietoris topology for 2X .

We denote by C(X) the hyperspace of all subcontinua of X, i.e., of
all connected elements of 2X ; further, for a given n ∈ N, we let Cn(X)
denote the hyperspace of all elements of 2X having at most n compo-
nents. Thus C(X) = C1(X) and Cn(X) ⊂ Cn+1(X) for each n ∈ N,
and we define C∞(X) = {A ∈ 2X : A has finitely many components}.
Similarly, we denote by Fn(X) the hyperspace of all elements of 2X con-
sisting of at most n points and define F∞(X) = {A ∈ 2X : A is finite}.
Thus C∞(X) = ∪{Cn(X) : n ∈ N} and F∞(X) = ∪{Fn(X) : n ∈ N}.
All the hyperspaces mentioned above are considered as subspaces of
the hyperspace 2X (thus they are equipped with the inherited topology
induced by the Vietoris topology).

Let us note the following statements.

Statement 0.3. For each compact Hausdorff space X the hyperspace
2X is compact and normal.

Proof. Indeed, since X compact and Hausdorff, the hyperspace 2X is
also compact and Hausdorff, see [8, p. 244], and thus it is normal, see
[8, Theorem 3.1.9, p. 125].

Statement 0.4. For each compact Hausdorff space X and for each
n ∈ N the hyperspace Cn(X) is compact and normal.

Proof. By the previous statement, the hyperspace 2X is compact and
normal. Since normality is a hereditary property with respect to closed
subspaces, to complete the proof it is enough to show that Cn(X) is a
closed subspace of 2X .

Let A ∈ 2X \ Cn(X). Then A has at least n + 1 components. Thus
there exist nonempty, closed and pairwise disjoint subsets A1, . . . , An+1
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of A such that A = A1 ∪ · · · ∪ An+1. Choose pairwise disjoint open
subsets U1, . . . , Un+1 such that Ai ⊂ Ui for each i ∈ {1, . . . , n + 1}.
Then A ∈ 〈U1, . . . , Un+1〉 ⊂ 2X \ Cn(X). The proof is complete.

For each compact Hausdorff space X and for each n ∈ N we
have Fn(X) ⊂ Cn(X), whence F∞(X) ⊂ C∞(X). Further, since
each element of 2X , i.e., each nonempty closed subset of X, can be
approximated by finite sets, it follows that

(0.5) for each compact Hausdorff space X the hyperspaces F∞(X)
and, consequently, C∞(X), are dense subspaces of 2X .

To simplify notation, we put

〈U1, . . . , Um〉n = Cn(X) ∩ 〈U1, . . . , Um〉
〈U1, . . . , Um〉∞ = C∞(X) ∩ 〈U1, . . . , Um〉.

For each nonempty closed subset A of 2X denote by ∪A the union of
all elements of A. Then ∪ : 22X → 2X is a surjective mapping, see [23,
Lemma 1.48, p. 100]; compare [14, Exercise 11.5, p. 91].

An order arc in a hyperspace H(X) is an arc α ⊂ H(X) such that the
partial ordering of containment for H(X) agrees on α with the total
ordering on α, see [14, p. 110].

The reader is referred to monographs [14] and [23] as well as to
papers [17, 18] and [19] for needed information about the above defined
hyperspaces.

The property of Kelley has been originally introduced for metric
continua, see [15, p. 26]; for more information see [23, p. 538 and
Chapter 16] or [14, p. 167], where references for further results in this
area are given. A pointed version of this property has been defined
by Wardle in [27, p. 291]. The concept has been extended to compact
Hausdorff spaces in [2, p. 210] and in [20, p. 124] as follows. A compact
Hausdorff space X is said to have the property of Kelley at a point
p ∈ X provided that for each subcontinuum K of X containing the
point p and for each open neighborhood U of K in C(X) there is an
open neighborhood V of p in X such that if q ∈ V , then there is a
continuum L in X containing the point q and belonging to U , i.e., such
that q ∈ L ∈ U . The space is said to have the property of Kelley
provided that it has the property of Kelley at each of its points.



816 J.J. CHARATONIK AND A. ILLANES

1. Local connectedness at a point in 2X summary of
known results. In this section we collect, for a compact Hausdorff
space X, some known equivalences that are related to the considered
four variants of local connectivity, as local connectedness, strong local
connectedness, local arcwise connectedness and strong local arcwise
connectedness of the hyperspace 2X at a point A ∈ 2X .

The following three equivalences were proved by Goodykoontz in
[9, Theorem 1, p. 388, Theorem 2, p. 390] and [11, Theorem 1, p.
42] originally for metric continua and extended to compact Hausdorff
spaces in [20, Theorem 3, p. 122].

Theorem 1.1. Let X be a compact Hausdorff space, and let
A ∈ C(X).

(1.1.1) The hyperspace 2X is locally connected at A if and only if for
each open set U ⊂ X containing A there exists a connected set V such
that A ⊂ intX(V ) ⊂ V ⊂ U .

(1.1.2) The hyperspace 2X is strongly locally connected at A if and
only if for each open set U ⊂ X containing A there exists an open
connected set V such that A ⊂ V ⊂ U .

(1.1.3) The hyperspace 2X is strongly locally arcwise connected at A
if and only if for each open set U ⊂ X containing A there exists an
open set V such that A ⊂ V ⊂ U and such that whenever B is a closed
subset of V , there exists a continuum K such that B ⊂ K ⊂ V .

Further, the following equivalences were proved by Goodykoontz in
[9, Theorems 4 and 5, pp. 393, 395], respectively, and [11, Theorem 2,
p. 43] again for metric continua, and, as it is observed in [20, p. 121],
they remain true for compact Hausdorff spaces with almost the same
proofs, see [20, Theorem 4, p. 122] (for local arcwise connectedness see
[20, Theorem 8, p. 123]).

Theorem 1.2. Let X be a compact Hausdorff space, and let A ∈ 2X .
The hyperspace 2X is locally connected (strongly locally connected, lo-
cally arcwise connected, strongly locally arcwise connected) at a point
A if and only if 2X is locally connected (strongly locally connected,
strongly locally arcwise connected, respectively) at each component
of A.
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The following two equivalences were proved by Makuchowski in [20,
Lemmas 5 and 6, pp. 122 and 123, respectively].

Theorem 1.3. Let X be a compact Hausdorff space, and let A ∈
C(X).

(1.3.1) The hyperspace 2X is locally arcwise connected at A if and
only if for each open set U ⊂ X containing A there exists an open set
V such that A ⊂ V ⊂ U and such that whenever B is a closed set and
B ⊂ V , there exists a continuum K such that B ⊂ K ⊂ U .

(1.3.2) For each open set U of X containing A there exists a connected
set V such that A ⊂ intX(V ) ⊂ V ⊂ U if and only if for each open set
U of X containing A there exists an open set V such that A ⊂ V ⊂ U
and such that whenever B is a closed set contained in V , there exists
a continuum K such that B ⊂ K ⊂ U .

Recall also the following result shown in [20, Theorem 9, p. 124].

Theorem 1.4. Let X be a compact Hausdorff space and A ∈ 2X .
The hyperspace 2X is locally connected at A if and only if it is locally
arcwise connected at A.

Concerning the above result let us mention that for the case of C(X)
there is an equivalence for local connectedness of C(X) at an element
A ∈ C(X), see [10, Theorem 2, p. 358]. However, the following question
remains open.

Question 1.5 (Goodykoontz, Jr. [23, Question 1.144, p. 156]).
What are necessary and sufficient conditions for C(X) to be strongly
locally connected at A ∈ C(X)?

2. Local connectedness at a point in Cn(X) The general
case. The present section contains results concerning the four vari-
ants, mentioned in Section 1, of local connectivity at a point for the
hyperspace Cn(X) of a compact Hausdorff space X in the general case
when the space X is arbitrary, i.e., when no additional assumptions are
needed on X. First, it is shown in Theorem 2.4 that local connected-
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ness and local arcwise connectedness, both at a given point of Cn(X),
are equivalent. Second, it is proved that, for n ≥ 2, local connectedness
of Cn at A ∈ Cn−1(X), i.e., when A has less than n components, is
equivalent to this property of 2X at each component of A, and that
for n = 1 only one implication holds, Theorem 2.5 and Example 2.7.
The four properties, now considered globally, are considered for the
Cartesian products of a finite number of factors, Proposition 2.10 and
Corollary 2.11; the results are applied to characterize the properties at
a point A ∈ Cn(X) \Cn−1(X), i.e., when A has exactly n components,
in Theorem 2.12. Further, Theorem 2.18 ties local connectedness of 2X

at a point with other variants of local connectedness of Cn(X) at this
point. Finally, in Theorem 2.21 and Corollary 2.22 it is shown that
local connectedness and strong local connectedness at a point A of the
hyperspace Cn(X) are equivalent if A has less than n components. The
same equivalence in case when A has exactly n components is discussed
in the next section (it needs an additional assumption that the space
X has the property of Kelley).

We start with three lemmas.

Lemma 2.1. Let X be a compact Hausdorff space, n ∈ N, and let a
connected subset B of 2X be such that B ∩ Cn(X) �= ∅. Then ∪B has
at most n components.

Proof. Suppose on the contrary that ∪B has more than n compo-
nents. Then there are n + 1 nonempty and pairwise separated sub-
sets A1, . . . , An+1 of X such that ∪B = A1 ∪ · · · ∪ An+1. Fix an
element B ∈ B ∩ Cn(X). Then B has at most n components, and
B ⊂ A1∪· · ·∪An+1. Assume that A1, . . . , Am are such that Ai∩B �= ∅

for each i ∈ {1, . . . ,m} and Ai∩B = ∅ for each i ∈ {m+1, . . . , n+1}.
Thus m ≤ n. Let

K = {C ∈ B : C ⊂ A1 ∪ · · · ∪Am}
and

L = {C ∈ B : C ∩ (Am+1 ∪ · · · ∪An+1) �= ∅}.

Since B ∈ K, the set K is nonempty. To see that also L is nonempty,
fix a point p ∈ An+1 ⊂ ∪B. Then there is an element C of B such that
p ∈ C. Thus C ∩ (Am+1 ∪ · · · ∪An+1) �= ∅, so C ∈ L, and thus L �= ∅.
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Since ∪B = (A1 ∪ · · · ∪ Am) ∪ (Am+1 ∪ · · · ∪ An+1), it follows that
B = K ∪ L.

We will show that the sets K and L are separated.

First, suppose on the contrary that there exists a D ∈ cl2X (K) ∩ L.
Define Z = {E ∈ 2X : E ⊂ clX(A1 ∪ · · · ∪ Am)} and notice that Z is
closed in 2X (by the definition of the Vietoris topology) and that K ⊂
Z. Therefore cl2X (K) ⊂ Z, whence D ∈ Z. On the other hand D ∈ L,
which implies that D ∩ (Am+1 ∪ · · · ∪An+1) �= ∅. It follows from these
two conditions that clX(A1∪· · ·∪Am)∩(Am+1∪· · ·∪An+1) �= ∅ which
is a contradiction because the unions A1∪· · ·∪Am and Am+1∪· · ·∪An+1

are separated.

Second, suppose on the contrary that there exists a D ∈ K∩ cl2X (L).
Define now Z = {E ∈ 2X : E ∩ clX(Am+1 ∪ · · · ∪ An+1) �= ∅},
and note that Z is closed in 2X (again by the definition of the
Vietoris topology) and that L ⊂ Z. Thus cl2X (L) ⊂ Z, whence
D ∈ Z, i.e., D ∩ clX(Am+1 ∪ · · · ∪ An+1) �= ∅. On the other
hand, D ∈ K means D ⊂ A1 ∪ · · · ∪ Am, whence it follows that
clX(Am+1 ∪ · · · ∪An+1) ∩ (A1 ∪ · · · ∪Am) �= ∅, a contradiction again.
Therefore K and L are separated, contrary to the connectedness of B.
The proof is complete.

Lemma 2.2. Let X be a compact Hausdorff space, n ∈ N, and let
a subcontinuum B of 2X be such that B ∩ Cn(X) �= ∅. Then ∪B is a
closed subset of X with at most n components, i.e., ∪B ∈ Cn(X).

Proof. Put B = ∪B, and let p ∈ clX(B). For each closed neighbor-
hood M of p in X, let AM = {A′ ∈ B : A′ ∩ M �= ∅}. Then AM

is a closed, therefore a compact, subset of B. If M and N are closed
neighborhoods of p in X with M ⊂ N , then AM ⊂ AN . Further, each
AM is nonempty, because for a given M , the condition M ∩ B �= ∅

implies M ∩ A′ �= ∅ for some A′ ∈ B, whence A′ ∈ AM . Thus
{AM : M is a closed neighborhood of p} is a family of compact subsets
of B with the finite intersection property. Hence there exists an ele-
ment A0 ∈ B such that A0 ∈ AM for each M . Thus p ∈ clX(A0) = A0.
Therefore p ∈ B, and so B is closed in X. Finally, B has at most n
components by Lemma 2.1. Thus B ∈ Cn(X), as needed. The proof is
complete.
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Lemma 2.3. Let X be a compact Hausdorff space, n ∈ N, and let
α be an order arc in 2X such that ∩α ∈ Cn(X). Then α ⊂ Cn(X).

Proof. Take A ∈ α, and define β = {B ∈ α : B ⊂ A}. Then β is
a subarc of α and A = ∪ β. Then A ∈ Cn(X) by Lemma 2.2, and so
α ⊂ Cn(X).

The following result extends [20, Theorem 10, p. 124]. Its proof is
modeled on the corresponding proof in [20].

Theorem 2.4. Let X be a compact Hausdorff space, n ∈ N and
A ∈ Cn(X). Then the following conditions are equivalent :

(2.4.1) Cn(X) is locally connected at A;

(2.4.2) Cn(X) is locally arcwise connected at A.

Proof. The implication (2.4.2) =⇒ (2.4.1) is known, see [20,
Observation 1, p. 120]. To show the opposite implication, assume
that Cn(X) is locally connected at A. Let U = 〈U1, . . . , Um〉n be a
neighborhood of A in Cn(X) such that it is a member of a base in the
Vietoris topology. By the local connectedness of Cn(X) at A there is a
continuum K ⊂ Cn(X) contained in U and such that A ∈ intCn(X)(K),
compare (0.1). The set intCn(X)(K) is the open set required in the
definition of local arcwise connectedness. Indeed, let K = ∪K. Then
by Lemma 2.2 it follows that K is a compact subset of X that has at
most n components.

Observe that K ⊂ U1 ∪ · · ·∪Um, and that for each i ∈ {1, . . . ,m} we
have ∅ �= A∩Ui ⊂ K ∩Ui. Hence K ∈ U . Take B ∈ intCn(X)(K) ⊂ K,
whence B ⊂ K. Recall that A ∈ K. We will show the following.

Claim. Given B ∈ K, each component of K intersects B.

Suppose on the contrary that there exists a component C of K
such that C ∩ B = ∅. By the cut wire theorem, see [24, p. 72] for
the metric formulation, and a remark following its proof, referring to
compact Hausdorff spaces in [24, p. 82], there exist disjoint closed in
X subsets L and M such that K = L ∪M , C ⊂ L and B ⊂ M . Let
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M = {D ∈ K : D ⊂M} and L = {D ∈ K : D ∩ L �= ∅}. Then M and
L are closed, disjoint and nonempty subsets of K such that K = M∪L.
This contradicts the connectedness of K and proves the claim.

Thus by the Claim each component of K intersects both A and B,
and therefore, see [14, Theorem 15.3, p. 120], there are order arc α1

from B to K and order arc α2 from A to K. Then an arc joining A
and B can easily be constructed in α1∪α2 ⊂ U . The proof is complete.

For another proof of the implication from (2.4.1) to (2.4.2) see
Remark 2.23.

In the next two theorems we study several local connectivity con-
ditions of the hyperspace Cn(X) at its element A. We distinguish
separately two cases, depending on whether the number of components
of A is less than n (Theorem 2.5) or it is exactly n (Theorem 2.12).

Since the case of n = 1 has already been investigated in the past in
a sequence of papers, see, e.g., [9 12, 20, 21], we may assume n ≥ 2.
However, it should be underlined that this assumption is indispensable
in some results, so that a conclusion obtained for any n ≥ 2 need not
be true for n = 1. Each such case will be indicated and/or discussed
separately.

Theorem 2.5. Let X be a compact Hausdorff space, and let n ∈ N
be fixed.

(2.5.1) If n = 1, let A ∈ C(X). If 2X is locally connected at A, then
C(X) is strongly locally arcwise connected at A.

(2.5.2) If n ≥ 2, let A ∈ Cn−1(X) ⊂ Cn(X). Then Cn(X) is locally
connected at A if and only if 2X is locally connected at each component
of A.

Proof. The statement (2.5.1) was proved in [10, Theorem 1, p. 358]
for the metric case; the proof for the general case is exactly the same.

To show (2.5.2) assume that n ≥ 2, and let A1, . . . , Am be the
different components of A, where m ≤ n− 1.
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Necessity. Assume that Cn(X) is locally connected at A. Fix
j ∈ {1, . . . ,m}. In order to show that 2X is locally connected at
Aj , it is enough to see that if U is an open subset of X with Aj ⊂ U ,
then by (1.1.1) of Theorem 1.1 there exists a connected subset V of
X such that Aj ⊂ intX(V ) ⊂ V ⊂ U . Let V1, . . . , Vm be mutually
disjoint open subsets of X such that Ai ⊂ Vi for each i ∈ {1, . . . ,m}
and Vj ⊂ U . Let V = 〈V1, . . . , Vm〉n. Then A ∈ V . Since Cn(X)
is locally connected at A, there exists a connected subset B of Cn(X)
such that A ∈ intCn(X)(B) ⊂ B ⊂ V .

Let B = clX(∪B). Since A ∈ B, the union ∪B has at most
m components. Thus B has at most m components. For a given
C ∈ B we have C ∈ 〈V1, . . . , Vm〉n, so C ⊂ V1 ∪ · · · ∪ Vm. Thus
A ⊂ B ⊂ V1∪· · ·∪Vm. Hence B has at least m components. Therefore,
B has exactly m components, and they are B ∩ V1, · · · , B ∩ Vm. Let
V = B ∩ Vj . Then Aj ⊂ V ⊂ Vj ⊂ U . So, we only need to prove that
Aj ⊂ intX(V ).

Since A ∈ intCn(X)(B), there exists a basic open set W = 〈W1, . . . ,
Wk〉n in Cn(X) such that A ∈ W ⊂ B. Let W = W1 ∪ · · · ∪Wk. Then
Aj ⊂ Vj ∩W . We will show that Vj ∩W ⊂ V . Let p ∈ Vj ∩W . Since
m < n, it follows that A∪{p} ∈ Cn(X) and A∪{p} ∈ 〈W1, . . . ,Wk〉n ⊂
B. Thus A ∪ {p} ⊂ B and p ∈ B ∩ Vj = V . We have shown that
Vj ∩ W ⊂ V . Therefore A ⊂ intX(V ) ⊂ V ⊂ U . The proof of the
necessity is complete.

Sufficiency. Assume that 2X is locally connected at each compo-
nent A1, . . . , Am of A. To show that Cn(X) is locally connected at
A take an open subset U of Cn(X) such that A ∈ U , and let W =
〈W1, . . . ,Wk〉n be a basic open set in Cn(X) such that A ∈ W ⊂ U .
Put W = W1 ∪ · · · ∪Wk. Let V1, . . . , Vm be open subsets of X such
that Ai ⊂ Vi ⊂ clX(Vi) ⊂ W for each i ∈ {1, . . . ,m} and such that
clX(V1), . . . , clX(Vm) are pairwise disjoint. By (1.1.1) of Theorem 1.1
for each i ∈ {1, . . . ,m}, there exists a connected set Ci such that
Ai ⊂ intX(Ci) ⊂ Ci ⊂ Vi. Let Z = 〈clX(C1), . . . , clX(Cm)〉n ∩
〈W1, . . . ,Wk〉n. Then A ∈ intCn(X)(Z) ⊂ Z ⊂ U . Each B ∈ Z in-
tersects each of the components of T = clX(C1) ∪ · · · ∪ clX(Cm) and
B ⊂ T . Then, by [14, Theorem 15.3, p. 120], there exists an or-
der arc α from B to T . It is easy to show that α ⊂ Z. Thus Z
is a connected neighborhood of A, in Cn(X), and therefore Cn(X), is
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locally connected at A. The proof of the sufficiency is complete, and
thus (2.5.2) is proved.

The proof is complete.

Remark 2.6. (a) The implication in (2.5.1) has been shown for metric
continua X in [9, Theorem 3, p. 390].

(b) The implication in (2.5.1) cannot be replaced by an equivalence,
i.e., the converse implication is not true in general. The next example
shows this.

Example 2.7. There is a metric continuum X and a subcontinuum
A of X such that C(X) is strongly locally arcwise connected at A while
2X is not locally connected at A.

Proof. In the Cartesian coordinates in the plane put v− = (0,−1),
v+ = (0, 1), and for each n ∈ N, let e−n = (−(1/n), 0) and e+n =
((1/n), 0). For any two points p and q let pq stand for the straight line
segment from p to q. Define

X =
( ⋃

{v−e−n ∪ v+e+n : n ∈ N}
) ⋃

{v−v+}.

Thus X is the one-point union of two harmonic fans with the (only)
accumulation points of their sets of end points identified. The reader
can verify that X has the need properties for A = [−1/2, 1/2] × {0} ⊂
v−v+.

LetX be a compact Hausdorff space and n ∈ N. Accept the following
notation. Let (C(X))n be the Cartesian product of n copies of the space
C(X). Define a function

(2.8) ϕ : (C(X))n −→ Cn(X) by ϕ(A1, . . . , An) = A1 ∪ · · · ∪An.

To prove the next result we need a lemma on properties of the function
ϕ and a proposition on various concepts of local connectedness in the
Cartesian products.

Lemma 2.9. The above defined function ϕ has the following prop-
erties.
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(2.9.1) ϕ is continuous.

(2.9.2) For each n ∈ N with n ≥ 2 and for each A0 ∈ ϕ−1(Cn(X) \
Cn−1(X)), there exists an open subset Y of (C(X))n such that A0 ∈ Y,
the set ϕ(Y) is open in Cn(X), and the restriction ϕ|Y : Y → ϕ(Y) is
a homeomorphism.

Proof. To prove (2.9.1) let B0 = (B1, . . . , Bn) ∈ (C(X))n, and let
U = 〈U1, . . . , Uk〉n be a basic open set of Cn(X) such that ϕ(B0) ∈ U .
Put B = ϕ(B0) = B1 ∪ · · · ∪ Bn. For each i ∈ {1, . . . , n}, define
Ji = {j ∈ {1, . . . , k} : Bi ∩ Uj �= ∅}. Let

Ui =
{
D ∈ C(X) : D ⊂

⋃
{Uj : j ∈ Ji} and D ∩ Uj �= ∅

for each j ∈ Ji

}
.

Finally put U0 = U1 × · · · × Un. Since the sets U1, . . . , Uk are open by
the definition, it follows that each Ui, for i ∈ {1, . . . , n}, is open by
the definition of the Vietoris topology, and thus U0 is open in (C(X))n.
Observe that B0 ∈ U0. It is easy to show that ϕ(U0) ⊂ U . Therefore ϕ
is continuous.

To show (2.9.2) let A0 = (A1, . . . , An) ∈ ϕ−1(Cn(X) \ Cn−1(X)) ⊂
(C(X))n, and put A = ϕ(A0) = A1 ∪ · · · ∪ An. Then A1, . . . , An are
different components of A. Choose open subsets U1, . . . , Un of X such
that Ai ⊂ Ui for each i ∈ {1, . . . , n} and that clX(U1), . . . , clX(Un) are
pairwise disjoint. Let W = clC(X)〈U1〉1 × · · · × clC(X)〈Un〉1. Then W
is a compact neighborhood of A0 in (C(X))n. Let V = 〈U1, . . . , Un〉n.
Clearly, A ∈ V ⊂ ϕ(W). Thus A ∈ int Cn(X)(ϕ(W)). It is easy to
show that ϕ | W : W → ϕ(W) is one-to-one. Therefore ϕ | W is a
homeomorphism. Put Y = ϕ−1(int Cn(X)(ϕ(W))), and observe that it
satisfies the required conditions.

Proposition 2.10. Let X and Y be compact Hausdorff spaces. Then
the product X×Y is locally connected (strongly locally connected, locally
arcwise connected, strongly locally arcwise connected) if and only if the
factors X and Y are locally connected (strongly locally connected, locally
arcwise connected, strongly locally arcwise connected, respectively).

Proof. We will argue for the case of strongly locally arcwise connected
spaces; the proof for other cases is quite similar.
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Necessity. Assume that X × Y is strongly locally arcwise connected.
It ought to be proved that X is such, too (the argument for Y is the
same). To this aim take a point x ∈ X and an open subset U of X
with x ∈ U . Let π1 : X×Y → X be the natural projection. Fix y ∈ Y .
Then (x, y) ∈ π−1

1 (U), and the set π−1
1 (U) is open in X × Y . Since

X × Y is strongly locally arcwise connected, there exists an arcwise
connected and open in X×Y subset W such that (x, y) ∈W ⊂ π−1

1 (U).
Projecting under π1 we get x ∈ π1(W ) ⊂ π1(π−1

1 (U)) = U . Since the
projection π1 is an open mapping, π1(W ) is open inX. We have to show
that π1(W ) is arcwise connected. So, take points π1(u), π1(v) ∈ π(W ),
where u, v ∈ W . Since W is arcwise connected, there is an arc α in
W joining u and v. Thus π1(u), π1(v) ∈ π1(α). Since the continuum
π1(α) is a continuous image of the arc α, it follows from [26, Theorem
9, p. 201] that it is arcwise connected. Thus there exists an arc
β ⊂ π1(α) ⊂ π1(W ) joining π1(u) and π1(v). Therefore π1(W ) is
arcwise connected, and the proof of the necessity is finished.

Sufficiency. Assume that X and Y are strongly locally arcwise
connected. Take (p, q) ∈ X × Y and a (basic) open set of the form
P × Q in X × Y such that (p, q) ∈ P × Q, P is open in X and Q is
open in Y . By the assumption there are subsets U of X and V of Y ,
both arcwise connected, such that U is open in X, V is open in Y ,
with p ∈ U ⊂ P and q ∈ V ⊂ Q. Then their product U × V is open
in X × Y , arcwise connected and satisfies (p, q) ∈ U × V ⊂ P ×Q, as
needed.

The proof is complete.

Applying finite induction, Proposition 2.10 leads to the following
corollary.

Corollary 2.11. Let n ∈ N be fixed and, for each i ∈ {1, . . . , n},
let the space Xi be compact and Hausdorff. Then the product X1 ×
· · · ×Xn is locally connected (strongly locally connected, locally arcwise
connected, strongly locally arcwise connected) if and only if each of
the factors Xi is locally connected (strongly locally connected, locally
arcwise connected, strongly locally arcwise connected, respectively).

Now we are ready to prove the previously mentioned result.
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Theorem 2.12. Let X be a compact Hausdorff space, n ∈ N
fixed, and let A ∈ Cn(X) \ Cn−1(X) have A1, . . . , An as its different
components. Put A0 = (A1, . . . , An) ∈ (C(X))n. Then the following
are equivalent:

(2.12.1) Cn(X) is locally connected (strongly locally connected, locally
arcwise connected, strongly locally arcwise connected, respectively) at
A,

(2.12.2) (C(X))n is locally connected (strongly locally connected, lo-
cally arcwise connected, strongly locally arcwise connected, respectively)
at A0,

(2.12.3) C(X) is locally connected (strongly locally connected, locally
arcwise connected, strongly locally arcwise connected, respectively) at
each Ai for i ∈ {1, . . . , n}.

Proof. Note that if n = 1 then the symbol Cn−1(X) is not defined and
it can be taken as the empty set. In this case the conditions (2.12.1),
(2.12.2) and (2.12.3) coincide, so it is nothing to prove. Therefore we
can assume n ≥ 2.

Let ϕ be as in (2.8). Then A = ϕ(A0) = A1 ∪ · · · ∪An, so the equiva-
lence between (2.12.1) and (2.12.2) is immediate from Lemma 2.9. The
equivalence between (2.12.2) and (2.12.3) is an obvious consequence of
Corollary 2.11. The proof is finished.

Note that in Theorem 2.5 local connectedness of Cn(X) at A is
characterized by local connectedness of 2X at each component of
A. In Theorem 2.12 however we cannot substitute 2X for C(X), as
Example 2.7 shows.

To prove the next result we introduce a notation and prove a lemma.

Let X be a compact Hausdorff space. Fix an arbitrary n ∈ N. For
each open subset U of 2X and for each m ∈ {1, . . . , n} let

U [m,n] =
{
A ∈ Cn(X) : there exist nonempty pairwise
disjoint closed and open subsets A1, . . . , Am

of A such that A1 ∪ · · · ∪Am ∈ U}
.
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Lemma 2.13. The set U [m,n] is open in Cn(X).

Proof. Let A ∈ U [m,n] and let A1, . . . , Am be as in the definition
of U [m,n]. Put A0 = A1 ∪ · · · ∪ Am. Since U is open in 2X , there
exist open subsets U1, . . . , Uk of X such that A0 ∈ 〈U1, . . . , Uk〉 ⊂ U .
Put U = U1 ∪ · · · ∪Uk. Let V1, . . . , Vm, Vm+1 be pairwise disjoint open
subsets of X such that A1 ⊂ V1, . . . , Am ⊂ Vm, A \ A0 ⊂ Vm+1 and
V1 ∪ · · · ∪ Vm ⊂ U .

For each i ∈ {1, . . . ,m}, let Ji = {j ∈ {1, . . . , k} : Ai ∩ Uj �= ∅}.
Notice that Ji �= ∅ for each i.

Let
V = {B ∈ Cn(X) : B ⊂ V1 ∪ · · · ∪ Vm+1, B ∩ Vm+1 �= ∅

and B ∩ Vi ∩ Uj �= ∅ for all i ∈ {1, . . . ,m} and j ∈ Ji}
if A \A0 �= ∅,

V = {B ∈ Cn(X) : B ⊂ V1 ∪ · · · ∪ Vm and B ∩ Vi ∩ Uj �= ∅

for all i ∈ {1, . . . ,m} and j ∈ Ji}
if A \A0 = ∅.

It can easily be proved that, in both cases, V is open in Cn(X) and
A ∈ V ⊂ U [m,n]. Thus U [m,n] is open.

Let again X be a compact Hausdorff space; let A ∈ C(X), and
assume that the hyperspace 2X is locally connected at A. Fix n ∈ N,
and let U = 〈U1, . . . , Uk〉n be a basic open set in Cn(X) such that
A ∈ U . Define U = U1 ∪ · · · ∪ Uk and U ′ = 〈U1, . . . , Uk〉 ⊂
2X . By (1.1.1) of Theorem 1.1, there exist closed connected subsets
Q−1, Q0, Q1, . . . , Qn, Qn+1 of X such that

A ⊂ intX(Q−1) ⊂ Q−1 ⊂ intX(Q0) ⊂ Q0 ⊂ intX(Q1) ⊂ Q1 ⊂
· · · ⊂ int X(Qn) ⊂ Qn ⊂ intX(Qn+1) ⊂ Qn+1 ⊂ U.

Further, define

Vi = intX(Qi) for each i ∈ {−1, 0, 1, . . . , n, n+ 1},
Wi = Vi \Qi−1 for each i ∈ {0, 1, . . . , n+ 1},
Zi = Vi+1 \Qi−2 for each i ∈ {1, . . . , n},
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and, for each i ∈ {1, . . . , n− 1}, define

Ui = 〈Zi,Wi〉[1, n] ∩ (〈V−1〉 ∩ U ′)[i, n] ∩ 〈V−1 ∪ Zi〉n,
Vi = 〈Vi, Vi−1〉[i+1, n] ∩ (〈V−1〉 ∩ U ′)[i, n] ∩ 〈Vi+1〉n.

Finally, put U0 = 〈V0, V1〉n ∩ U , and let

(2.14) V = U0 ∪ U1 ∪ · · · ∪ Un−1 ∪ V1 ∪ · · · ∪ Vn−1.

In particular, if n = 1, then V = U0.

Proposition 2.15. Let X be a compact Hausdorff space, and let 2X

be locally connected at A ∈ C(X). Under the above notation, let V be
defined by (2.14). Then for each element B ∈ V there exists an arc α
joining B and A in V with the property that for each C ∈ α the number
of components of C is less than or equal to the number of components
of B.

Proof. Note that A ∈ U0, whence A ∈ V by (2.14). According to
Lemma 2.13 the set V is open in Cn(X).

Take an element B ∈ Ui ∪ Vi for some i ∈ {1, . . . , n − 1} and recall
that B ∈ (〈V−1〉∩U ′)[i, n]. Therefore B contains a closed subset which
belongs to U ′. Thus B intersects each Uj for j ∈ {1, . . . , k}. Moreover,
B ⊂ Vi+1 ⊂ U . Hence B ∈ U . Since U0 ⊂ U , it follows that V ⊂ U .

Accept the following notation. Given two subsets R and S of V , we
write R⇒S to indicate that for each element R ∈ R there exist an
element S ∈ S and an arc α ⊂ V that joins R and S such that for
each C ∈ α the number of components of C is less than or equal to
the number of components of R. Thus, to prove the proposition, it is
enough to show the following:

U0⇒U1 ∪ {A}, U1⇒V1, V1⇒U2 ∪ {A}, U2⇒V2, . . . ,

Un−2⇒Vn−2, Vn−2⇒Un−1 ∪ {A}, Un−1⇒Vn−1, Vn−1⇒ {A}.

First, we show that U0⇒U1 ∪ {A}. Let B ∈ U0. Then B ⊂ V1,
B ∩ V0 �= ∅ and B ∈ U . Denote by C the union of all components
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of B that intersect Q0, and put D = B \ C. Thus B = C ∪ D. Let
C1 = Q0 ∪ C. Then C1 ∈ C(X). Let α be an order arc in Cn(X)
from C to C1, and let β be an order arc in C(X) from A to C1. Put
γ = {D ∪ E : E ∈ α ∪ β}. Then γ is the union of two order arcs, one
joining B = C ∪D to C1 ∪D, and the other joining C1 ∪D to A ∪D.
Thus it is possible to find an arc δ ⊂ γ which joins B to A ∪ D. By
Lemma 2.3 the number of components of each element of α ∪ β is less
than or equal to the number of components of B. It is easy to show
that γ ⊂ U0 ⊂ V . If D = ∅, then δ joins B to A. Otherwise A∪D ∈ U1.
So, we have shown that U0⇒U1 ∪ {A}.

Now we show that Ui⇒Vi for each i ∈ {1, . . . , n − 1}. Let B ∈ Ui.
Since V−1 and Zi are open and disjoint, B is of the form B = C ∪D,
where C and D are closed, disjoint and nonempty, and

C ⊂ V−1, D ⊂ Zi, D ∩Wi �= ∅,

C has at least i components, and C ∈ U ′.

Define D1 (D2 and D3, respectively) as the union of all components
of D that intersect Qi and are not contained in Vi (are contained in
Vi, are disjoint with Qi, respectively). Then D = D1 ∪ D2 ∪ D3 and
D ∩Wi �= ∅ implies that D1 ∪D2 �= ∅. Consider two cases.

Case 1. D1 = ∅. In this case D2 is a nonempty subset of Vi. Thus
C ∪D2 ∈ 〈Vi, Vi−1〉 and C ∪D2 has at least i + 1 components. Since
B = C ∪D ⊂ Vi+1, it follows that B ∈ Vi.

Case 2. D1 �= ∅. Let E1, . . . , Er be all the different components of
D1. Each Ek intersects Qi and is not contained in Vi. Thus we may
choose a point pk ∈ (Ek ∩ Qi) \ Vi. Let Y1 and Y2 be open subsets of
X such that

Qi−2 ⊂ Y1 ⊂ clX(Y1) ⊂ Vi−1 ⊂ Qi−1 ⊂ Y2 ⊂ clX(Y2) ⊂ Vi.

For each k ∈ {1, . . . , r}, let Fk be the component of Qi \ Y1 that
contains pk. Then Fk ∈ C(X) and, by the boundary bumping theorem,
see [23, Theorem 20.2, p. 626], there exists a point qk∈Fk ∩cl Qi

(Y1) =
Fk∩clX(Y1) ⊂ Fk∩Vi−1. Let Gk be the component of Fk∩clX(Y2) that
contains qk. Thus Gk ∈ C(X). Notice that pk ∈ Fk \ clX(Y2). So, we
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can again apply the same boundary bumping theorem to conclude that
∅ �= Gk ∩ bdFk

(Fk ∩ clX(Y2)) ⊂ Gk ∩ bdX(clX(Y2)) ⊂ Gk ∩ bdX(Y2) ⊂
Gk ∩Wi. Thus Gk ∩Wi �= ∅. Note that Fk ⊂ Vi+1 \Qi−2 ⊂ Zi. Put

F =
⋃{

Fk : k ∈ {1, . . . , r}} and G =
⋃ {

Gk : k ∈ {1, . . . , r}},
and observe that G ⊂ D1 ∪ F .

Let α (β) be an order arc from D1 to D1 ∪ F (from G to D1 ∪ F ,
respectively), and put γ = {C∪L∪D2∪D3 ∈ Cn(X) : L ∈ α∪β}. It is
easy to show that there is an arc δ ⊂ γ that joins B = C∪D1∪D2∪D3

to the set B1 = C ∪ G ∪D2 ∪D3. Notice that G ∪D2 is a nonempty
subset of (clX(Y2) \Y1)∪D2 ⊂ Vi \Qi−2. Thus C ∪G∪D2 has at least
i+ 1 components and belongs to 〈Vi, Vi−1〉. Therefore B1 ∈ Vi. Notice
that, for each L ∈ γ, we have

L ⊂ C ∪D1 ∪ F ∪D2 ∪D3 ⊂ B ∪ F ⊂ B ∪ (Qi \ Y1)
⊂ B ∪ Zi ⊂ V−1 ∪ Zi,

and L contains D1 or C ∪G∪D2 ∪D3, so L∩Wi �= ∅. It implies that
L ∈ Ui. Thus we have connected, by an arc in V , the set B to B1 ∈ Vi.
This completes the proof of Ui⇒Vi.

Now we show that Vi⇒Ui+1 ∪ {A} for each i ∈ {1, . . . , n − 2}. Let
B ∈ Vi. Let C (D, E , F , G, respectively) be the set of components of B
that are contained in V−1 (that intersect Vi−1 but are not contained in
V−1, intersect Qi−1 but do not intersect Vi−1, intersect Qi but do not
intersect Qi−1, do not intersect Qi, respectively). Some of the sets D, E ,
F and G may be empty. Since B ∈ Vi, the set C has at least i elements,
∪C ∈ U ′, C ∪D has at least i+1 elements, and (∪F)∪ (∪G) ⊂ Zi. For
each L ∈ D, choose a point pL ∈ (L ∩ Vi−1) \ V−1, and for each L ∈ E ,
choose a point pL ∈ L ∩Qi−1.

Let B1 = (∪C) ∪ {pL : L ∈ D ∪ E} ∪ (∪F) ∪ (∪G). Since B1 ⊂ B
and each component of B intersects B1, there exists an order arc α
from B1 to B. It is easy to show that each element of α belongs to Vi.
Therefore we have joined B to B1 by an arc in V .

Let Y1 be an open subset of X such that ∪C ⊂ Y1 ⊂ clX(Y1) ⊂ V−1.
For each L ∈ D ∪ E , let ML be the component of Qi−1 \ Y1 containing
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pL. By the boundary bumping theorem, see [23, Theorem 20.2, p. 626],
there exists a point qL ∈ML ∩ clQi−1(Y1) = ML ∩ clX(Y1) ⊂ V−1. Let

B2 = (∪C) ∪
( ⋃{

ML : L ∈ D ∪ E
})

∪ (∪F) ∪ (∪G),

B3 = (∪C) ∪ ({qL : L ∈ D ∪ E}) ∪ (∪F) ∪ (∪G).

Then B1 ∪B3 ⊂ B2, and each component of B2 intersects both B1 and
B3. Thus there are order arcs β and γ from B1 to B2 and from B3 to
B2, respectively. It is easy to check that β ∪ γ ⊂ Vi. Therefore we can
join B1 to B3 by an arc in V . Notice that B3 ∈ (〈V−1〉 ∩ U ′)[i + 1, n]
and B3 ⊂ V−1 ∪ (Vi+1 \Qi−1). Further, B3 = C1 ∪D1, where C1 and
D1 are closed subsets of X such that C1 ⊂ V−1, C1 ∈ U ′, C1 has at
least i+ 1 components and D1 = (∪F) ∪ (∪G) ⊂ Vi+1 \Qi−1.

Let Y2 be an open subset of X such that clX(Y1) ⊂ Y2 ⊂ clX(Y2) ⊂
V−1. For each L ∈ F choose a point xL ∈ L∩Qi. Let B4 = C1 ∪ {xL :
L ∈ F} ∪ (∪G). Then B4 ⊂ B3 and each component of B3 intersects
B4. Thus there exists an order arc δ from B4 to B3. Notice that δ ⊂ Vi.
Therefore we have joined B3 to B4 by an arc in V .

For each L ∈ F , let NL be the component of Qi \ Y2 that contains
xL. By the boundary bumping theorem, see [23, Theorem 20.2, p. 626],
there exists a point yL ∈ NL ∩ clQi

(Y2) = NL ∩ clX(Y2) ⊂ V−1. Let

B5 = C1 ∪
(⋃

{NL : L ∈ F}
)
∪ (∪G),

B6 = C1 ∪
({yL : L ∈ F}) ∪ (∪G).

Then B4 ∪B6 ⊂ B5 and each component of B5 intersects both B4 and
B6. Thus there exist order arcs ζ and η from B4 to B5 and from B6 to
B5, respectively. Note that ζ ∪ η ⊂ Vi. Thus we can join B4 to B6 by
an arc in V . Observe that B6 = C3 ∪D3, where C3 and D3 are closed
subsets of X such that C3 ⊂ V−1, C3 has at least i + 1 components,
C3 ∈ U ′ and D3 ⊂ Vi+1 \Qi.

Consider two cases.

Case 1. D3 = ∅. In this case B6 = C3 ∈ 〈V0, V1〉n ∩ U and
B6 ⊂ V−1. Let κ and λ be order arcs from B6 to Q−1 and from
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A to Q−1, respectively. Clearly, each element of κ ∪ λ belongs to
〈V0, V1〉n ∩ U ⊂ V . Thus it is possible to join B6 to A by an arc
in V .

Case 2. D3 �= ∅. In this case B6 ∈ Ui+1.

This finishes the proof of Vi⇒Ui+1 ∪ {A}.

Finally, we intend to show that Vn−1⇒ {A}.
Let B ∈ Vn−1 = 〈Vn−1, Vn−2〉[n, n] ∩ (〈V−1〉 ∩ U ′)[n − 1, n] ∩ 〈Vn〉n.

Define C4 as the union of all components of B that are contained in
V−1, and let D4 = B \ C4. Then C4 has at least n − 1 components.
Consider three cases.

Case 1. D4 = ∅. In this case B = C4 ∈ 〈V0, V1〉n ∩ U and B ⊂ V−1.
Let ξ, σ be order arcs from B to Q−1 and from A to Q−1, respectively.
Clearly, each element of ξ ∪ σ belongs to 〈V0, V1〉n ∩ U ⊂ V . Thus it is
possible to join B to A by an arc in V .

Case 2. D4 �= ∅ andD4∩V−1 �= ∅. In this caseD4 is a subcontinuum
of X and B ⊂ Vn−1. Fix a point p ∈ D4 ∩ V−1. Then it is possible to
find an order arc from C4 ∪ {p} to B. Observe that each element of
such an arc is in Vn−1. Since C4 ∪ {p} ∈ Vn−1 and C4 ∪ {p} ⊂ V−1, we
can proceed as in Case 1 to join C4 ∪ {p} to A by an arc in V .

Case 3. D4 �= ∅ andD4∩V−1 = ∅. In this caseD4 is a subcontinuum
of X, B ⊂ Vn−1 and D4∩Vn−2 �= ∅. Fix a point q ∈ (D4∩Vn−2)\V−1.
Let Y3 be an open subset of X such that C4 ⊂ Y3 ⊂ clX(Y3) ⊂ V−1. Let
M be the component of Qn−2 \ Y3 that contains q. By the boundary
bumping theorem, see [23, Theorem 20.2, p. 626], there exists a point
x ∈ M ∩ clQn−2(Y3) = M ∩ clX(Y3). Using respective order arcs from
C4∪{q} to B, from C4∪{q} to C4∪M and from C4∪{x} to C4∪M , it is
possible to join B to C4∪{x} by an arc in Vn−1. Since C4∪{x} ∈ Vn−1

and C4 ∪ {x} ⊂ V−1, we can proceed as in Case 1 to join C4 ∪ {x} to
A by an arc in V .
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With this we finish Case 3 and the proof of Vn−1⇒ {A}.
Therefore the proof of the proposition is complete.

The following corollary is a consequence of Proposition 2.15.

Corollary 2.16. Let X be a compact Hausdorff space, 2X locally
connected at A ∈ C(X) and, for a fixed n ∈ N, let U = 〈U1, . . . , Uk〉n
be a basic open set in Cn(X) such that A ∈ U . If V is defined by (2.14),
then A ∈ V ⊂ U and V is an arcwise connected open subset of Cn(X).

Corollary 2.16 leads to the following result, that generalizes [10,
Theorem 2, p. 358] as well as implication (2.5.1) of Theorem 2.5.

Theorem 2.17. Let X be a compact Hausdorff space, and let 2X be
locally connected at A ∈ C(X). Then, for each n ∈ N, the hyperspace
Cn(X) is strongly locally arcwise connected at A.

The converse implication to that of Theorem 2.17 is also true. More-
over, we have the following result.

Theorem 2.18. Let X be a compact Hausdorff space, and let
A ∈ C(X). Then the following conditions are equivalent:

(2.18.1) the hyperspace 2X is locally connected at A;

(2.18.2) for each n ∈ N the hyperspace Cn(X) is strongly locally
arcwise connected at A;

(2.18.3) there exists an integer n ≥ 2 such that Cn(X) is strongly
locally arcwise connected at A;

(2.18.4) for each n ∈ N the hyperspace Cn(X) is locally connected at
A;

(2.18.5) there exists an integer n ≥ 2 such that Cn(X) is locally
connected at A.

Proof. (2.18.1) =⇒ (2.18.2) is Theorem 2.17; the implications
(2.18.2) =⇒ (2.18.3) =⇒ (2.18.5) and (2.18.2) =⇒ (2.18.4) =⇒
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(2.18.5) are immediate; and finally (2.18.5) =⇒ (2.18.1) by Theorems
2.5 and 1.2.

Recall the following well-known example.

Example 2.19. There exist a metric continuum X and a point
p ∈ X such that:

(2.19.1) X is locally connected at p;

(2.19.2) X is not strongly locally connected at p;

(2.19.3) 2X is locally connected at {p};
(2.19.4) 2X is not strongly locally connected at {p}.

Proof. In the Cartesian coordinates in the plane put p = (0, 0) and,
for each k ∈ N, let Hk be the cone with the vertex vk = ((1/k), 0) over
the set Ek = {vk+1} ∪ ∪{(1/(k + 1), (1/i)) : i ∈ {k + 1, k + 2, . . . , }}.
Then each Hk is homeomorphic to the harmonic fan. The union

X = {p} ∪
⋃

{Hk : k ∈ N}

is the needed continuum. It is pictured in [13, Figures 3 9, p. 113]
and in [24, Figure 5.22, p. 84], where assertions (2.19.1) and (2.19.2)
are shown. Assertions (2.19.3) and (2.19.4) are consequences of the
previous two by [9, Corollaries 1 and 2, pp. 389 and 390], respectively.

Remarks 2.20. (a) In (2.18.1) the local connectedness of 2X cannot
be replaced by the strong local connectedness because of Example 2.19.

(b) Example 2.7 shows that we cannot put n = 1 in (2.18.3) and
(2.18.5).

In Theorem 2.17 the strong local arcwise connectedness of the hyper-
space Cn(X) at an element A was established if A ∈ C(X) ⊂ Cn(X).
Now we are going to prove a similar result for an arbitrary A ∈ Cn(X).
However, the situation differs depending on either A ∈ Cn−1(X) ⊂
Cn(X) or A ∈ Cn(X) \ Cn−1(X). The latter case needs an additional
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assumption (thatX has the property of Kelley), and it will be discussed
in the next section.

Theorem 2.21. Let X be a compact Hausdorff space, and let
n ∈ N with n ≥ 2 fixed. If the hyperspace Cn(X) is locally connected
at A ∈ Cn−1(X) ⊂ Cn(X), then Cn(X) is strongly locally arcwise
connected at A.

Proof. For some m ≤ n − 1, let A1, . . . , Am be the different
components of A. By Theorem 2.5 the hyperspace 2X is locally
connected at each Ai, and by Theorem 2.17 the hyperspace Cn(X)
is strongly locally arcwise connected also at each Ai. Let V1, . . . , Vm

be open mutually disjoint subsets of X such that Ai ⊂ Vi for each
i ∈ {1, . . . ,m}, and U = 〈U1, . . . , Uk〉n be a basic open set in Cn(X)
such that A ∈ U . For each i ∈ {1, . . . ,m} let Fi = {j ∈ {1, . . . ,m} :
Ai ∩ Uj �= ∅} and

Ui =
{
B ∈ Cn(X) : B ∩ Uj �= ∅ for each j ∈ Fi and

B ⊂
⋃

{Uj : j ∈ Fi}
}
∩ 〈Vi〉n.

Then Ui is an open subset of Cn(X), Ai ∈ Ui, and {1, . . . ,m} =
F1 ∪ · · · ∪ Fm. By Corollary 2.16 there exists an open subset Vi of
Cn(X) such that Ai ∈ Vi ⊂ Ui and, if B ∈ Vi, then there exists an arc
α joining B and Ai in Vi having the property that for each element
C ∈ α the number of components of C is less than or equal to the
number of components of B, see Proposition 2.15.

Let V = {B ∈ 〈V1, . . . , Vm〉n : B ∩ Vi ∈ Vi for each i ∈ {1, . . . ,m}}.
We are going to prove that V is an open arcwise connected subset of
Cn(X) such that A ∈ V ⊂ U . Clearly, A ∈ V .

Given B ∈ V and i ∈ {1, . . . ,m}, let Bi = B ∩ Vi. Since Bi ∈ Vi

and Vi is open in Cn(X), there exists a basic open subset Wi =
〈W (i)

1 , . . . ,W
(i)
ki

〉n of Cn(X) such that Bi ∈ Wi ⊂ Vi. For each

i ∈ {1, . . . ,m} and each j ∈ {1, . . . , ki} let Z(i)
j = W

(i)
j ∩ Vi.

Let W=〈Z(1)
1 , . . . , Z

(1)
k1

;Z(2)
1 , . . . , Z

(2)
k2

; . . . ;Z(m)
1 , . . . , Z

(m)
km

〉n. There-
fore W is open in Cn(X) and B ∈ W . For C ∈ W and i ∈ {1, . . . ,m}
let Ci = C ∩ Vi. Since ∅ �= C ∩ Z

(i)
1 ⊂ C ∩ Vi, it follows that
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Ci �= ∅. Note that C ⊂ V1 ∪ · · · ∪ Vm. So each Ci is closed, and
C ∈ 〈V1, . . . , Vm〉n. For each i ∈ {1, . . . ,m} and each j ∈ {1, . . . , ki}
we have ∅ �= C ∩ Z(i)

j ⊂ Ci ∩W (i)
j . Given a point p ∈ Ci ⊂ Vi, there

exist l ∈ {1, . . . ,m} and j ∈ {1, . . . , kl} such that p ∈ Z
(l)
j ⊂ Vl. Since

V1, . . . , Vm are pairwise disjoint, we get l = i. Thus Ci ⊂ Z
(i)
1 ∪· · ·∪Z(i)

ki
.

Hence Ci ∈ Wi ⊂ Vi. This proves that C ∈ V . So, we have shown that
W ⊂ V . Since W is open in Cn(X) and B ∈ W ⊂ V , it follows that V
is open in Cn(X).

Now we show that V is arcwise connected. Let B ∈ V . For each
i ∈ {1, . . . ,m} let Bi = B ∩ Vi. Then Bi ∈ Vi. By the definition
of Vi there exists an arc αi joining Bi and Ai in Vi having the
property that for each element C of αi the number of components
of C is less than or equal to the number of components of Bi. Let
σ1 = {(B \ V1) ∪ C : C ∈ α1}. Then σ1 is an arc in Cn(X) (since the
number of components of each element of σ1 is less than or equal to
the number of components of B) that joins B to (B \ V1) ∪ A1. Note
that each element of σ1 belongs to V . Using a similar argument it is
possible to join (B \V1)∪A1 to (B \ (V1∪V2))∪A1∪A2 by an arc in V .
Repeating this procedure it is possible to join B to A in V . Therefore
V is arcwise connected.

Given B ∈ V and i ∈ {1, . . . ,m}, let (as previously) Bi = B ∩ Vi.
Since Bi ∈ Vi ⊂ Ui, it follows that B ⊂ U1 ∪ · · · ∪ Uk. For each
j ∈ {1, . . . , k} there exists i ∈ {1, . . . ,m} such that j ∈ Fi, whence
Bi ∩ Uj �= ∅. Therefore B ∈ U . So, we have shown that V ⊂ U . This
completes the proof.

Corollary 2.22. Let X be a compact Hausdorff space, n ∈ N with
n ≥ 2, and let A ∈ Cn−1(X) ⊂ Cn(X). Then the hyperspace Cn(X) is
locally connected at A if and only if Cn(X) is strongly locally arcwise
connected at A.

Remark 2.23. As it was mentioned earlier, the implication from
(2.4.1) to (2.4.2) in the proof of Theorem 2.4 can be obtained as
a consequence of Theorem 2.21 (for the case that A ∈ Cn−1(X)),
Theorem 2.12 and [20, Theorem 10, p. 124].
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3. Local connectedness at a point in Cn(X) the property
of Kelley. The next results concerning local connectedness at a
point in Cn(X) need an additional assumption on X, namely the
property of Kelley. We start with a result that is a continuation of our
investigation from the previous section. Namely, in Theorem 2.21, the
implication was shown from local connectedness to strong local arcwise
connectedness of the hyperspace Cn(X) at its element A provided
that A ∈ Cn−1(X). Now we are going to prove a similar result if
A ∈ Cn(X) \ Cn−1(X). But this will be done under an additional
assumption that the considered space X has the property of Kelley.
As we will see in Example 3.4, this assumption is essential for the
result. Finally, a characterization of the property of Kelley in terms of
hyperspace is obtained in Theorem 3.5.

Theorem 3.1. Let X be a compact Hausdorff space having the
property of Kelley, and let n ∈ N. If the hyperspace Cn(X) is locally
connected at A ∈ Cn(X) \Cn−1(X) (for n = 1 we assume A ∈ C(X)),
then Cn(X) is strongly locally arcwise connected at A.

Proof. Note again that if n = 1 the symbol Cn−1(X) can simply be
omitted, and that, in this case, the result is just Theorem 12 of [20, p.
125]. Thus we can consider the case n ≥ 2 only.

Let A1, . . . , An be the different components of A. Since Cn(X) is
locally connected at A, it follows from Theorem 2.12 that C(X) is
locally connected at each Ai. Further, since X has the property of
Kelley, C(X) is strongly locally arcwise connected at each Ai by [20,
Theorem 12, p. 125]. Applying again Theorem 2.12 we conclude that
Cn(X) is strongly locally arcwise connected at A, as needed. The proof
is complete.

Corollary 3.2. Let X be a compact Hausdorff space having the
property of Kelley, and let n ∈ N. Then the hyperspace Cn(X) is
locally connected at A ∈ Cn(X) \ Cn−1(X) (for n = 1 we assume
A ∈ C(X)) if and only if Cn(X) is strongly locally arcwise connected
at A.

Corollaries 2.22 and 3.2 imply the next one.



838 J.J. CHARATONIK AND A. ILLANES

Corollary 3.3. Let X be a compact Hausdorff space having the
property of Kelley, and let n ∈ N be fixed. Then the hyperspace Cn(X)
is locally connected at A ∈ Cn(X) if and only if Cn(X) is strongly
locally arcwise connected at A.

As it was said before, the property of Kelley for X is an indispensable
assumption in Theorem 3.1. This can be seen by the following example.

Example 3.4. There exists a continuum X which does not have the
property of Kelley and which contains, for each integer n ≥ 2, a subset
A ∈ Cn(X) \Cn−1(X) such that Cn(X) is locally connected, while not
strongly locally arcwise connected, at A.

Proof. In [10, Example 3, p. 361] a metric continuum X and its
subcontinuum M are constructed such that

(a) X does not have the property of Kelley,

(b) C(X) is locally connected at M ,

(c) C(X) is not strongly locally connected at M .

In the set X \M choose n− 1 distinct points p2, . . . , pn such that

(d) X is locally connected at each pi for i ∈ {2, . . . , n},
and define A = M ∪ {p2, . . . , pn}. Putting A1 = M and Ai = {pi}
for each i ∈ {2, . . . , n}, we see that Ai (for i ∈ {1, 2, . . . , n}) are
the components of A. Thus A ∈ Cn(X) \ Cn−1(X). It follows from
(b) and (d) that C(X) is locally connected at each component of A.
Hence the equivalence of conditions (2.12.1) and (2.12.3), for the local
connectedness, in Theorem 2.12 implies that Cn(X) is locally connected
at A. Further, according to the same equivalence (now for the strong
local arcwise connectedness) condition (c) implies that Cn(X) is not
strongly locally arcwise connected at A. The proof is complete.

In the next theorem we present a characterization of the property
of Kelley in terms of hyperspaces. The result is an extension of [20,
Theorem 11, p. 125].
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Theorem 3.5. Let X be a compact Hausdorff space, and let n ∈ N.
Then the following conditions are equivalent:

(3.5.1) X has the property of Kelley;

(3.5.2) for each n ∈ N the union of any open subset of Cn(X) is an
open subset of X;

(3.5.3) there is an n ∈ N such that the union of any open subset of
Cn(X) is an open subset of X;

(3.5.4) the union of any open subset of C(X) is an open subset of X.

Proof. We will show the following circle of implications:

(3.5.1) =⇒ (3.5.2) =⇒ (3.5.3) =⇒ (3.5.4) =⇒ (3.5.1).

The first implication is easy to check. Let U be an open subset of
Cn(X), and let x ∈ ∪U . Thus there is an A ∈ U such that x ∈ A.
Since X has the property of Kelley at x, there exists an open subset V
of X such that x ∈ V , and for each point q ∈ V there is a subcontinuum
L of X with q ∈ L ∈ C(X)∩ U ⊂ U . Therefore V ⊂ ∪U . Hence ∪U is
open. Thus (3.5.2) follows.

The implication (3.5.2) =⇒ (3.5.3) is obvious.

To prove that (3.5.3) =⇒ (3.5.4) we may assume that n ≥ 2.
Let U be an open subset of C(X), and let U = ∪U . Take a point
p ∈ U . Then there exists A ∈ U such that p ∈ A. If A = X, then
X = A ⊂ U ⊂ X, whence U = X. Therefore there is a neighborhood
of p contained in U , and we are done. So, we may assume that
A �= X. Fix points q2, . . . , qn ∈ X \ A, and choose pairwise disjoint
open subsets V1, V2, . . . , Vn in X such that A ⊂ V1 and qi ∈ Vi for
each i ∈ {2, . . . , n}. Since U is open in C(X) and A ∈ U , there exists
a basic neighborhood U0 = 〈U1, . . . , Um〉1 of A in C(X) such that
A ∈ U0 ⊂ U ∩ 〈V1〉1. Let U1 = 〈U1 ∩ V1, . . . , Um ∩ V1, V2, . . . , Vn〉n,
and put W = ∪U1. By hypothesis W is open in X. Further, since
A ∪ {q2, . . . , qn} ∈ U1 and p ∈ A ⊂ A ∪ {q2, . . . , qn}, we infer that
p ∈ W ∩ V1. Let x ∈ W ∩ V1. Then there exists B ∈ U1 such that
x ∈ B. Thus x ∈ B ∩V1. Since B ∈ U1, we have B ⊂ V1 ∪V2 ∪ · · · ∪Vn

and B intersects each one of the sets V1, V2, . . . , Vn. Consequently, B
has exactly n components, namely B ∩ V1, B ∩ V2, . . . , B ∩ Vn. Since
B ∈ U1, it follows that B ∩ V1 ∈ 〈U1 ∩ V1, . . . , Um ∩ V1〉1 ⊂ U0 ⊂ U .
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Thus x ∈ B ∩ V1 ⊂ U . So, we have shown that W ∩ V1 ⊂ U . Therefore
p ∈W ∩V1 ⊂ U . This completes the proof that U is open in X. Hence
(3.5.4) follows.

Finally, the implication (3.5.4) =⇒ (3.5.1) is shown in [20, Theorem
11, p. 125]. The proof is complete.

4. Local k-connectedness at a point in Cn(X). In Theorem 2.4
it was proved that, for compact Hausdorff spaces and for any n ∈ N,
local connectedness and local arcwise connectedness of the hyperspace
Cn(X) at a point are equivalent. In the present section we show that for
compact metric spaces the above properties are equivalent to another
one, viz. to LCk-connectedness for each non-negative integer k, i.e., to
LC∞ at the considered point, Corollary 4.2.

The following result is an extension of [21, Theorem 2, p. 30].

Theorem 4.1. Let X be a compact metric space, n ∈ N and
A ∈ Cn(X). Then the hyperspace Cn(X) is locally connected at the
point A if and only if Cn(X) is LC∞ at A.

Proof. We have to prove that for Cn(X) local connectedness at A
is equivalent to being LCk at A for each k ∈ {0} ∪ N. If k = 0,
then local connectedness of Cn(X) at A is equivalent to local arcwise
connectedness at A by Theorem 2.1 above, thus to local connectedness
of Cn(X) at A at dimension 0, see (0.2). Therefore we may assume that
k ∈ N. It is shown in [21, Theorem 1, p. 30] that local k-connectedness
of a space at a point implies local connectedness of the space at this
point. Therefore it remains to prove the opposite implication only.

Let the hyperspace Cn(X) be locally connected at A ∈ Cn(X), and
let k be a positive integer. We show that Cn(X) is locally k-connected
at A. For some positive integer r ≤ n, let A1, . . . , Ar be the different
components of A. Consider two cases.

Case 1. r < n, i.e., A ∈ Cn−1(X) ⊂ Cn(X). Let U = 〈U1, . . . , Um〉n
be a basic element in the Vietoris topology in Cn(X) such that A ∈ U .
Let V1, . . . , Vr be pairwise disjoint open subsets of X such that Ai ⊂ Vi

for each i ∈ {1, . . . , r}. Put U = U1 ∪ · · · ∪ Um. Since Cn(X) is
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locally connected at A, by Theorem 2.5 and [20, Theorem 3, p. 122]
for each i ∈ {1, . . . , r}, there exists a closed connected subset Ki of
X such that Ai ⊂ intX(Ki) ⊂ Ki ⊂ Vi ∩ U . We claim that the set
V = 〈intX(K1), . . . , intX(Kr)〉n ∩ U is the open set required in the
definition of local k-connectedness. Let K = K1∪· · ·∪Kr. Notice that
A ⊂ K and K ∈ U .

Take a mapping f from the k-sphere Sk to V and observe that
S = ∪f(Sk) is compact and it has at most n components according
to Lemma 2.2. Notice that S ∈ V and S intersects each set Ki.
Thus there exists an order arc from S to K in Cn(X). Since A ⊂ K
and A intersects each Ki, there exists, again in Cn(X), an order arc
from A to K. Hence there exist mappings α : [0, (1/3)] → Cn(X)
and β : [(1/3), (2/3)] → Cn(X) such that α(0) = A, α(1/3) = K,
β(1/3) = K, β(2/3) = S; and if 0 ≤ s ≤ t ≤ 1/3, then α(s) ⊂ α(t)
and, if 1/3 ≤ s ≤ t ≤ 2/3, then β(t) ⊂ β(s).

Now, recalling that Bk+1 stands for the (k+ 1)-ball having Sk as its
boundary, we construct an extension f∗ : Bk+1 → U of the mapping f .
Namely, for each x ∈ Bk+1 we define

f∗(x) =

⎧⎨
⎩
α(‖x‖) if 0 ≤ ‖x‖ ≤ 1/3,
β(‖x‖) if 1/3 ≤ ‖x‖ ≤ 2/3,
∪f(Sk ∩N((x/‖x‖), 6(1 − ‖x‖))) if 2/3 ≤ ‖x‖ ≤ 1.

We see that f∗ is continuous, f∗(0) = A and f∗(x) = f(x) for each
x ∈ Sk.

Case 2. r = n, i.e., A ∈ Cn(X) \ Cn−1(X). It is easy to show that a
finite product is locally k-connected at a point if and only if each one
of the factors is locally k-connected at the projections of the point. So,
this case follows from Lemma 2.9, Theorem 2.12 and [21, Theorem 2,
p. 30]. The proof is complete.

Theorems 2.4 and 4.1 can be summarized as follows.

Corollary 4.2. Let X be a compact metric space, n ∈ N and
A ∈ Cn(X). Then the following conditions are equivalent :

(2.4.1) Cn(X) is locally connected at A;
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(2.4.2) Cn(X) is locally arcwise connected at A;

(4.2.1) Cn(X) is LC∞ at A.

Remark 4.3. In connection with the equivalences of Corollary 4.2,
recall that each of local arcwise connectedness as well as LC∞ of a space
at a point implies local connectedness of the space at the point (the
former implication is obvious; the latter one is shown in [21, Theorem
1, p. 30]). The opposite implications are not true in general, see [21,
Remark b), p. 33].

It is tempting to have the equivalence of Theorem 4.1 (and ones in
Corollary 2.2, too) not only for metric spaces, but in general, if X is a
compact Hausdorff space. However, it is not the case, as can be seen
from the example below.

Example 4.4. If X denotes the long segment, and if n ∈ N, then

(4.4.1) Cn(X) is locally connected at X, while

(4.4.2) Cn(X) is not LC0 at X.

Proof. Let ω1 stand for the least uncountable ordinal, and let Ω
denote the (ordered) set of all ordinal numbers α ≤ ω1. For each
ordinal ξ ≤ ω1 we consider the open (closed) ordinal space defined
respectively by

Γ(ξ) = {α ∈ Ω : α < ξ} and Γ(ξ] = {α ∈ Ω : α ≤ ξ}

equipped with the order topology. Then the long segment X, see [8,
p. 237]; it is called the extended long line in [25, Example 46, p. 71] is
defined as the space obtained from the closed ordinal space Γ(ω1] = Ω
by placing between each ordinal α and its successor α+1 a copy of the
open unit interval (0, 1). Then X is linearly ordered, and we give it the
order topology. Further, for each y ∈ X we consider open and closed
initial segments:

[0, y) = {x ∈ X : x < y} and [0, y] = {x ∈ X : x ≤ y}.

Thus, in particular, we have [0, ω1] = X.
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To show (4.4.1) note that by (1.1.1) of Theorem 1.1 the hyperspace 2X

is locally connected at its point X, whence it follows by Theorem 2.17
that Cn(X) is strongly locally arcwise connected at X. So (4.4.1) is
satisfied.

To prove (4.4.2) suppose on the contrary that Cn(X) is LC0 at X.
Let U = 〈X〉n. Then U is open in Cn(X) and X ∈ U . According to
the definition of LC0 at X there exists an open subset V of Cn(X)
such that X ∈ V ⊂ U and that each mapping f : S0 = {−1, 1} → V
has a continuous extension f∗ : [−1, 1] → U of f with the property
f∗(0) = X.

Since V is open, there is an ordinal number γ < ω1 such that
[0, γ] ∈ V . Let f : S0 = {−1, 1} → V be given by f(−1) = [0, γ] = f(1).
By the choice of U there exists a mapping f∗ : [−1, 1] → U such that
f∗(−1) = [0, γ] = f∗(1) and f∗(0) = X. For each t ∈ [0, 1], define
Gt = ∪{f∗(s) : s ∈ [t, 1]}, and let r = sup{t ∈ [0, 1] : Gt = X}. Then
X = f∗(0) ⊂ G0, whence G0 = X. Thus r is well defined.

Further, G1 = f∗(1) = [0, γ] ∈ 〈[0, γ + 1)〉n, which is an open
set. So, by the continuity of f∗, there exists t0 ∈ [0, 1) such that
f∗(s) ∈ 〈[0, γ + 1)〉n for each s ∈ [t0, 1]. Therefore Gs ⊂ [0, γ + 1),
whence Gs �= X for each s ∈ [t0, 1]. Thus r ≤ t0 < 1.

So, we can choose a strictly decreasing sequence {rm} such that
r < · · · < r2 < r1 < 1 with lim rm = r. Then, by Lemma 2.2, for
each m ∈ N the set Grm

is a proper subcontinuum of X containing
0 (because 0 ∈ [0, γ] ⊂ Grm

). Therefore there is an ordinal number
γm < ω1 such that Grm

⊂ [0, γm]. Consequently, there is λ < ω1 such
that γm < λ, whence Grm

⊂ [0, λ] for each m ∈ N.

Note that for any t ∈ (r, 1] there is an index m(t) ∈ N such that
rm < t for each m ∈ N with m > m(t). This implies that f∗(t) ⊂ Grm

for each m > m(t). Then, by the continuity of f∗ we conclude that
f∗(t) ⊂ [0, λ] for each t ∈ [r, 1].

In particular, we get f∗(r) ⊂ [0, λ] ⊂ [0, λ + 1), which in an open
subset of X. Thus f∗(r) ∈ 〈[0, λ + 1)〉n. Since f∗(0) = X, we
conclude that 0 < r. Therefore there is a number q ∈ (0, r) such
that f∗(s) ∈ 〈[0, λ+ 1)〉n for each s ∈ [q, r]. Then f∗(s) ⊂ [0, λ+ 1) for
each s ∈ [q, 1), which implies that Gq �= X.
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On the other hand, by the definition of supremum, there is t ∈ (q, r]
such that Gt = X. But Gt ⊂ Gq implies Gq = X. This contradiction
completes the proof.

5. Local connectedness at a point in C∞(X). In this section
it is shown that, for each compact Hausdorff space X, local connect-
edness, local arcwise connectedness, and strong local connectedness of
C∞(X) at a point are equivalent to the corresponding properties of
2X , Theorems 5.2 and 5.3, while for strong local arcwise connected-
ness only one implication is true: from 2X to C∞(X), Theorem 5.5
and Example 5.6. Further, a characterization of strong local arcwise
connectedness of C∞(X) at a point is obtained in Theorem 5.4.

We start with a lemma that concerns local connectedness of a regular,
i.e., a T3, space at a point of a dense subspace. The lemma is not related
to the hyperspace theory. Its proof is quite standard, and it is attached
here for the sake of completeness only.

Lemma 5.1. Let D be a dense subspace of a regular space X, and
let p ∈ D. Then the following implications hold.

(5.1.1) If D is locally connected at p, then X is locally connected at
p, too.

(5.1.2) If D is strongly locally connected at p, then X is strongly
locally connected at p, too.

Proof. To show (5.1.1) assume that D is locally connected at p. Let
U and V be open subsets of X such that p ∈ V ⊂ clX(V ) ⊂ U . Since
D is locally connected at p, there exists a connected subset K of D
such that p ∈ intD(K) ⊂ K ⊂ V ∩D. Put W = intD(K). Then there
exists an open subset Z of X such that W = Z ∩D. Since D is dense
in X, it follows that W ⊂ Z ⊂ clX(W ) ⊂ clX(K) ⊂ clX(V ) ⊂ U . So,
clX(K) is a connected neighborhood of p in X.

To show (5.1.2) assume that D is strongly locally connected at p. Let
U and V be open subsets of X such that p ∈ V ⊂ clX(V ) ⊂ U . Since
D is strongly locally connected at p, there exists an open connected
subset W of D such that p ∈ W ⊂ V ∩ D. Let Z be an open subset
of X such that W = Z ∩ D. Since D is dense in X, it follows that
Z ⊂ clX(W ). So W ⊂ Z ⊂ clX(W ). Thus Z is an open connected
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subset of X such that p ∈ Z ⊂ clX(W ) ⊂ clX(V ) ⊂ U . Therefore X is
strongly locally connected at p, as needed.

Theorem 5.2. Let X be a compact Hausdorff space and A ∈
C∞(X). Then the following conditions are equivalent:

(5.2.1) 2X is locally connected at A;

(5.2.2) 2X is locally arcwise connected at A;

(5.2.3) C∞(X) is locally connected at A;

(5.2.4) C∞(X) is locally arcwise connected at A.

Proof. Since the equivalence between (5.2.1) and (5.2.2) has been
shown in [20, Theorem 9, p. 124], see Theorem 1.4 above, it is enough
to show the following circle of implications:

(5.2.4) =⇒ (5.2.3) =⇒ (5.2.1) =⇒ (5.2.4).

The implication (5.2.4) =⇒ (5.2.3) is clear. Since 2X is normal,
thus regular, by Statement 0.3 and since C∞(X) is its dense subspace
according to (0.5), the implication (5.2.3) =⇒ (5.2.1) is a consequence
of implication (5.1.1) of Lemma 5.1. To close the circle of implications
it remains to prove that (5.2.1) implies (5.2.4).

So, assume (5.2.1). To show (5.2.4) let U = 〈U1, . . . , Um〉∞ be a
basic open set in C∞(X) such that A ∈ U . Let A1, . . . , An be the
components of A. Choose pairwise disjoint open subsets V1, . . . , Vn

such that Ai ⊂ Vi ⊂ U1 ∪ · · · ∪ Um for each i ∈ {1, . . . , n}. By
Theorem 1.2 the hyperspace 2X is locally connected at each component
Ai. Applying normality of 2X we infer that for each i ∈ {1, . . . , n},
there is an open set Wi such that Ai ⊂ Wi ⊂ clX(Wi) ⊂ Vi. Further,
by (1.1.1) of Theorem 1.1, there is a connected set Di such that
Ai ⊂ intX(Di) ⊂ Di ⊂ Wi ⊂ Vi. Let Bi = clX(Di) is a closed
connected subset of X such that Ai ⊂ intX(Bi) ⊂ Bi ⊂ Vi. Let
B = B1 ∪ · · · ∪ Bn, and observe that B1, . . . , Bn are the components
of B. Define V = U ∩ 〈intX(B1), . . . , intX(Bn)〉∞, and note that V is
open in C∞(X) and A ∈ V ⊂ U .

Take C ∈ V . Then C ⊂ intX(B1)∪· · ·∪ intX(Bn) and C∩ intX(Bi) �=
∅ for each i ∈ {1, . . . , n}. Then C ∩ intX(Bi) is closed, nonempty, and
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it has a finite number of components for each i ∈ {1, . . . , n}. It follows
that C ⊂ B and each component of B intersects C. Thus there is an
order arc α(C) in C∞(X) joining C to B. Let D = ∪{α(C) : C ∈ V}
So, D is arcwise connected and V ⊂ D. Thus A ∈ intC∞(X)(D), and
therefore D is an arcwise connected neighborhood of A in C∞(X).

It remains to prove that D ⊂ U . To this aim it is enough to show
that α(C) ⊂ U for each C ∈ V . So, take C ∈ V and E ∈ α(C).
Then C ⊂ E ⊂ B. Since C ∈ V ⊂ U = 〈U1, . . . , Um〉∞, we
infer that C ∩ Uj �= ∅ for each j ∈ {1, . . . ,m}. Since C ⊂ E it
follows that E ∩ Uj �= ∅ for each j ∈ {1, . . . ,m}. Further, we have
E ⊂ B ⊂ U1 ∪ · · · ∪ Um. Therefore E ∈ U , and thus (5.2.4) is shown.

The proof is complete.

Theorem 5.3. Let X be a compact Hausdorff space and A ∈
C∞(X). Then C∞(X) is strongly locally connected at A if and only if
2X is strongly locally connected at A.

Proof. Necessity. Assume that C∞(X) is strongly locally connected
at A. Since 2X is normal, thus regular, by Statement 0.3 and, since
C∞(X) is its dense subspace according to (0.5), the needed implication
is a consequence of implication (5.1.2) of Lemma 5.1.

Sufficiency. Assume that 2X is strongly locally connected at A. To
show that also C∞(X) is, take a basic open set U = 〈U1, . . . , Um〉∞
such that A ∈ U . Let A1, . . . , An be the components of A. Choose
pairwise disjoint open sets V1, . . . , Vn such that for each i ∈ {1, . . . , n}
we have Ai ⊂ Vi ⊂ U1 ∪ · · · ∪ Um. By (1.1.2) of Theorem 1.1 for
each i ∈ {1, . . . , n}, there exists an open connected set Wi such that
Ai ⊂ Wi ⊂ Vi. Let V = U ∩ 〈W1, . . . ,Wn〉∞. Then A ∈ V ⊂ U and V
is open in C∞(X). It remains to show that V is connected.

To this aim take B ∈ V . Then B ⊂ W1 ∪ · · · ∪Wn and B ∩Wi �= ∅

for each i ∈ {1, . . . , n}. Fix a point a1 ∈ A1. Consider the set
A = {B ∪ {p} : p ∈ W1}. Since the function g : W1 → A defined by
g(p) = B ∪ {p} is continuous and onto, it follows that A is connected.
Observe that A ⊂ V . Thus B and B∪{a1} can be joined by a connected
subset of V . By [23, Theorem 1.8, p. 59] there is an order arc α in 2X

from B ∪{a1} to B ∪A1. Clearly, α ⊂ V . Therefore B and B ∪A1 can
be joined by a connected subset of V . Similarly, B∪A1 and B∪A1∪A2
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can be joined by a connected subset of V . Proceeding in this way we
conclude that B and B ∪ A can be joined by a connected subset of V .
Similarly, A and B∪A can be joined by a connected subset of V . Hence
V is connected.

Therefore C∞(X) is strongly locally connected at A, and the proof
is complete.

Theorem 5.4. Let X be a compact Hausdorff space. For some
n ∈ N, let A = A1 ∪ · · · ∪ An ∈ Cn(X) ⊂ C∞(X), where A1, . . . , An

are the components of A. Then C∞(X) is strongly locally arcwise
connected at A if and only if for each open subset U of X with A ⊂ U
there exist pairwise disjoint open subsets V1, . . . , Vn of X such that

(a) Ai ⊂ Vi ⊂ U for each i ∈ {1, . . . , n}, and

(b) if B ∈ C∞(X) and B ⊂ Vi for some i ∈ {1, . . . , n}, then there
exists a subcontinuum K of X such that B ⊂ K ⊂ Vi.

Proof. Necessity. Assume that C∞(X) is strongly locally arcwise
connected at A. Let U be an open subset U of X with A ⊂ U ,
and let U1, . . . , Un be pairwise disjoint open subsets of X such that
Ai ⊂ Ui ⊂ U for each i ∈ {1, . . . , n}. Put U = 〈U1, . . . , Un〉∞. Then
A ∈ U . By assumption there exists an open arcwise connected subset
V of C∞(X) such that A ∈ V ⊂ U .

Let V = ∪V . We will prove that V is open. To this aim take p ∈ V .
Then there exists an element B ∈ V with p ∈ B. Since V is an open
subset of C∞(X), there exists a basic open set 〈W1, . . . ,Wk〉∞ such
that B ∈ 〈W1, . . . ,Wk〉∞ ⊂ V . We may assume that p ∈ W1. Given
q ∈ W1, we have B ∪ {q} ∈ 〈W1, . . . ,Wk〉∞. Thus q ∈ V . So, we have
shown that p ∈W1 ⊂ V . Therefore V is open.

For each i ∈ {1, . . . , n}, put Vi = V ∩ Ui. Then Vi are pairwise
disjoint open subsets of X. Since A ⊂ V , we have Ai ⊂ Vi for each
i ∈ {1, . . . , n}.

Now let i ∈ {1, . . . , n} and B ∈ C∞(X) be such that B ⊂ Vi.
Let B1, . . . , Bs be the different components of B. Fix points p1 ∈
B1, . . . , ps ∈ Bs. Let j ∈ {1, . . . , s}. Since pj ∈ Vi, there exists
Kj ∈ V such that pj ∈ Kj . Since V is arcwise connected, there exists
an arc αj in V that joinsKj and A. PutDj = ∪αj ⊂ V . By Lemma 2.2
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the set Dj has at most n components. Since αj ⊂ U , we conclude that
Dj ⊂ U1 ∪ · · · ∪ Un. Since A ⊂ Dj , it follows that Dj intersects each
one of the sets U1, . . . , Un. Therefore Dj has n components, and they
are Dj ∩U1, . . . , Dj ∩Un. Hence Dj ∩Ui is a subcontinuum of Vi, and
it contains the point pj . Thus K = Ai ∪ B ∪ ((D1 ∪ · · · ∪Ds) ∩ Ui) is
a subcontinuum of Vi. This completes the proof of the necessity.

Sufficiency. Let U = 〈W1, . . . ,Wk〉 be a basic open set in 2X such
that A ∈ U∩C∞(X). Put U = W1∪· · ·∪Wk. By assumption there exist
pairwise disjoint open subsets V1, . . . , Vn of X such that conditions (a)
and (b) are satisfied.

Let V = U ∩ 〈V1, . . . , Vn〉∞. Then A ∈ V ⊂ U . We will show that V
is arcwise connected. To this aim take D ∈ V . For each i ∈ {1, . . . , n}
the set D ∩ Vi belongs to C∞(X), so there exists a subcontinuum Ki

of X such that Ai ∪ (D ∩ Vi) ⊂ Ki ⊂ Vi. Put K = K1 ∪ · · · ∪ Kn.
Then A ⊂ K, D ⊂ K, and each component of K intersects both A and
D. Thus there exist order arcs α and β from A to K and from D to
K, respectively. Clearly, α ∪ β ⊂ V . Thus V is arcwise connected, and
thereby C∞(X) is strongly locally arcwise connected at A. The proof
is complete.

Theorem 5.5. Let X be a compact Hausdorff space, and let
A ∈ C∞(X). If 2X is strongly locally arcwise connected at A, then
also C∞(X) is strongly locally arcwise connected at A.

Proof. Assume that 2X is strongly locally arcwise connected at
A ∈ C∞(X). Let A1, . . . , An be the components of A. Then 2X

is strongly locally arcwise connected at each component Ai of A by
Theorem 1.2.

To prove the conclusion, take an open subset U of X with A ⊂ U .
Choose pairwise disjoint open subsets U1, . . . , Un such that Ai ⊂ Ui ⊂
U for each i ∈ {1, . . . , n}. Since the hyperspace 2X is strongly locally
arcwise connected at each Ai ∈ C(X), the characterization (1.1.3) of
Theorem 1.1 (applied to each Ai and the open set Ui separately) implies
that there is an open set Vi such that Ai ⊂ Vi ⊂ Ui having the property
that

(∗) if B ∈ 2X and B ⊂ Vi, then there is a subcontinuum Ki of X
such that B ⊂ Ki ⊂ Vi.
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Since C∞(X) ⊂ 2X , each set Vi satisfies (∗) for B ∈ C∞(X), whence (b)
of Theorem 5.4 holds. Thus Theorem 5.4 can be applied and thereby
C∞(X) is strongly locally arcwise connected at A.

The converse implication to that of Theorem 5.5 is not true in general,
even for metric continua X. The next example shows this.

Example 5.6. There exist a metric continuum X and a point p ∈ X
such that C∞(X) is strongly locally arcwise connected at {p}, while
2X is not.

Proof. The example is constructed in the 3-space R3 equipped with
the Cartesian coordinate system.

For each n ∈ N, let pn = ((1/(n+ 1)2), 0, (1/(n + 1))) and qn =
(0, 1 − (1/(n+ 1)), 0). Consider a sequence of arcs αn in R3 such that
each αn joins pn and qn, Limαn is the segment α = {0}×[0, 1]×{0}, the
arcs αn are pairwise disjoint and, if π2 : R3 → R denotes the natural
projection on the second coordinate, then the restriction π2|αn → [0, 1]
is one-to-one for each n ∈ N. Putting D = α ∪ ∪{αn : n ∈ N}, we
see that D is an arcwise connected subcontinuum of R3. Note that
D \ {(0, 1, 0)} is an open arcwise connected subset of D.

Given a subcontinuum A of R3, a point b ∈ R3 and a number t ∈ R,
let b+ tA = {b+ ta ∈ R3 : a ∈ A}.

Using this notation, for each n ∈ N let Dn = (0, (1/2n), 0)+(1/2n)D.
Putting p = (0, 0, 0) we finally define

X = {p} ∪ {Dn : n ∈ N}.

For each n ∈ N, let

Un = ({p} ∪Dn ∪Dn+1 ∪ · · · ) \ {(0, 1
2n−1 , 0)} = (π2|X)−1([0, 1

2n−1 )).

Then Un is an open arcwise connected subset of X, and the family
{Un : n ∈ N} is a local basis of neighborhoods of p in X.

To see that C∞(X) is strongly locally arcwise connected at {p}
we apply Theorem 5.4. Let U be an open subset of X such that
p ∈ U . Take m ∈ N such that p ∈ Um ⊂ U and B ∈ C∞(X) with
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B ⊂ Um. Fix points w1, . . . , wk ∈ B such that each component of
B intersects {w1, . . . , wk}. Since Um is arcwise connected, there exist
arcs γ1, . . . , γk in Um such that for each i ∈ {1, . . . , k} the arc γi joins
wi with p. Hence the set C = B∪γ1∪· · ·∪γk is a subcontinuum of Um

containing B. Therefore C∞(X) is strongly locally arcwise connected
at {p}.

To verify that 2X is not strongly locally arcwise connected at {p}
it is enough to show that U = N2X ({p}, 1/2) (the 1/2-neighborhood
of {p} in 2X) does not contain any open arcwise connected subset
V with {p} ∈ V . Suppose on the contrary that there exists such
a set V . Let m = min{k ∈ N : (0, (1/2k−1), 0) ∈ ∪V}. Since
V is open, there exists k ∈ N such that {(0, (1/2k), 0)} ∈ V , so
m is well defined. Since ∪V ⊂ ∪U ⊂ NX(p, (1/2)), we infer that
m ≥ 3, and since (0, (1/2m−1), 0) ∈ ∪V , there exists B ∈ V such that
(0, (1/2m−1), 0) ∈ B.

For each n ∈ N, let

Bn = B ∪ (
(0, 1

2m−1 , 0) + 1
2m−1 {pn, pn+1, . . . }

)
.

Then LimBn = B. Since V is open, there exists n ∈ N such that
Bn ∈ V . Since V is arcwise connected, there exists an arc α in V
joining Bn with {p}. Put A = ∪α. Then A is a subcontinuum of
X containing Bn. Clearly, (0, (1/2m−2), 0) ∈ A. Thus there exists
E ∈ α ⊂ V such that (0, (1/2m−2), 0) ∈ E ⊂ ∪V . This contradicts
the choice of m and completes the proof that 2X is not strongly locally
arcwise connected at {p}.

The proof of the properties of the example is finished.

6. Local connectedness at a point in Fn(X) and F∞(X). In
the present, last section of the paper the previously considered four
variants of local connectivity at a point are studied for the hyperspaces
of finite subsets of a compact Hausdorff space X. Characterizations
are obtained for local connectedness and strong local connectedness at
a point of Fn(X) and F∞(X), while for local arcwise connectedness
and strong local arcwise connectedness of these hyperspaces at a point
only sufficient conditions are shown, which appear to be also necessary
if the space X is metric. But we do not have any examples showing
that metrizability is essential to get the reverse implications.
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We start with two lemmas.

Lemma 6.1. Let X be a compact Hausdorff space, n, r ∈ N with
r ≤ n, and let A = {a1, . . . , ar} ∈ Fn(X), where a1, . . . , ar are
different. Let U1, . . . , Ur be pairwise disjoint open subsets of X such
that ai ∈ Ui for each i ∈ {1, . . . , r} and C ⊂ 〈U1, . . . , Ur〉∩Fn(X) such
that A ∈ C. Then the following implications hold.

(6.1.1) If C is open in Fn(X), then ∪C is open in X.

(6.1.2) If C is connected, then (∪C) ∩ Ui is connected for each
i ∈ {1, . . . , r}.

(6.1.3) If C is arcwise connected and X is metric, then (∪C) ∩ Ui is
arcwise connected for each i ∈ {1, . . . , r}.

Proof. To show (6.1.1) take a point p ∈ ∪C. Then there exists
B ∈ C such that p ∈ B. Since C is open in Fn(X), there exists a basic
open set V = 〈V1, . . . , Vm〉 ∩ Fn(X) in Fn(X) such that B ∈ V ⊂ C.
Suppose that V1, . . . Vs are the sets Vj , each of which contains p. We
claim that p ∈ V1 ∩ · · · ∩ Vs ⊂ ∪C. Take x ∈ V1 ∩ · · · ∩ Vs. Then
{x}∪ (B \ {p}) ∈ 〈V1 ∩ · · · ∩Vm〉 ∩Fn(X) ⊂ C. Thus x ∈ ∪C. We have
shown that p ∈ V1 ∩ · · · ∩ Vs ⊂ ∪C. Therefore ∪C is open.

In order to prove (6.1.2) and (6.1.3), put D = 〈U1, . . . , Ur〉 ∩ Fn(X),
ψ : D → Fn(X) by ψ(D) = D∩U1. First, we show that ψ is continuous.
Let D ∈ D and W = 〈W1, . . . ,Wm〉 ∩ Fn(X) be such that ψ(D) ∈ W .
Let V = 〈W1 ∩ U1, . . . ,Wm ∩ U1, U2, . . . , Ur〉 ∩ Fn(X). It is easy to
prove that D ∈ V and ψ(V) ⊂ W . Hence ψ is continuous.

Now we are ready to prove (6.1.2). Since C is connected and ψ is
continuous, ψ(C) = {C ∩ U1 : C ∈ C} is connected. Since {a1} =
ψ(A) ∈ ψ(C), it follows that ψ(C)∩C(X) �= ∅. By Lemma 2.1 the union
∪ψ(C) is connected. But ∪ψ(C) = ∪{C ∩ U1 : C ∈ C} = U1 ∩ (∪C).
Thus U1 ∩ (∪C) is connected. An argument for the connectedness of
Ui ∩ (∪C) for any i ∈ {1, . . . , r} is the same.

To show (6.1.3) take a point p ∈ (∪C) ∩ U1 = ∪ψ(C). Then there
exists C ∈ C such that p ∈ ψ(C). Since ψ(C) is arcwise connected,
there exists a mapping α : [0, 1] → ψ(C) with α(0) = ψ(C) and
α(1) = ψ(A) = {a1}. Thus α([0, 1]) is a locally connected metric
subcontinuum ofX, see [3, Lemma 2.2, p. 252]. Since p, a1 ∈ ∪α([0, 1]),
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there exists a mapping β : [0, 1] → ∪α([0, 1]) such that β(0) = p and
β(1) = a1. Note that β([0, 1]) ⊂ ∪α([0, 1]) ⊂ ∪ψ(C) = (∪C) ∩ U1.
Therefore (∪C)∩U1 is arcwise connected. The proof is complete.

Lemma 6.2. Let X be a compact Hausdorff space, n, r ∈ N
with r ≤ n, and let A = {a1, . . . , ar} ∈ Fn(X), where a1, . . . , ar

are different. For each i ∈ {1, . . . , r}, let Ui and Ci be such that
ai ∈ Ci ⊂ Ui and that U1, . . . , Ur are open and pairwise disjoint subsets
of X. Further, let

C =
{
B ∈ Fn(X) : B ⊂ C1 ∪ · · · ∪ Cr and B ∩ Ci �= ∅

for each i ∈ {1, . . . , r}}.
Then the following implications hold.

(6.2.1) If each Ci is open in X, then C is open in Fn(X).

(6.2.2) If each Ci is connected, then C is connected.

(6.2.3) If each Ci is arcwise connected, then C is arcwise connected.

Proof. Implication (6.2.1) holds by the definition of the Vietoris
topology.

To prove (6.2.2) take B ∈ C. For each i ∈ {1, . . . , r}, let Bi = B∩Ci.
Then Bi �= ∅ and B = B1∪· · ·∪Br. Suppose that Bi has mi elements.
Let

C = Cm1
1 × Cm2

2 × · · · × Cmr
r × Cn−(m1+···+mr)

r .

Then C is a connected subset of Xn. Let η : Xn → Fn(X) be given
by η(x1, . . . , xn) = {x1, . . . , xn}. Clearly, η is continuous, B,A ∈ η(C)
and η(C) ⊂ C. Therefore, C is connected.

The proof of (6.2.3) is similar to that of (6.2.2) (applying [26,
Theorem 9, p. 201] as in the proof of Proposition 2.10), so it is left
to the reader.

Theorem 6.3. Let X be a compact Hausdorff space, n, r ∈ N
with r ≤ n, and let A = {a1, . . . , ar} ∈ Fn(X), where a1, . . . , ar are
different. Then the following hold.

(6.3.1) Fn(X) is locally connected at A if and only if X is locally
connected at each ai.
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(6.3.2) Fn(X) is strongly locally connected at A if and only if X is
strongly locally connected at each ai.

(6.3.3) If X is locally arcwise connected at each ai, then Fn(X) is
locally arcwise connected at A.

(6.3.4) If X is strongly locally arcwise connected at each ai, then
Fn(X) is strongly locally arcwise connected at A.

(6.3.5) If X is metric, then the implications in (6.3.3) and (6.3.4)
can be reversed.

Proof. We only prove (6.3.2); proofs of the other assertions are
similar.

First, assume that Fn(X) is strongly locally connected at A. Let
U1, . . . , Ur be pairwise disjoint open subsets of X such that ai ∈ Ui for
each i ∈ {1, . . . , r}. We show that X is strongly locally connected at a1

(for other points ai the proof is the same). Let U be an open subset of
X such that a1 ∈ U . By the assumption there exists an open connected
subset C of Fn(X) such that A ∈ C ⊂ 〈U ∩U1, U2, . . . , Ur〉∩Fn(X). By
Lemma 6.1 the set (∪C) ∩ U1 is connected and open in X. Moreover,
a1 ∈ (∪C) ∩ U1 ⊂ U1. Therefore X is strongly locally connected at a1.

Second, assume that X is strongly locally connected at each ai.
Let W = 〈W1, . . . ,Wm〉 ∩ Fn(X) be such that A ∈ W . For each
i ∈ {1, . . . , r} let Vi = (∩{Wj : ai ∈ Wj and j ∈ {1, . . . ,m}}) ∩ Ui.
Then Vi is open and ai ∈ Vi ⊂ Ui. By assumption there exists an open
connected subset Ci of X such that ai ∈ Ci ⊂ Vi. Let

D =
{
B ∈ Fn(X) : B ⊂ C1 ∪ · · · ∪ Cr and B ∩ Ci �= ∅

for each i ∈ {1, . . . , r}}.

By Lemma 6.2, D is connected and open in Fn(X). Clearly A ∈ D ⊂
W . Therefore Fn(X) is strongly locally connected at A. The proof is
then complete.

Proofs of Lemmas 6.1 and 6.2 can easily be adapted for the space
F∞(X) instead of Fn(X). Thus we have the following result.
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Theorem 6.4. Let X be a compact Hausdorff space, r ∈ N and
A = {a1, . . . , ar} ∈ F∞(X), where a1, . . . , ar are different. Then the
following hold.

(6.4.1) F∞(X) is strongly locally connected at A if and only if X is
strongly locally connected at each ai.

(6.4.2) F∞(X) is locally connected at A if and only if X is locally
connected at each ai.

(6.4.3) If X is strongly locally arcwise connected at each ai, then
F∞(X) is strongly locally arcwise connected at A.

(6.4.4) If X is locally arcwise connected at each ai, then F∞(X) is
locally arcwise connected at A.

(6.4.5) If X is metric, then the implications in (6.4.3) and (6.4.4)
can be reversed.

To prove (6.3.5) and (6.4.5), one has to use the fact that locally
connected metric continua are arcwise connected. This implication is
not true for the non-metric case, see [22, Theorem 1 and Corollary 1,
p. 167]. So, we have the following question.

Question 6.5. Is metrizability of X an essential assumption in
(6.3.5) and (6.4.5)?
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