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ON Q-DERIVED POLYNOMIALS

R.J. STROEKER

ABSTRACT. A Q-derived polynomial is a univariate poly-
nomial, defined over the rationals, with the property that its
zeros, and those of all its derivatives are rational numbers.
There is a conjecture that says that Q-derived polynomials
of degree 4 with distinct roots for themselves and all their
derivatives do not exist. We are not aware of a deeper reason
for their non-existence than the fact that so far no such poly-
nomials have been found. In this paper an outline is given of
a direct approach to the problem of constructing polynomials
with such properties. Although no Q-derived polynomial of
degree 4 with distinct zeros for itself and all its derivatives was
discovered, in the process we came across two infinite fami-
lies of elliptic curves with interesting properties. Moreover,
we construct some K-derived polynomials of degree 4 with
distinct zeros for itself and all its derivatives for a few real
quadratic number fields K of small discriminant.

1. Introduction. A polynomial f ∈ Q[x] of degree n with n rational
zeros and such that all of its derivatives of positive degree have the same
property is known as a Q-derived polynomial. It is easy to classify all
such polynomials of degree at most 3. For instance,

f(x) = 4x3 − 4x2 − 15x = x(2x + 3)(2x − 5)
f ′(x) = 12x2 − 8x − 15 = (2x − 3)(6x + 5)
f ′′(x) = 24x − 8

is a Q-derived polynomial of type p1,1,1. By definition, the class
pm1,... ,ms

contains all polynomials with s distinct zeros, where the ith
zero has multiplicity mi, i = 1, . . . , s, and

∑s
i=1 mi = n = deg (f).

Surprisingly, polynomials of type p1,1,1,1 are unknown. More strongly,
it is conjectured that such polynomials do not exist, see [1] and [4].

Conjecture 1.1. There is no Q-derived polynomial of type p1,1,1,1.
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This conjecture is the only remaining obstacle in the course of a full
classification of all quartic Q-derived polynomials, see [4]. In the closing
lines of [4] it is observed that this paper’s approach to proving the non-
existence of Q-derived polynomials of type p3,1,1 won’t work for the
p1,1,1,1 case. Therefore, in the next section we shall outline a different,
constructive way of attacking this remaining conjecture.

2. Q-derived polynomials of degree 4. Clearly, if f(x) is Q-
derived, then so is g(x) = r1f(r2(x + r3)) for any ri ∈ Q, i = 1, 2, 3,
r2 �= 0. This observation implies that without loss of generality we may
take f ′(0) = 0, f(1) = 0, and f to be monic for suitable choices of r3,
r2, r1, respectively, provided f is Q-derived with at least two different
zeros. From now on we assume this to be the case. Let

(1) f(x) = (x − 1)(x − a)(x − b)(x − c)

be Q-derived with a, b, c ∈ Q and f ′(0) = 0, which yields

(2) abc + ab + bc + ca = 0.

Further, f is Q-derived and so f ′(x) = 0 and f ′′(x) = 0 have rational
roots only. Because f ′(0) = 0, this yields two quadratic polynomials
with rational discriminants:

9(a + b + c + 1)2 − 32(ab + bc + ca + a + b + c) = rational square

(3)

9(a + b + c + 1)2 − 24(ab + bc + ca + a + b + c) = rational square.

(4)

Now we shall assume that bc + b + c �= 0, for otherwise it follows from
(2) that b = c = 0 and f cannot be of type p1,1,1,1. These fs are
adequately dealt with in [1]. For the same reason we assume a �= 0,
b �= 0, and c �= 0.

Next we eliminate a from (2) and each of the equations in (3) and (4)
separately. Working with Maple, this can be conveniently done using
Groebner bases with total degree order (a, b, c) for each pair. Setting
b = 1/t and c = (U −1)/(t+1) and adjusting for rational squares gives
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two similar parametric families of elliptic curves with corresponding
quartic equations

(5)
E1(t) : V 2 = U4 −

(
14
3

T + 2
)

U3 +
(

9T 2 +
14
3

T − 5
9

)
U2

−
(

14
3

T + 2
)

U + 1

(6)
E2(t) : W 2 = U4 − 2(T + 1) U3 +

(
9T 2 + 2T +

1
3

)
U2

− 2(T + 1) U + 1

where we write T = (t2+t+1)/3t for convenience. These curves have to
be investigated for rational points with common abscissa. We have to
keep in mind however that not all pairs of points with common abscissa
qualify. For instance, the points (U, V ) = (0,±1) and (U, W ) = (0,±1)
give rise to bc + b + c = 0, which we excluded. This can be seen as
follows. If U is the common abscissa of two points, one on each of the
curves E1(t) and E2(t), see (5) and (6), then combining b = 1/t with
c = (U − 1)/(t + 1) gives bc + b + c = U/t, which vanishes with U .
Observe that for U �= 0 we have

(7) a = − U − 1
U(t + 1)

, b =
1
t
, c =

U − 1
t + 1

.

There are many solutions to the fourth degree Q-derived problem
with multiple zeros. Corresponding points for such solutions may be
obtained by equating any two elements of the set {1, a, b, c}. Proceeding
in this way1 we obtained the following U -values for these points.

(8)
U =

1
t + 2

(a = 1), t + 2 (c = 1),
t

2t + 1
(a = b),

2t + 1
t

(b = c), −1 (c = a)

Further, two or more of these U values can only be equal for t ∈
{1,−1,−3,−1/3}. Consequently, we may expect these families of
elliptic curves to have many rational points, which suggests a rank
of at least 1 for all rational values of t, with a few obvious exceptions.
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What we hope to find is an explicit rational point P (t) with abscissa
U(t), which is a point on one of these two curves for all t, and which
corresponds to a point Q(t) on the other curve that can be forced to
have the same abscissa U(t) for a suitably chosen rational value t. If
such a point exists, and if it does not correspond to a solution with
multiple zeros, then we have found a Q-derived polynomial of degree 4
and of type p1,1,1,1. So we have to investigate the properties of these
two families of elliptic curves.

3. Two families of elliptic curves. The curve E1(t)/Q has the
Weierstraß equation

(9)
Y 2 − 2(7T + 3)XY − 36(7T + 3)Y

= X3 + 2(16T 2 − 7)X2 − 324X − 648(16T 2 − 7)

and a Weierstraß equation for E2(t)/Q is

(10)
Y 2 − 6(T + 1)XY − 108(T + 1)Y

= X3 + 6(12T 2 − 1)X2 − 324X − 1944(12T 2 − 1).

Recall that T = (t2 + t + 1)/3t. The discriminant of E1(t)/Q is

21834(T − 1)2(T + 1)2(9T + 7)2(3T + 1)(27T − 23).

It readily follows that E1(t) is non-singular and hence elliptic for
t /∈ {0, 1,−1,−3,−1/3}. Further, for transcendental T we have
E1(Q(T ))tor ∼= Z2 with non-trivial torsion point P0(t) with coordinates
(X, Y ) = (−18, 0) on the cubic (9).

Considering U = −1, t, t + 2, see (8), and the point producing maps
t �→ 1/t and (U, V ) �→ (1/U, V/U2), we find a collection of points
belonging to the subgroup of E1(t)(Q) generated by two points of
infinite order, say P1(t) with coordinates (U, V ) = (−1, 3T + 7/3) on
the quartic (5) and (X, Y ) = (96T + 78,−192T 2 − 576T − 384) on the
cubic (9), and P2(t) with (U, V ) = (2+1/t,−2(t+1)(t−1)(3t+1)/3t2)
on (5) and (X, Y ) = (−16t− 2, 32(t− 1)(t2 − 2t− 2)/3t) on (9). These
points need not be independent for all t, but often they are. Therefore
we have (see also the paragraph immediately below Theorem 3.2):

Theorem 3.1. The curve E1(t)/Q is elliptic for all t /∈ {0, 1,−1,−3,
−1/3}. For these values of t its torsion group has a subgroup of order 2
and its rank is at least 1.
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In fact, E1(t) can have three points of order 2, a situation that can be
parameterized as follows. Setting Y = (7T + 3)X + 18(7T + 3) in (9)
leads to

(X + 18)(X2 + (81T 2 + 42T − 23)X + 306T 2 + 756T + 414) = 0.

For the second factor to be rationally solvable, its discriminant needs
to be a perfect square, which means

(3T + 1)(27T − 23)(9T + 7)2 = rational square.

As none of the factors in the left-hand side can vanish, and replacing
T by (t2 + t+1)/3t, we find that (9t−7)2 +32 = rational square. This
finally yields the parametrization

1 + t

1 − t
= u − 2

u
, for u ∈ Q but u �= 0,±1,±2.

The lower bound 1 for the rank is best possible as can be seen from the
table below.

The curve E2(t)/Q has discriminant

21438(3T 2 − 1)2(3T + 1)(9T − 5)(27T 2 + 18T + 19),

and we check that E2(t) is non-singular for all t �= 0. Again, for
transcendental T we have E2(Q(T ))tor ∼= Z2 with non-trivial torsion
point (X, Y ) = (−18, 0) on the cubic (10). We have

Theorem 3.2. The curve E2(t)/Q is elliptic for all t �= 0. For t �= 0
its torsion group has a subgroup of order 2 and its rank is at least 1.

The point P = (X, Y ) = (18, 0) is on both curves (9) and (10).
This point cannot be of finite order. On the curve (9) we have
−P = (18, 72(7T + 3)) and 7T + 3 �= 0, so that P cannot be of
order 2. More tedious arguments, using Maple and Apecs, show that
P cannot be of order 3, 4, 5, 6, 7, 8, 9, 10 or 12 either. For instance,
setting x[2P ] = −x[P ] gives T = −2 or T = −5/8, both of which are
impossible, so that P cannot be of order 3. And so on. By Mazur’s
theorem we then conclude that P cannot be of finite order. In the same
way we check this for the second curve.
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In the table below we have gathered information on the curves E1(t)
and E2(t) for all 125 values of t in Q∩ [−1, 1] of height at most 20 and
with t �= 0,−1, 1,−3,−1/3. The computations were carried out with
Ian Connell’s Maple package Apecs 6 [2]. We also ran John Cremona’s
mwrank [3] under Linux to verify Apecs’ results. For only three values
of t, namely t = −2/11,−5/8, 4/5, we were unable to find a guaranteed
value for the rank of E1(t)/Q. The best we can do in this respect is to
say that the ranks of these three curves are 1, 2, or 3.

TABLE 1. Number of curves Ei(t), i = 1, 2, for 125 values of t.

Torsion group Rank
Z2 Z2 × Z2 1 2 3 4

E1 120 5 3 80 38 4
E2 125 0 ∗39 63 18 5

The ∗ means that three curves counted here

may have rank 2 or 3, instead of 1.

4. Finding suitable rational points. As we explained at the
end of Section 2, we approach the problem of finding a Q-derived
polynomial of type p1,1,1,1 by selecting a point on E1(t) (5) for general
t and trying to force its abscissa U(t) to be the abscissa of a point on
E2(t) (6) for a suitable choice of t. This works as follows. We take any
linear combination of P0(t), P1(t) and P2(t) (see the previous section),
extract its coordinate U(t) and substitute this into (6), which then can
be written as F (t) = Z2 for Z ∈ Q(t). Next we try to find a suitable
rational point on this elliptic or generally hyperelliptic equation. This
search is much simplified by the very fast program ratpoints of Michael
Stoll [5], which we need to extend to cover deg (F ) > 10. In fact, we did
our calculations with all 127 points P (t) = c0P0(t) + c1P1(t) + c2P2(t)
for integers ci with c0 = 0, 1 and ci (i = 1, 2) between −3 and 4, and
with ratpoints searching up to height 100000. The highest degree of F
we came across was 76. Unfortunately, we did not find any p1,1,1,1-type
polynomial. We give a few examples.
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Example 4.1. For P (t) = P0(t) + P1(t) + P2(t) we have U(t) =
1/(t+2), which corresponds to a = 1. Substitution of U(t) = 1/(t+2)
into (6) yields

F1(t) := 3(t4 + 4t3 + 4t2 + 3) =
(

3t(t + 2)2

2(t + 1)
W

)2

.

The elliptic curve Z2 = F1(t) has rank 2, but every rational point of
this curve corresponds to a Q-derived polynomial with a double root 1.

Example 4.2. Take P (t) = P0(t) + 3P1(t) − P2(t). Then U(t) =
(5t + 4)/(2t2 + 2t − 1) and substitution of this U(t) into (6) results in

F2(t) := 3(67t8 + 228t7 + 306t6 − 92t5 − 63t4 + 276t3 + 214t2 + 24t + 12)

=

(
3t(2t2 + 2t − 1)2

2(t + 1)
W

)2

.

Searching for rational points on the curve Z2 = F2(t) with ratpoints-
1.5 we only find the finite rational points corresponding to t =
1,−1,−3,−4/5, all four values giving rise to inadmissible situations,
the last one notably U = 0.

Observe that for rational t we generally get a K-derived polynomial
of type p1,1,1,1 over the quadratic field K. For instance, setting t = −2
finds such a polynomial over K = Q(

√
3). The roots of this polynomial

are [a, b, c, d] = [3/2,−1/2, 3, 1].

5. K-derived polynomials for some number fields K. In this
section we give some examples of K-derived polynomials of type p1,1,1,1

over the number field K of small discriminant. Obviously, for a suitable
U(t), any rational t will generally give a K-derived polynomial of type
p1,1,1,1 over a quadratic number field K. There is however no reason for
the discriminant of K to be small. We have already given an example
of such a polynomial over K = Q(

√
3) in Example 4.2.

Example 5.1. Setting U(t) = t in (6) gives

W 2 =
4
3

(t2 + 1)2
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so that for each t �= 0, 1,−1 the polynomial with roots (7)

[a, b, c, d] =
[
− t − 1

t(t + 1)
,

1
t
,

t − 1
t + 1

, 1
]

is a K-derived polynomial of type p1,1,1,1 over K = Q(
√

3).

Example 5.2. The U -value of P (t) = P0(t) − P1(t) + P2(t) is

U(t) =
2t2 + 2t − 1

5t + 4
.

Let K = Q(
√

D) for squarefree D. The following t-values give different
K-derived polynomials of type p1,1,1,1 for the relevant D as shown in
the table below.

TABLE 2. Some K-derived polynomials of type p1,1,1,1 over a quadratic

number field K = Q(
√

D) of small discriminant.

D t

3 1/7, 2/3
3 · 31 · 37 −7/17, 1/4, 1/2, 4
37 · 103 −2/7, 3
9931 −3/7, 10
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ENDNOTE

1. The choice b = 1 leads to t = 1 and the curve E1(1) is not elliptic.
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