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ON A SPECIAL CLASS OF
NONLINEAR INTEGRAL EQUATIONS

MARKUS KUNZE

ABSTRACT. We consider nonlinear integral equations

1
w(t,z(t)) +/ P(t,s,z(t),z(s))ds =0 fort € [0,1]
0

with a certain monotonicity in the argument y = z(t) and a
certain compactness in the argument z = z(s).

1. Introduction. In [8], the nonlinear integral equation

(1.1) (Fz)(t) := 2%(t) — t* + % ; k(t,s,z(t),z(s))ds =0

was investigated. Here J > 0 is a parameter, ¢t € [0,1], and the
kernel k is nonlinear in all four arguments with 0,k(t,s,y,z) > 0;
cf. (3.11) below for the explicit form of k. Since k is z(t)-dependent in
a nontrivial way, (1.1) is not of standard type. For example, the theory
of Hammerstein or Volterra equations, cf. e.g. [9, 10, 20, 21, 22] or
[6], does not include (1.1).

In fact integral equations which show the same characteristic features
(described more precisely later on) as (1.1), and whose general form is

(1.2) go(t,:v(t))—t—/() Ot s,2(t), 3(s))ds = 0 for ¢ € [0,1],

arises in a variety of other settings, e.g., in neutron transport theory;
cf. [16] and [2]. As aresult, it is of interest to obtain a general existence
theory for equation (1.2).

Now the main observation concerning (1.1) is that a difference can
be made between x with argument ¢ and = with argument s. To make
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this clearer, define a nonlinear operator depending on two functions
z,y € C(J) with J = [0,1] by

Gla)(t) = 92(0) =+ 5 [ kit u(t)a(5) ds

G is obtained from F' by replacing x(t) with y(¢). Then Fz = G(z, z).
Moreover, if z € C(J) is fixed, then G(z,:) : C(J) — C(J) wil
exhibit some kind of monotonicity, uniformly in z, since 9yk(t, s,y, ) >
0. Finally, if y € C(J) is fixed, then there is some hope that
G(y) : C(J) — C(J) satisfies a certain compactness condition,
possibly uniformly in y, because we removed z(t) in the integral part.

By making this more precise, the definition of the class of strongly
semicondensing operators is arrived at quite naturally, cf., Defini-
tion 2.3 below. It turns out that strongly semicondensing operators
are semicondensing, and that for the latter class [15] gave an excellent
presentation of a mapping degree which generalizes the degree for com-
pact or condensing perturbations of the identity. Therefore we can use
a mapping degree as a basic tool in the investigation of (1.2).

It should be mentioned that a variety of maps having diagonal
representations Fox = G(z,z) were investigated in Chapters 12 and
13 of [4]; cf. also [5].

We shall start with some preliminaries in Section 2. After that, in
the main Section 3 we shall prove various results on the existence
of solutions to (1.2) in the case that the equation shows a certain
compactness in z and a certain monotonicity in y in the sense motivated
above. Many examples will show that our results are easily applicable.

2. Preliminaries. Let us first recall some basic concepts from
nonlinear analysis. Throughout this paper, X will denote an infinite
dimensional Banach space with norm | - | and dual space X*. Let
B C X be bounded. Then

a(B) = inf {d > 0: there is a finite system By,..., B, C X

with B = | | B; and diam B; < d, 1 <i < n}
i=1
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is the Kuratowski measure of noncompactness. Properties of & may be
found in [6, Proposition 7.2]. By means of the (in general multivalued)
duality mapping F of X, where

Fao={z" € X*:|z"| =]|z|, 2"(z) = |z |},
the semi-inner products (-,-), : X x X — R are defined by

(z,y) =max{y"(z) :y"€Fy} and (z,y)_=min{y*(z):y"€Fy}

for z,y € X. Some essential properties of (-,-), are collected in [6,
Paragraph 13]; cf. also [15, Proposition 0.3.1]. Additionally, let us
note that

(23) (/ (s) ds,y)+ <[ " (()v), ds

for a,b € R with a < b, y € X, and a Bochner integrable z : [a,b] - X
(cf. [7] for the terminology) by Definition of (-,-) ,; cf. [11, Lemma 1.5].

In particular, if J C R is compact and X := C(J), then
(2.4)
(@, y)+ =max{z(t)y(t) : te Jy} and (z,y)-=min{z(t)y(t) : t€Jy}

for z,y € X with J, = {t € J: |y(t) | =|y|}; cf. [6, Example 13.1(c)].

In general Banach spaces, the nonnegativity of elements may be
described by means of cones. The following example collects some
properties of the standard cone in X = C(J).

Example 2.1. Let J C R be compact, X := C(J). Then
Ct(J) :={xz € X : z(t) > 0Oon J} is a cone, i.e., a closed convex
set such that AKX C K for all A > 0 and K N (—K) = {0}, with

K +#+ g, since, e.g., zg € K for zy(t) := 1 on J. Moreover, the dual
cone K* := {z* € X* : 2*(z) > 0 on K} may be identified with the set
of all positive regular Borel measures on .J; cf. [3, Chapter 29]. With
K, := KN B, (0), we have K, = {x € C(J) : 0 < z(t) < r on J} for
r > 0.

Now we turn our attention to nonlinear operators. Let
M = {w :[0,00) = [0,00) : w is continuous and strictly increasing
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with w(0) =0 and w(r) - co as r — oo}, w € M, and D C X. A map
F: D — X is called accretive, if (Fz — Fy,z —y), >0 for 2,y € D,
and F is called w-accretive, if (Fz — Fy,z —y), > w(|z —y|)|z —y|
for z,y € D. Furthermore, F' is called strongly accretive, if F' is w-
accretive for some w € M.

In particular, if J C R is compact, X = C(J), D Cc C*(J), and
n € N, then
(2.5) ®:D— X, (Pz)(t):=(z(t))" onl,
is strongly accretive since we can choose w(r) := r™ on [0,00); note
that (a™ —b")(a —b) > |a—b|"*! for a,b > 0.

The following definition is taken from [15]; cf. Definition 1.1.

Definition 2.2. Let @ C X be open bounded. A continuous
F : Q — X is called semicondensing if there exist a continuous bounded
map G: 2 x Q2 — X and an w € M such that

(a) Fz=G(z,z) for z € Q;
(b) {G(-,y) : y € Q} is equicontinuous (pointwise);

(c) forall A C Q with a(A) > 0 there exist an e with 0 < & < w(a(A4))
and a finite covering A = UkK:1 Ay of A such that

w(ly—y)ly -yl < (G(z,y) - G(@,9),y —y), +ely —y|
for all y,5 € Q2 and all z,Z in the same Ay.

In this case (G,w) is called a representation of F.

Next we shall introduce another important class of nonlinear opera-
tors which have a diagonal representation Fz = G(z,x); cf. the intro-
duction.

Definition 2.3. Let Q C X be open bounded and F : Q —
X continuous. F' is called strongly semicondensing if there exist a
continuous bounded map G : Q2 X ) - X and an w € M such that

(a) Fz=G(z,z) for z € Q;
(b) G, :=G(z,-): Q — X is w-accretive for z € Q;
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(c) The map Q 3z + G, € C(; X) satisfies a(I'(A4)) < w(a(A))
for all A C Q with a(A4) > 0.

In this case (G,w) is called a representation of F.

It is easily seen that strongly semicondensing maps are semicondens-
ing; cf. [11, Lemma 1.23(b)].

To solve integral equations of the type (1.2), we shall need two
abstract results on the existence of zeros of semicondensing operators.
The first one contains two special cases in which the Leray-Schauder
boundary condition is satisfied; cf. [4, Theorem 13.15 (b), (c), (d); 15,
Corollary 3.2], and [11, Corollary 1.18].

Theorem 2.4. Let Q C X be open bounded, F : Q@ — X semicon-
densing. In addition, suppose that

(a) Q is conver and (I — F)(0Q) C Q, or
(b) there exists xo € Q for all x € 0Q : (Fz,z — x0)4+ > 0.

Then F has a zero in ).

The following theorem is taken from [12].

Theorem 2.5. Let K C X be a cone with K # @, r > 0,

K,:=KnNB,(0), and F : K, = K, — X semicondensing. Suppose
that

(a) z€ K, |z|=r, Ft+Xx=0= X <0, and
(b) z€0K, |z|<r,z*ec K*, 2*(z) =0 = z*(Fz) <O0.
Then F has a zero in K,.

Finally, let us state a lemma from the theory of Banach spaces which
will be needed later. For a proof, we refer to [11, Lemma 2.6]; cf. also
[19, Theorem 1.3] or [14, Remark 2.4] for similar results.

Lemma 2.6. Let X and Y be Banach spaces, D C X bounded,
(Q,%, 1) a measurable space with a positive finite measure p. Suppose
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that, for all w € Q, there is an operator U(w) : D — Y such that the
following conditions are satisfied.

(a) U(w): D =Y is compact, i.e., continuous, and U(w)(D) C Y
is relatively compact.

(b) U(-)(z): Q2 =Y is strongly measurable for all x € D;
(©) subsep fo |U()(@) lyhldw) < oo
() () 0 50D, foy, |U()(2) Iy tl) = 0.
Then
O:D3aws /QU(w)(x),u(dw) 2%

1s a compact operator.

Note that assumptions (c) and (d) of the above lemma hold if
|U(w)(z) |y < M on Q x D for some M > 0.

3. Existence of solutions and applications. The following
theorem will turn out to be quite useful and easily applicable when we
look for nonnegative continuous solutions of integral equations of the
type (1.2). This will be illustrated by the Examples 3.3 and 3.9 below.

Theorem 3.1. Let 0 < 2y € X = C([0,1]), K = C*(]0,1]), and
r=|xzo| > 0. Suppose that the following conditions are satisfied.

(a) ¢:[0,1] x[0,r] = R is continuous and ¥ : [0,1] x [0,1] x [0, r] X
[0,7] = R is measurable.

(b) There exists an w € M such that
(i) ®: K, = X, (®x)(t) := ¢(t, z(t)), is w-accretive, and

(i) K 3o (K 3y e [y o(sy()es)d € X) €
C(K,; X) is a well-defined, continuous, and bounded operator such that
a(T1(A)) < w(a(A)) for all A C K, with a(A) > 0.

(c) If te0,1] and z € K., then

1
0,7 3y Wit y) = / Wb, 5,y,2(s)) ds € R
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18 tncreasing.

(d) If t€]0,1] and z € K,., then
\I,z(tv ) = <p(t7 ) + \Ijglv(ta ) : [0,7‘] — R

satisfies U*(t,0) < 0 as well as ¥*(t,zy(t)) > 0.
Then F : K, — X, defined by
(3.6)

(Fz)(t) := (®x)(t) + (¥z)(t) := w(t,w(t))—i—/o P(t, s, z(t), z(s)) ds,
has a zero x € K, such that 0 < z < x.

Proof. First we show that F' : K, = K, — X is strongly semicon-
densing. Define

G KoxKy, = X, Gi(z,y)(®) ::/0 W(t, s, y(t), z(s)) ds on [0, 1].

Then Gi(z,y) = (T'1(2))(y), and Fz = ®z + Gy(z,z) for z,y € K,
together with the assumptions on I'; and ¢ show that F' : K, — X is
continuous and bounded. Furthermore,

(37) (¢y7®gay7?j)_Zw(|y7g|)‘y7?j| fOI'y,37€K7-

by (b)(i) and the properties of (-,-)1, since K, is open. Let G :

K, x K, - X, (z,y) = ®y + Gi(z,y). Then (G,w) may be used
as a representation of F' in the sense of Definition 2.3. Indeed, G is

continuous and bounded, and Fz = G(z, z) for z € IO(,,. Moreover, with
T: K, » C(Kw; X), z = Gy = G(z,"), we have ['(z) = & + I';(z)
on Io{r. Hence a(T'(A)) = a(® + T1(A4)) = a(T'1(A)) < w(a(A)) for
AcC IO(T with a(A) > 0. Fix z € Io(,,. To show that G, is w-accretive,
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we can use (3.7) and (2.4) to obtain

(G(z,y) = G(z,9),y = 7)+ > (G(z,y) — G(z,9),y — 7)

(Py — @7,y — 7)_

+(Gi(z,y) — Gi(=, ),y — §) _

>w(ly—71) |y~ 7| +min{(Gi(z,y)(t)
= Gi(z,9) (1) (y(t) — g(t) : t € Ty 4}

=w(ly — 7))y — 7|+ min{(¥T(t,y(t))
= Uit y()) (y(t) —y(t) : t € Jy—y}

>w(ly-9) 1y -7l

2
2

for y,y € K,; recall the properties of (-,-)+. Therefore, F is strongly
semicondensing, hence semicondensing, and we only have to make sure
that conditions (a) and (b) from Theorem 2.5 are satisfied. For note
first that ¥¥(¢,-) : [0,7] = R is continuous if ¢t € [0,1] and = € K,
are fixed. Furthermore, if yo, o € (0,7), then (3.7) may be applied

to y, § € K,, defined by y(t) := yo, y(t) := 7o on [0,1], to get
(¢(t,90) — @(t,90))(yo — Fo) > w(lyo — Fol)|yo — Jo |. Therefore, by
assumptions (c) and (d), ¥*(¢,-) : [0,7] = R is continuously increasing
with ¥*(¢,0) < 0 and ¥*(¢,z0(t)) > 0 for all ¢ € [0,1] and =z € K,.
To verify (a) from Theorem 2.5, suppose that there are x € C*([0,1])
with |2 | = r and A > 0 such that Fx+ Az = 0. For ¢t € [0, 1] we define
the continuous and increasing function

gt : [0,7] — R, y = U(t,y) + Ay

Then g:(0) < 0, g¢(z(t)) = 0, and g(zo(t)) = Azo(t) > 0, hence
0 < z(t) < zo(t) on J. Because of z(ty) = r for some ¢y € [0,1], r

| zo | implies zg(tg) = r. Consequently, 0 = gy, (z(t0)) = 9t, (mo(to)) >
Azg(to) yields the contradiction 0 = xo(to) = r. This proves A < 0.
To show (b) from Theorem 2.5, fix z € 0K ¢ K = C*([0,1]) with
|z] <r and z* € K* with z*(z) = 0. It follows from Example 2.1

that fo w(dt) = 0 for the positive regular Borel measure p which
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represents z*. Consequently, z = 0, y—almost everywhere. We obtain
1
o' (Fo) = [ (Fa)(Outdr)

0
1 1

-/ (cp(t,x(t)w [ vt s,x<t>,x<s)>ds)u<dt)
0 0
1 1

= [ (000 + [ ott.5,0.0(60) ds ) tar
0 0

1
:/ U (¢, 0)u(dt) < 0.
0
Therefore we can apply Theorem 2.5; cf. Example 2.1. O
Corollary 3.2. Suppose that in the setting of Theorem 3.1 the
assumptions (a), (c), and (d) are satisfied. Furthermore, suppose that
(b)) i) @: K, = X,(®x)(t) := o(t,x(t)), is strongly accretive, and
@) K. 5z (K 5y [y v(sy()s)ds € X) €
C(K,; X) is a well-defined compact operator.
Then F : K. — X has a zero x € K,. such that 0 < z < xq.

Let us consider an example.

Example 3.3. Nonlinear integral equations of the form

1
(38)  1=a(t) +=(t) / 2(s)ds,  te[0,1],
0

are of interest in neutron transport theory; cf. [16, 13|, and Example
3.12 below. In [16], (3.8) was dealt with by exploiting the special
shape of (3.8) which allows the substitution y(t) := z(t) 1. Now we
want to show how equations being more general than (3.8) can be
solved (nearly) at a glance by using Corollary 3.2. We obtain (cf. [16,
Theorem 2]) the following

Theorem 3.4. Let o,v >0 and n,m € N. If k:[0,1] x [0,1] = R
is continuous and such that
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(a) k(t,s)(t—s) >0 fort,s €[0,1] and
(b) |k(t,s)| < olt—s|"(t+s) fort,se[0,1],
then

1
(3.9) (z(t)" 1+ (m(t))m/o t];(iz)Qm(s) ds=0, telo,1],

has a solution x € C([0,1]) with 0 < z(t) <1 on J.

Proof. Of course we want to apply Corollary 3.2 to zo(t) := 1 on
[0,1], hence r =1, ¢ : [0,1] x [0,1] = R, (¢,y) — y™ — 1, and
1/J : [071] X [0)1] X [071] X [051] ‘>Ra
k(t,s)

(t,s,y, @) — a:ymm 1iazey (s s).

The main observation is that

T:0(0,1]) — C(0,1]),  (Tz)(t) ::/0 %w(s)ds

defines a positive compact linear operator. For, note that (a) implies

k(t, s)
t2 _ 82

k(t,s)(t — s)
(t+ )t~ 9’

z(s) = z(s) >0

for t,s € [0,1] with ¢t # s and z € K = C*([0,1]). Hence, T is positive,
i.e., z > 0 implies Tz > 0. Notice that (b), together with 1 — v < 1,
yields

k(t, s)
12 — g2
for t,s € [0,1] with ¢ # s. This shows T is compact; cf. [1, Chapter
8.10].

Retaining the notation from Theorem 3.1, we have U¥(t,y) =
y™(Tz)(¢t) for t,y € [0,1] and z € Ky C K. Therefore ¥{(¢,-) is in-
creasing on [0, 1]. Moreover, (®y)(¢) := (y(t))™ —1 is strongly accretive
by (2.5). Since T is compact and

_Q|t_s|17,/

|Twe —T1Z| < |Tx—-Tz| forz,Z e K,
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I'y : K1 — C(K1;C([0,1])) is compact, too. Finally, conditions (d)
from Theorem 3.1 are satisfied. Indeed, note that U*(¢,y) = y™ — 1+
y™(Tx)(t) on [0,1])° for z € K;. Consequently, ¥ (£,0) = —1 < 0 and
U (t, 2o(t)) = ©*(t,1) = (T'z)(¢t) > 0. Therefore Corollary 3.2 can be
applied to give a solution of (3.9). Taking into account that a solution
of (3.9) can have no zero, the proof of the theorem is complete. a

Let us remark that solving (3.9) by substituting y(¢) := z(¢) ! is at
best possible in the case n = m.

The reader will wonder whether Corollary 3.2, respectively, Theorem
3.1, remains true, if (3.6) is only monotone, but not strongly monotone
in y = z(t). To be more precise, we ask whether Corollary 3.2 still

holds in the case that G, : K, — C([0,1]) is only accretive, but not

w-accretive, for all z € K,; recall the notation from Theorem 3.1.
However, simple examples show that this is not necessarily the case.
We include such an example as an aside.

Example 3.5. Consider
(3.10)

(Fz)(t):=x(t)z(t)+ 0(t)(x(t) —l)/0 (1—z(s))ds=0, te|0,1],

where X(t) = 1[1/271} (t)(?t — 1) and G(t) = 1[0’1/2] (t)(]. — 2t) on [0, 1]
Analogously to Example 3.3, it is easily checked that all assumptions
besides (b’)(i) from Corollary 3.2 are satisfied; here we let z¢(¢) := 1
on [0,1], hence r =1, ¢ : [0,1] x [0,1] = R, (¢,y) — X(t)y, and

¥:[0,1* - R, (t,s,y,2) — 0(t)(y —1)(1 — z).

But (3.10) has no solution z € C([0,1]) with 0 < z(t) < 1 on [0,1],
since this would imply z(¢) = 0 on (1/2,1] and (z(t) — 1) fol(l -
z(s))ds = 0 on [0,1/2) by definition of X and 6. Clearly, the latter
condition means z(¢) = 1 on [0,1/2), a contradiction.

Our next objective is to provide a sufficient condition for assumption
(b’)(ii) of Corollary 3.2 to hold. This criterion is useful when dealing
with integral equations (1.2) with a weakly singular kernel ; cf.
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Example 3.9 below. It can be applied in the case that i may be
approximated by “better” kernels 1. which may be thought of to be
cut-off versions of .

Definition 3.6. Let a < b € R, D C X = C([0,1]) such that
a<z(t) <bon[0,1] for z € D, and ¢ : [0,1] x [0,1] X [a,b] X [a,b] = R
measurable. 1 is said to have property (A) with respect to ([a, b], D) if
the following conditions are satisfied.

(a) Doz D3y fy ¥(,5y(),z(s))ds € X) € C(D; X) is a
well-defined operator.

(b) There exist an g9 > 0 and a family (¥c)cc(0,e,] 0f continuous
functions ¢, : [0,1] x [0,1] X [a, b] X [a,b] — R such that
(i) U(s)(D) C C(D;X) is relatively compact for all s € [0, 1] and
e € (0,e0]; here ((U(s)(2))(y))(t) := (i, s,y(t),z(s)) for z,y € D
and ¢ € [0,1].
(ii) sup{|Tiz —I'1z|cp;x) : ¢ € D} = 0ase — 0T, where I'f with
kernel 1. is defined analogously to I'; with kernel .

Now we can prove the following useful

Lemma 3.7. Letr >0 and ¢ : [0,1] x [0,1] x [0,7] x [0,7] = R be
measurable. If 1 has property (A) with respect to ([0,7], K,.), then

1
K, 3z <KT Sy / ¥(-,8,y(-),z(s))ds € X> € C(K,;X)
0
is a well-defined compact operator.

Proof. Let D = K,. Since I'Y — I'; uniformly as ¢ — 0%, we
only have to make sure that I'{ is compact, for fixed ¢ € (0,¢o].
We want to apply Lemma 2.6 to X = C([0,1]), Y = C(D;X), and
(Qa Ea/") = ([07 1]7‘6([07 l])7)‘|[0,1])7 where ‘C([Oa 1])7 respectively, >‘|[0,1]
denotes the Lebesgue o-algebra, respectively, the Lebesgue measure
restricted to [0,1]. For s € [0,1], let Uc(s) : D — Y be defined by
((U(s)(2))(9))(t) := ¢e(t, s,y(t), z(s)) for x € D; note that U.(s)(z) €
Y = C(K,;X). Clearly Uc(s) : D — Y is compact for s € [0,1]
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and U.(-)(z) is strongly measurable for x € D. Moreover, since . is
continuous,

| Ue(s)(2) [y = sup | (Ue(s)(2))(y) |x = sup [ Ye(8,9(),2(5)) [x < M-

for some M, > 0 and all s € [0,1] and € D. Therefore I'§ is compact
by Lemma 2.6. i

Remark 3.8. Suppose that we are in the setting of Corollary 3.2.
If (a), (b')(i), (c), and (d) are satisfied, and if ¢ has property (A)
with respect to ([0, 7], K;-), then (3.6) has a solution z € K,. such that
0 <z < xg, by Corollary 3.2 and Lemma 3.7.

The following example illustrates possible applications of this remark.

Example 3.9. We consider (1.1) from the introduction. This equa-
tion is used to describe the so-called plasma corners mathematically;
cf. [8] and [11], and the explicit form of the kernel is

(3.11)
k(tasayam) = IIII <[(£E _ y) + (S (;2) _3_[(‘:2)—’2_ y) + (5 — t) ]>

(x+1y)%+ (s —t)?
+yl“<<sc—y>2+<s—t>2>

+2(s—t)<arctanx_y +arctanm+y — 2arctan E)
s—t s—1t s

By applying Remark 3.8 we shall give a proof of the following theorem
from [8, p. 168] which fits the general existence theory developed above.
In particular, the estimate on the lower part of the boundary will
become much simpler; cf. [11, Remark 4.2].

Theorem 3.10. If J € [0,2], then (1.1) has a solution z € C*([0,1])
such that 0 < z(t) < t.

Before going on to the proof of Theorem 3.10, let us first state a
lemma which contains the properties of the kernel & which will be
needed in the sequel.
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Lemma 3.11. Let Dy := {(t,s,y,x) € [0,1]° x [0,00)% : s >
0 and s # t} and let k be defined by (3.11).

(a) k(t,s,t,z) >0 for all (t,s,2) € [0,1]* with s >0 and s # t.

(b) k(t,s,0,2) <0 for all (t,s,z) € [0,1)° with s >0 and t < s <1,
and k(t,s,0,z) < 4w (t — s) for all (t,s,z) € [0,1]° with 0 < s < t.

(C) If (t,S,y,LL‘) € Dk’ then

o (z+y)?+ (s —t)?
Oyk(t,s,y,x) =1 <(x—y)2+(s—t)2>20'

(d) Forr >0 there is a C(r) > 0 such that | k(t,s,y,z)| < C(r) for
(t,8,y,2) € Dy, with y,z <.

() Forr > 0 and € > 0 there is a C(r,e) > 0 such that
| 0:k(t, s,y,2) | < C(r,e) for all (t,s,y,2) € Dy with y,z <r, s > ¢,
and |t —s| >¢e. Here

[(9«“+y)2+(8t)Z][(Iy)ZvL(St)Z]) dts

(22 +52)" 2%+

0:k(t,s,y,z)=In (

for (t,s,y,x) € Dy.
(f) %o :=k1p, has property (A) with respect to ([0,1], K1).

Proof. Since (a), (b), (c), (d), and (e) may be obtained by direct
calculation, cf. the appendix of [11] and [8], let us concentrate on the
main parts of (f). Let X = C([0,1]). Clearly, I'y : K1 — C(K1; X) is
well defined; note that

1
[ 15000, 0(00) - ke, 3,5(0, () s

<|y- y|/ln< >ds

=ly—7l( 1n5+2—2t1nt— 2(1-t)In(1 —¢t))
<5ly—17|

for y,7 € Ky and t € [0,1] by (c). Let g9 := 1/4 and fix € € (0,¢9].
Define X.(7) := 0 for 7 € [0,¢], Xe(7) := 1 for 7 € [2¢, 1], and X, linear
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in between. Furthermore, define the continuous ¥ : [0, 1]4 — R by

Velt, s,y,2) = k(t, 5,5, )X (|t = s[)X:(s)-
We are going to show that U, (s)(K7) is a relatively compact subset of

C(K1; X) for every s € [0,1]. For, we can assume that s € [g,1]. Fix
z,% € K; and t € [0,1]. Then

by (e), and therefore
|U(8)(2) = Ue(s) () loxrsx) < C(L)| x(s) — 2(s)].

Hence U.(s)(K1) C C(K1; X) is relatively compact.

Finally, I'Y — I'; uniformly as ¢ — 0". Indeed, for z,y € Kj,
t €10,1], and € € (0,e0] we obtain by means of (d)

|((T5(2)) () (8) — ((T1(2)) (1) (2)]
= ‘ /0 <k(t, S, y(t), w(s))X5(| t—s |)X£(3)—k(t, s, y(t), I(S))) ds

< C(l —/0 Xe ([t —s])xe(s) ds)

§C<1—/01Xs(t—s|)ds+2e>.

From the definition of X. and | - |¢(k,;x) it follows that

sup{| 'z — '@ |o(x,;x) t @ € Ka} < Ce

for some C > 0. The proof is thus complete. a
Now we turn to the

We want to apply Remark 3.8

Proof of Theorem 3.10. Fix J € [0, 2].
[07 1] X [07 1] — Rv (t7 y) = yz_t27

tozo(t) :=ton[0,1],hencer =1, p:
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and ) := (J/(47))to : [0,1]* = R with ¢ from Lemma 3.11(f). Since

o

¥ has property (A) with respect to ([0,1], K1), because ® : K; — X,
(®y)(t) == (y(t))? — t2, is strongly accretive by (2.5), and since

1
0,00) 3y s T (t,y) = / U(t,5,y,2(s)) ds € R

has derivative 0, ¥{(t,-) > 0 on [0, 00) for fixed ¢t € [0,1] and z € K =
C*([0,1]) by Lemma 3.11(c), we only have to check that the conditions
from (d) of Theorem 3.1 are satisfied at y = x¢(¢t) = ¢ and y = 0. For,
fix t € [0,1] and z € K;. Then Lemma 3.11(a) implies

™

1
Ue(t,t) = p(t,t) + Ui(t,t) = 4i/ k(t,s,t,z(s))ds > 0,
0
and it follows from Lemma 3.11(b) that

J 1
T (£, 0) = o(t, 0) + T2(£,0) = —£2 + E/ k(t, 5,0, 2(s)) ds
0

J t

< -2 4 E/o dm(t — s)ds
J
=35 1)<
(3-1)=¢
since J < 2. Therefore Remark 3.8 applies. u]

In general, the existence of nonnegative solutions of (1.2) cannot be
expected. However, some results are possible in certain other situations.

Example 3.12. In [2] it was investigated for which A € R

1
(3.12) z(t) —xo(t) — %x(t)/t k(t,s)z(s)ds =0, t €10,1],

has a solution in X = C([0,1]), provided the kernel k is sufficiently
nice, and 0 # zy € C([0,1]). We are going to prove
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Theorem 3.13. Let k : [0,1] x [0,1] — R be measurable and such
that

K:X - X, m@@:lﬁmﬁmm&

is a well-defined compact linear operator K # 0. Then the following
conclusions hold.

(a) Fizr >0. If \ € R is such that |\ | < 2r| K | Y(r+|zo|) 2, then
(3.12) has a solution z € C([0,1]) with |x(t) — zo(t) | <7 on [0,1].

(b) If zo >0 and if k(t,s) >0 on [0,1]*, then (3.12) has a solution
z € C([0,1]) with > 0 whenever A\ € (—o0,0].

(c) For the special choice zo(t) = 1 on [0,1] and k(t, s) := t/(t+s) for
t,s € [0,1] witht+s # 0, (3.12) has a solution z € C([0,1]) with z > 0
whenever X € (—o0,1/(2M)], where M := max{tln((1 +¢t)/(2t)) : t €

[0, 1]}
Proof. (a) Fix r > 0, let Q := B, (z9) C X and w(s) := ds for
s € [0, 00), where

_ _lml
r+ | o |

Then w € M. Furthermore,

2r

MKzl < 2=
T+ |z |

2(1—=9) and |X||Kz||z|<2r
for € Q by definition of §. Choosing the obvious F' and G, we obtain

A A
(Ge(y)—G2(9),y—0)+ = <ywo§wa§+wo+§§Kﬂc, yﬂ)

A _
> <1—%|K96|>|11—y2

>y -yl =wly—7)ly -7l

+

for z,y,7 € Q. Consequently, G, : 2 — X is w-accretive for fixed
x € Q. Moreover, the compactness of K implies the compactness of
I': Q — C(Q; X). This shows that F is strongly semicondensing, hence
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semicondensing. To apply Corollary 2.4(b), we therefore only have to
note that

A
(Fz,z —x0)4 = <ac -z — §m(Kac),m - m0>
+

A
> Blialigal,  r20

for all z € 99, i.e., |z — zg | = r, by (3.13). This yields a zero of F in
Q.

(b) follows from Corollary 3.2. (c) follows from (a) and (b), since
the integral operator K with kernel k clearly is compact by the Arzela-
Ascoli theorem. i

One may have noticed that up to now we always had X = C([0, 1]).
Clearly, applications of the theory of semicondensing operators to (1.2)
are not restricted to this choice. So let us finally give an application of
Corollary 2.4(a) in the spaces X = L,([0,1];Y") of Bochner integrable
functions for p € (1,00) and some Banach space Y; then

(3.14) (@ 9)ax = yl? / (2(8), 9 (D)o y () 5 2 dt

for z,y € X and y # 0; cf. [11, Lemma A.2].

In [18] and [17], similar results were obtained in the case that the
kernel ¢ in (1.2) is only dependent on t, s, and z(s).

Theorem 3.14. Let Y be a Banach space, J = [0,1], p € (1, 0),
X =Ly(J;Y), andq=p/(p—1). Let ¢ :[0,1] x [0,1] XY XY =Y
be a function such that the following conditions are satisfied.

(a) 1) ot s,) : Y XY — Y is continuous for almost all
(t,s) e J x J.

(ii)) (-, y,z):J x J =Y is strongly measurable for all (y,z) €
Y xY.

| (ib)| |Theri arila € Li(J), b € L{(J) and ¢ € L} (J) such that
al,lel, <1 an

[¥(t 5,9, 2) vy < a(t)(b(s) + c(s)| 2 |y)
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for all y,z € Y and almost all (t,s) € J>.
(c) There are 0 # a € L} (J) and 0 # ¢ € Lf(J) such that

|9t s,y,0) = P(t,5,9,2) [y < alt)e(s)|z —z |y

for all z,Z,y €Y and almost all (t,s) € J>.
(d) There is a 0 # b e L (J) such that |@|p|6\q+|5\1 <1 and

(¢(t,3,y,$) - ¢(t,5,?7,$)ay - g)*,Y S E(S)| Yy — :17|§/

for all z,y,y € Y and almost all (t,s) € J*. Then

1
(3.15) o(t) = / Ot s,2(t), 2(s)) ds,  te .
0
has a solution in X = L,(J;Y).

Proof. By (b) we have
(3.16) 1“71|a|p\b|1 + \a|p\c|q <1, ie. |a|p(|b\1 +|c|qr) <r

for all sufficiently large » € (0,00). Let @ = B, (0) C X for such a
fixed 7, choose > 0 such that

(3.17) (1al, +d)lel, < 1 =151,

and define w(s) := (| a |, + 5)|E|qs on [0,00). Furthermore, let
G:OxQ— X, (z,y) — y+ Gi(z,y),

with

G:OxOoX,  (Cila,y)(t) = —/0 W(t, 5, y(t), 2(s)) ds.

Then Fz = G(z,x) is strongly semicondensing with representation
(G,w). For, note that

(3.18) sup |Gi(z,y) % < lalP (bl +]cl,r)”
z,yc2
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by (b). Moreover, if € Q is fixed, then G, = G(z,") : @ — X is
w-accretive. Indeed, let y,§ € €, and f(t,s) = Y(t, s, y(t), z(s)) —
¥(t, s,9(t), z(s)) for (¢,s) € J*. Then f(t,-) : J — Y is Bochner
integrable for almost all ¢t € J. Hence (d) and (2.3) imply

1

([ 1t9asu0-50) < [ (000 -50), , ds
0
=1bl,ly(®) — 5

for almost all ¢ € J. This in turn yields

)

(G(I, y)_G(xa :Ij)a y— g)+,X
> (G(I,y) o G(I,g), Yy— y)_7X

_ 2 _ 12—
=ly-glx - ly—-7lx"

([ reoaa0-50) wo-sorta

( —|b\1)\y—y|X
w

>
>w(ly —7lx)ly —7lx

by (3.14) and (3.17). Furthermore, for z,z,y € Q, (c) and Holder’s
inequality give
|G(x,y) — G(Z,y) [k <lafylelgle - [k

Consequently, |I'z —T'Z|gq.x) < |al,/¢|,|z—2Z|x for 2,2 € Q,
where I' : Q@ — C'(; X) is defined by I'(z) = G,. Standard covering
arguments imply

acex)(I'(4)) < lal [el,ax(4) <w(ax(4))

for A C Q with ax(A) > 0; recall the definition of w, (3.17), and € # 0.
Therefore F' : Q@ — X is strongly semicondensing. To apply Corollary
2.4(a), we only have to note that

|(I-F)(z)% < |a|g(|b|1+|c|qr)p <rP

for € X with |z |y =r by (3.18) and (3.16). u]
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