
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 31, Number 3, Fall 2001

WITT SUBGROUPS AND CYCLIC
DIEUDONNÉ MODULES KILLED BY p

ALAN KOCH

ABSTRACT. Let k be a perfect field of characteristic p > 0.
We obtain a complete classification of cyclic Dieudonné mod-
ules killed by p, which in turn gives us a complete classification
of Witt subgroups killed by p. Finally, we construct an explicit
formula for the number of Witt subgroups of a given dimen-
sion over a finite field k and use this to disprove a conjecture
of Lubin.

Let k be a perfect field of characteristic p > 0. Let G be an affine
finite commutative k-group scheme. It is well known (e.g., [11]) that
G splits into the direct sum of G′ and G′′, where G′ is the maximal
connected unipotent subgroup of G. While G′′ can be classified using
descent (over an algebraically closed field it decomposes into various
roots of unity functors and constant group schemes of dimension pr for
various r), the classification of connected unipotent group schemes is
more difficult.

To fully understand this subcategory of group schemes, we must
introduce Dieudonné modules. Dieudonné modules are a class of
modules (over a certain ring E) which correspond to these group
schemes. It is for this reason that we are interested in studying
Dieudonné modules. In this paper we will use Dieudonné modules to
obtain a complete classification of Witt subgroups that are killed by p.
A Witt subgroup refers to a finite subgroup scheme of any finite-length
Witt vector group scheme. In the first section we describe the basic
correspondence between group schemes and Dieudonné modules; we
give additional properties for the Dieudonné modules that correspond
to Witt subgroups killed by p, namely, the modules that are killed by
p and are cyclic. In Sections 2 and 3 we classify all of the modules that
correspond to Witt subgroups; we see that they can be parameterized
by triples (l,m, η), where l and m are positive integers and η is an
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element from a certain quotient group of k×. Finally, in the last section
we explicitly describe these Witt subgroups, provide a formula for the
total number of Witt subgroups killed by p when k is finite, and use
these results to disprove a conjecture made by Lubin concerning the
number of cyclic Dieudonné modules.

It is the hope that this paper will bring insight to Dieudonné module
theory. Once the cyclic modules killed by p are classified, perhaps it
can be extended to cyclic modules killed by ph for some h, or even
more general modules. In addition, the results provided here will be
useful in classifying group schemes over rings of Witt vectors (which
are unramified extensions of Zp) as in [8]; also the techniques used
in Section 3 will be applied to classifying Hopf algebras which are
generated as algebras by a single element [9]. While efforts have been
made in [1] and [2] to discuss group schemes killed by p (not necessarily
cyclic) over k (and W (k)), the results here are more explicit in both
the Dieudonné module description and the group scheme description.

Throughout this paper we shall work over a fixed prime p > 0, and
all group schemes are affine, commutative, connected and unipotent
unless otherwise specified. By k we shall always mean a perfect field of
characteristic p.

1. Group schemes and Dieudonné modules. In this section we
discuss the basic properties of Dieudonné modules that will be needed
for the rest of the paper. We also specialize these properties to the
subclass of Dieudonné modules that correspond to Witt subgroups.
Dieudonné modules are modules over a certain ring, whose description
requires the ring of Witt vectors. We will start by recalling how this
ring is defined. More details can be found in either [3] or [7].

Let k be a field of characteristic p. For any n > 0 define a polynomial
wn(Z0, Z1, . . . , Zn) by

wn(Z0, Z1, . . . , Zn) = pnZn + pn−1Zp
n−1 + · · · + Zpn

0 .

We use these to define additional polynomials S0, S1, . . . ; P0, P1, . . .
via

wn(S0, . . . , Sn) = wn(X0, . . . , Xn) + wn(Y0, . . . , Yn)
wn(P0, . . . , Pn) = wn(X0, . . . , Xn)wn(Y0, . . . , Yn).
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For example,

S0(X0, Y0) = X0 + Y0

S1((X0, X1), (Y0, Y1)) = X1 + Y2 − (X0 + Y0)p − Xp
0 − Y p

0

p

P0(X0, Y0) = X0Y0

P1((X0, X1), (Y0, Y1)) = Xp
0Y1 + X1Y

p
0 + pX1Y1.

The polynomials Si and Pi have integer coefficients.

Let W (k) = {(a0, a1, . . . ) | ai ∈ k}. We can make W (k) into a ring
by

(a0, a1, . . . ) + (b0, b1, . . . ) = (S0(a0, b0), S1((a0, a1), b0, b1)), . . . )
(a0, a1, . . . ) · (b0, b1, . . . ) = (P0(a0, b0), P1((a0, a1), (b0, b1)), . . . ).

W (k) is called the ring of Witt vectors with coefficients in k. W (k) is
a commutative ring with multiplicative identity 1W (k) = (1, 0, 0, . . . ).
The characteristic of W (k) is 0. Note that p = 1W (k) + 1W (k) + · · · +
1W (k) = (0, 1, 0, 0, . . . ). More generally, pn is the vector with a 1 in the
nth place and zeros elsewhere.

If we take k = Fp, then W (k) ∼= Zp, the ring of p-adic integers. If
k = Fpr , then W (k) is isomorphic to the unique unramified extension
of Zp of degree r.

We can use Witt vectors to define a unipotent group scheme, which
we will call W . For any k-algebra A we define W (A) = W (k) ⊗k A,
which gives the Witt vectors with coefficients in A. Let Wn = Wn(k) =
W/pnW , the group scheme of Witt vectors of length n. Clearly Wn

can be viewed as a unipotent group scheme in the same way.

The ring W (k) is equipped with two k-group scheme homomorphisms
F and V defined by

F (a0, a1, a2, . . . ) = (ap
0, a

p
1, a

p
2, . . . )

and

V (a0, a1, a2, . . . ) = (0, a0, a1, a2, . . . ).

One of the properties of F and V is that FV = V F = p =
(0, 1, 0, 0, . . . ). These maps induce maps on the Wns which we shall
also denote by F and V .
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Let E be the ring of noncommutative polynomials W (k)[F, V ] with
the relations FV = V F = p, Fw = wσF , wV = V wσ, with w ∈ W (k)
and wσ defined by raising each component to the pth power. To
any finite unipotent group scheme G we associate a left E-module
D∗(G) = Homk−gr(G,C), the k-group scheme homomorphisms from
G to C, where C is the E-module functor of Witt covectors as defined
in [5].

The action of E on D∗(G) is induced from the action on C:

e · f(x) = f(e · x)

where e ∈ E, x ∈ G(A) for some k-algebra A, and f : G → C.

The (exact) contravariant functor D∗ induces an anti-equivalence
between finite unipotent group schemes and finite length E-modules
that are killed by a power of V . Moreover, if G is connected, then
D∗(G) is also killed by a power of F , so D∗ induces an anti-equivalence
between finite connected unipotent group schemes and E-modules
killed by a power of both F and V . Here we will use the term Dieudonné
module to refer to such a left E-module. (This notion of Dieudonné
module is somewhat restrictive, for in [4], [5] a Dieudonné module
can be used to describe formal groups or nonconnected, non-unipotent
group schemes. However, this definition is all we will need for the
results to follow.) The size of the group scheme and the Dieudonné
module are related by

dimkG = plengthW D∗(G),

[6]. As an example, it can be shown that D∗(Wn) = E/E(V n), a
fact we will use several times. Also, if we let αp be the unique k-
group scheme of rank p (namely for any k-algebra A we have αp(A) =
{a ∈ A | ap = 0{ with operation induced from the operation on A),
then αp = ker F : W1 → W1, so D∗(αp) = coker (F : D∗(W1) →
D∗(W1)) = E/E(F, V ).

Of interest to us will be the following special class of group schemes.

Definition 1.1. A Witt subgroup is a finite subgroup of Wn for some
n.

Notice that a Witt subgroup is not a subgroup of W . As an example,
we have already seen αp is a subgroup of W1 and is finite, hence it is
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a Witt subgroup. For a more complicated example, let G be the group
scheme given by

G(A) = {a ∈ A | ap2
= 0}

with group operation given by

a + Gb = a + b −
p−1∑
i=1

(p − 1)!
i!(p − i)!

apibp(p−i).

Then G is isomorphic to the Witt subgroup

G′(A) = {(ap, a) | ap2
= 0} ⊂ W2(A).

In fact, F (ap, a) = (ap2
, ap) = (0, ap) = V (ap, a) and p(ap, a) =

(0, ap2
) = (0, 0), hence

D∗(G) = D∗(G′) = E/E(F − V, F 2).

A Dieudonné module is cyclic if it is of the form E/I for some ideal
I ⊂ E. The connection between cyclic Dieudonné modules and Witt
subgroups is given by

Lemma 1.2. G is a Witt subgroup if and only if D∗(G) is a cyclic
Dieudonné module.

Proof. Since G ⊂ Wn for some n, we must have D∗(G) as a quotient
of D∗(Wn) = E/E(V n), which is cyclic. Conversely, if M = D∗(G)
is a Dieudonné module, there is an n such that V nM = 0. Now if
M = E/I, then V n ∈ I, and we get the projection E/E(V n) � E/I
which, when applying the inverse functor to D∗, gives us the injection
G ↪→ Wn.

We now restrict our attention to Witt subgroups G that are killed by
p. Let M = D∗(G). If pG = 0, it is easy to show that pM = 0. Thus
we may classify all Witt subgroups killed by p by classifying all cyclic
Dieudonné modules killed by p.

If pM = 0, then M = M/pM is a module over E/pE = k[F, V ]/(FV ).
Thus we need only consider actions on our modules by elements of
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the form a +
∑n

i=1 biF
i +

∑m
j=1 cjV

j , eliminating the need to consider
multiples of p or polynomials with “cross terms” F iV j . In particular,
an E-module homomorphism between cyclic Dieudonné modules killed
by p is given by multiplication by an element in E/pE.

Finally, notice that if G is killed by p, then the length of D∗(G) over
W (k) is exactly equal to the dimension over k, hence

dimkG = pdimkD∗(G).

2. Cyclic Dieudonné modules killed by p. Having established
that Witt subgroups killed by p correspond to cyclic Dieudonne mod-
ules killed by p, it suffices to completely classify this class of cyclic
Dieudonné modules.

Proposition 2.1. Let M be a cyclic Dieudonné module killed by p.
Then there exist positive integers l and m such that either

M ∼= E/E(F l, V m, p) or M ∼= E/E(F l − ηV m, p)

where η ∈ k×.

Proof. Assume M is not isomorphic to E/E(F l, V m, p) for any l,m.
E is Noetherian [3], so M must be of the form E/I, where

I = (Fn, f1(F ) − g1(V ), f2(F ) − g2(V ), . . . , fs(F ) − gs(V ), V r, p)

for some n, r and polynomials fi(F ) ∈ k[F ], gi(V ) ∈ k[V ]. Of course,
we can assume each fi(F ) has degree no more than n−1 and each gi(V )
has degree no more than r − 1. (Note that we can also assume that
there are no “cross terms” in these relations as FV = V F = p ∈ I.)
Assume Fn−1M �= 0.

We shall first consider the case s = 1. Let x ∈ M be the element
corresponding to 1 ∈ E under the natural projection E → M . Notice
that neither f(F ) = f1(F ) nor g(V ) = g1(V ) can be zero. For
instance, if g(V ) = 0, then f(F ) �= 0, since M �∼= E/E(F l, V m, p),
but f(F )x = 0 ∈ M , so we can solve this equation for the smallest
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power of F ; which means that we could write a power of F strictly in
terms of larger powers of F , violating the fact that Fn−1M �= 0.

Let f(F ) =
∑n−1

i=l ciF
i and g(V ) =

∑r−1
i=m diV

i for some l and m
with ci, di ∈ k, cldm �= 0.

Claim 1. l �= 0 and m �= 0.

Of course, we can always assume m �= 0. Suppose l = 0. Since
M ∼= M/pM , x generates M as an E/pE ∼= k[F, V ]/(FV )-module.
Then

c0x =
r−1∑
i=m

diV
ix −

n−1∑
i=1

ciF
ix.

But then

x =
r−1∑
i=m

d′iV
i
x −

n−1∑
i=1

c′iF
i
x, where c′i =

ci

c0
, d′i =

di

d0
.

This gives

Fn−1x =
r−1∑
i=m

d′p
n−1

i Fn−1V ix −
n−1∑
i=1

c′p
n−1

i Fn−1+ix.

If n = 1, we get x =
∑r−1

i=m d′p
n−1

i V ix, which is impossible as repeated
substitutions for x would express x as higher and higher powers of V ,
forcing x to be zero. Suppose n > 1. As Fnx = 0 = px, we get

Fn−1x =
r−1∑
i=m

d′p
n−1

i Fn−2V i−1px − 0 = 0,

contradicting the fact that Fn−1M �= 0. Thus l �= 0, and the claim is
proved.

Claim 2. F l+1M = 0 and V m+1M + 0; hence, we may let n = l + 1
and r = m + 1.
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Suppose n > l + 1 and Fn−1M �= 0. Then

Fn−l−1f(F )x =
n−1∑
i=l

Fn−l−1ciF
ix

=
n−1∑
i=l

cpn−l−1

i Fn−l−1+ix

= cpn−l−1

l Fn−1x.

But we also have

Fn−l−1f(F )x = Fn−l−1g(V )x

=
r−1∑
i=1

Fn−l−1diV
ix

=
r−1∑
i=1

Fn−l−2dp
i V

i−1px = 0.

Thus cpn−l−1

l Fn−1x = 0. Since cl �= 0, Fn−1x = 0, contradicting our
choice of n. Thus we may let n = l+1. A similar argument for r = m+1
establishes the claim.

Our Dieudonné module is now of the form

E/E(F l+1, clF
l − dmV m, V m+1, p).

Of course, E(F l+1, clF
l−dmV m, V m+1, p) = E(F l+1, F l−(dm/cl)V m,

V m+1, p). If we let η = (dm/cl), notice that

F l+1 = F (F l − ηV m) + ηpV m−1(p)

and
V m+1 = η−p−1

F l−1(p) − η−p−1
V (F l − ηV m)

so, for s = 1, we get

M ∼= E/E(F l − ηV m, p).

Finally, if s > 1, then there is another relation, say f ′(F ) = g′(V )
where we have f ′(F ) =

∑l
i=l′ aiF

i and g′(V ) =
∑m

i=m′ biV
i. Using the
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above methods, it is clear that l′ + 1 = l + 1 and m′ + 1 = m + 1, hence
l′ = l and m′ = m. So f ′(F ) = alF

l and g′(V ) = bmV m. Thus

alF
lx = bmV mx and clF

lx = dmV mx.

where al, bm, cl, dm ∈ k×. Since F lx �= 0 and V mx �= 0, we get

F lx =
bm

al
V mx =

dm

cl
V mx,

so the additional relation f ′(F ) − g′(V ) is extraneous, i.e., it is a
multiple of f(F ) − g(V ). Thus we can always take s = 1, hence all
cyclic Dieudonné modules killed by p are of the form

E/E(F l, V m, p) or E/E(F l − ηV m, p).

We shall adopt the following notation for our cyclic Dieudonné
modules:

Ml,m = E/E(F l, V m, p)
Ml,m,η = E/E(F l − ηV m, p)

where l,m are positive integers and η ∈ k×.

Remark. The modules of the form Ml,m are all nonisomorphic;
however, this is not true for modules of the form Ml,m,η. In the
next section we shall give a classification where all of the modules are
nonisomorphic.

Before examining isomorphism questions, we need a quick result on
the dimensions of our modules.

Lemma 2.2. Let l and m be positive integers, η ∈ k×. Let
Ml,m = E/E(F l, V m, p) and Ml,m,η = E/E(F l − ηV m, p). Then

(i) dimkMl,m,η = l + m

(ii) dimkMl,m = l + m − 1.

Proof. It is easy to see that

{x, Fx, F 2x, . . . , F lx, V x, V 2x, . . . , V m−1x}
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is a k-basis for Ml,m,η where x = 1Ml,m,η
; and that

{y, Fy, F 2y, . . . , F l−1y, V y, V 2y, . . . , V m−1y}

is a k-basis for Ml,m where y = 1Ml,m
.

3. The complete classification of nonisomorphic modules.
We now address the question: when are two Dieudonné modules as
given in (2.1) isomorphic? Any homomorphism of cyclic modules
φ : M → M ′ is uniquely determined by φ(1M ). If φ(1M ) = h, then
φ(e · 1M ) = e · φ(1M ) = e · h ∈ M ′. Of course, this h must “preserve
the module relations,” i.e., if e · 1M = 0, then φ(e · 1M ) = e · h must be
zero in M ′. We will say that φ is given by h in this case.

In the case where M ′ is killed by p, we can take h = h(F, V ) ∈
k[F, V ]/(FV ) and think of it as a polynomial with no cross terms. In
order for φ to be an isomorphism, the constant term of this polynomial
must be nonzero.

We start with some easy results.

Lemma 3.1. Let Ml,m =E/E(F l, V m, p), Ml′,m′ =E/E(F l′ , V m′
, p),

Ml,m,η = E/E(F l−ηV m, p) and Ml′,m′,η′ = E/E(F l′−η′V m′
, p) where

l, l′,m and m′ are positive integers and η, η′ ∈ k×. Then

(i) Ml,m
∼= Ml′,m′ if and only if l = l′ and m = m′.

(ii) If Ml,m,η
∼= Ml′,m′,η′ , then l = l′ and m = m′.

(iii) Ml,m,η �∼= Ml′,m′ for any choice of l, l′,m,m′, η.

Proof. (i) The powers of F and V that kill M are invariant under
isomorphism, so F lMl,m = 0, F l−1Ml,m �= 0 implies that F lMl′,m′ = 0,
F l−1Ml′,m′ �= 0; hence, l′ = l. A similar argument shows m = m′.

(ii) Similar to (i), only here we use F l+1Ml,m,η = 0, F lMl,m �= 0.

(iii) Suppose Ml,m,η
∼= Ml′,m′ . By (2.2), we must have l + m =

l′ + m′ − 1, so without loss of generality we may assume l < l′.

For an isomorphism φ : Ml,m,η → Ml′,m′ given by h ∈ k[F, V ]/(FV )
we get

0 = φ(0) = φ((F l − ηV m)x) = (F l − ηV m)hy
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where x = 1Ml,m,η
and y = 1Ml′,m′ . Write h = a + Fh1 + V h2, a ∈ k×,

h1 ∈ k[F ], h2 ∈ k[V ]. Then

(F l − ηV m)hy = aplF ly − ap−m

ηV my + (F l − ηV m)(Fh1 + V h2)y

= apl

F ly − ap−m

ηV my + h′F l+1y + h′′V m+1y

for the appropriate choice of h′ and h′′. Since the powers of F and
V are linearly independent in Ml′,m′ , we must have F ly = 0, which
contradicts our assumption that l < l′.

Thus, all of the Ml,m’s are different and are different from all of the
Ml,m,η’s. In fact, the only possible isomorphisms are between Ml,m,η1

and Ml,m,η2 . The primary goal of this section is to determine exactly
how many isomorphism classes of modules we have for a given l and
m. For the remainder of this section, we shall fix l and m and write
Mη for Ml,m,η.

Suppose φ : Mη1 → Mη2 is an isomorphism. Let x = 1Mη1
and

y = 1Mη2
. Write

φ(x) = ay + eFy + e′V y, a ∈ k×.

Then

φ(F lx) = apl

F ly = apl

η2V
my and φ(η1(V mx) = ap−m

η1V
my

so we must have apl

η2 = ap−m

η1, i.e., (η1/η2) = a(pl−p−m). Thus we
obtain

Lemma 3.2. Mη1
∼= Mη2 if and only if there exists an a ∈ k× such

that (
η1

η2

)pm

= apl+m−1.

Alternatively, let τ : k → k be the Fp-monomorphism defined by
τ (x) = xpl+m

. Let G be the subgroup of k× given by {τ (x)/x} | x ∈
k×}. Then we may restate the above lemma as follows: Mη1

∼= Mη2 if
and only if (η1/η2)pm ∈ G.
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It k is algebraically closed, f(x) = xpl+m−1 − (η1/η2)pm

= 0 always
has a solution, so we get

Corollary 3.3. If k is algebraically closed, then Mη1
∼= Mη2 for

all η1, η2 ∈ k. In particular, all cyclic Dieudonné modules killed by a
power of p are isomorphic to E/(E(F l, V m, p) or E/E(F l − V r, p).

Let k0 ⊂ k be the subfield of elements fixed by τ . Notice that in the
case k ⊂ Fpl+m we have k0 = k so τ (x) = x, hence G is trivial. Thus,
Mη1

∼= Mη2 if and only if (η1/η2)pm

= 1, i.e., η1 = η2. Thus in this
case no two Mn’s are isomorphic.

The following two lemmas provide very useful properties of G:

Lemma 3.4. G ∩ kpm

= Gpm

.

Proof. It is clear that Gpm ⊂ G ∩ kpm

. Let g ∈ G ∩ kpm

. Then
g = (τ (x)/x) for some s ∈ k× and there is an a ∈ k× so that apm

= g.
We shall show a ∈ G. If we raise both sides of (τ (x)/x) = apm

to the
plth power, we obtain

τ (xpl

)
xpl = apl+m

= τ (a),

hence τ (a) ∈ G. But (τ (1/a))/(1/a) ∈ G as well, hence

τ (a) · τ (1/a)
1/a

= a

is an element of G.

Lemma 3.5. Let G, k and k0 be as above. Then G ∼= k×/k×
0 .

Proof. The map φ : k× → G given by φ(x) = τ (x)/x is clearly a
group homomorphism with kernel k×

0 .

Of course, the map ( )pm

is injective, hence if (η1/η2)pm

= g =
(η1/η3)pm

, then η2 = η3. Thus, for a given Mη, there is an injective
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map from {η′ ∈ k× | Mη
∼= Mη′} to G. In fact, since the corresponding

elements of G must be pmth powers, the image of the injective map lies
in G ∩ kpm

= Gpm

. So for all g ∈ Gpm

there is a unique γ ∈ G so that
γpm

= g. Given any such γ we have
(

η

η/γ

)pm

= g,

hence Mη
∼= Mη/γ . Thus we obtain

Theorem 3.6. The isomorphism classes of cyclic Dieudonné mod-
ules of the form E/E(F l−ηV m, p) for a fixed l and m are in one-to-one
correspondence with the quotient group Q = k×/Gpm

.

We shall briefly revisit the case where k is algebraically closed. Here
G = k× and Gpm

= G, hence Q = {1}. In other words, there is exactly
one isomorphism class, as was stated above.

The results also simplify in the case where k is a finite field, say
k = Fpr . In this case G is finite (as it is a subgroup of k×), hence
Gpm

= G. Also, k0 = k ∩ Fpl+m = Fpd , where d = gcd (r, l + m). Here
Q = k×/G. By (3.7) the order of G is |k×|/|k×

0 |, so we obtain

Theorem 3.7. Let k = Fpr . The number of isomoprhism classes of
cyclic Dieudonné modules of the form E/E(F l − ηV m, p) for a fixed l
and m is pd − 1, where d = gcd (r, l + m).

The group k× is cyclic, and we shall denote a generator by α. Clearly
G is also cyclic and is generated by (τ (α)/α) = αpgcd (r,l+m)−1. Our
classification can be a bit more explicit:

Corollary 3.8. Let k = Fpr , k0 = k ∩ Fpl+m . Let α generate
the cyclic group k×. Any cyclic Dieudonné module killed by p can be
expressed uniquely as either

Ml,m = E/E(F l, V m, p) or Ml,m,αi = E/E(F l − αiV m, p),

where l,m and i are positive integers, 0 ≤ i ≤ pd − 2 and d =
gcd (r, l + m).
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Proof. G is the unique subgroup of F×
pr = 〈α〉 of order (pr−1)/(pd−1),

hence the powers of α in G are multiples of pd − 1. Therefore,

α0 = 1, α, α2, . . . , αpd−2

are distinct elements modulo G.

In spite of the fact that every element of Q has finite order (indeed,
for all q ∈ Q we have qpm(pl+m) = 1), Q itself need not be finite. For
example, take k̄ to be an algebraically closed field, and consider the field
k̄(t). We claim that, for a �= b ∈ k̄×, 1+at and 1+bt are not equivalent
modulo Gpm

. Since Gpm ⊂ ((k̄(t))pm

)× = ((k̄(tp
m

)))×, it suffices to
show that 1 + at �= (1 + bt)f(tp

m

) for all f(tp
m

). By an elementary
degree argument, f must be constant, and clearly 1+at = (1+bt)c has
no solution if a �= b. Thus we have found an infinite number of distinct
elements in Q, hence Q is infinite.

4. Witt subgroups killed by p over finite fields. Now that we
understand the Dieudonné modules corresponding to Witt subgroups,
it is not difficult to explicitly write down the group schemes.

Take any Ml,m = E/E(F l, V m, p). We shall denote the corresponding
group scheme by Gl,m. Let A be any k-algebra. Since E/E(V m) → M
is surjective, Gl,m can be viewed as a subgroup of Wm. As pM = 0,
we must have pGl,m = 0, that is, for (a0, a1, . . . , am−1) ∈ Gl,m(A), we
must have

p(a0, a1, . . . , am−1) = (0, ap
0, a

p
1, . . . , ap

m−2) = (0, 0, . . . , 0).

In addition, since F lM = 0, we must have

F l(a0, a1, . . . , am−1) = (apl

0 , apl

1 , . . . , apl

m−1) = (0, 0, . . . , 0).

For Ml,m,η = E/E(F l−ηV m, p), the surjection is from E/E(V m+1 →
M , so the corresponding group scheme Gl,m,η is a subgroup of Wm+1.
Here pM = 0 gives that ap

i = 0 for 0 ≤ i ≤ m − 1, (a0, a1, . . . , am) ∈
Gl,m,η(A). The relation (F l − ηV m)M = 0 translates to the condition
apl

m = ηa0. Thus
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Theorem 4.1. All Witt subgroups killed by p are of the form

Gl,m(A) = {(a0, a1, . . . , am−1) ∈ Wm(A) | ap
0 = ap

1 = · · ·
= ap

m−2 = apl

m−1 = 0},
or

Gl,m,η(A) = {(a0, a1, . . . , am) ∈ Wm+1(A) | ap
0 = ap

1 = · · ·
= ap

m−1 = 0, apl

m = ηa0}

for some η ∈ Q = k×/Gpm

.

Remark. If we allow η = 0, then we would get Gl,m,0 = Gl,m+1. We
shall not adopt this notation since the dimension of Gl,m,0 is not equal
to the dimension of all of the other Gl,m,ηs.

We shall conclude with some remarks concerning the number of Witt
subgroups of a given dimension.

Proposition 4.2. Let k = Fpr . The number of Witt subgroups of
dimension pn is pd(n − 1) + 1 where d = gcd (n, r).

Proof. By (2.2), we know that dimkGl,m,η = pl+m and dimkGl,m =
pl+m−1. It is clear that there are n − 1 different choices of positive
integers l and m so that l + m = n. Since each choice leads to pd − 1
different η’s (where d = gcd (r, l + m) = gcd (n, r)), we find that there
are (n − 1)(pd − 1) distinct Witt subgroups of the form Gl,m,η. In
addition, since there are n different choices of positive integers l and
m so that l + m − 1 = n, and each gives rise to exactly one Gl,m, this
adds another n Witt subgroup of dimension n. Thus the total number
of Witt subgroups is (n − 1)(pd − 1) + n = pd(n − 1) + 1.

Remark. Of course, we can do a similar calculation if k is algebraically
closed. In this case we replace pd − 1 by 1 and get the total number to
be 2n − 1.

Finally, it is a conjecture of Lubin [10] that, given any positive integer
n, the number of cyclic Dieudonné modules (not necessarily killed by
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p) of length n is n(n + 1)/2. Clearly, this cannot be the case for finite
fields. The number of cyclic modules killed by p is pd(n− 1) + 1, which
depends on p. The appearance of the gcd in the formula also gives large
fluctuations among fields of similar size, for example there are 13 Witt
subgroups of dimension p5 over F34 and F36 , but over F35 there are
973. It seems likely that any such formula must take into consideration
the size of the field in a fairly nontrivial way.
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