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THE METHOD OF LINES FOR PARABOLIC PARTIAL
INTEGRO-DIFFERENTIAL EQUATIONS

J.-P. KAUTHEN

ABSTRACT. We present a method of lines approxima-
tion of the solution of a particular nonlinear Volterra partial
integro-differential equation. Discretization in space of this
equation leads to a system of stiff integro-differential equa-
tions. In a second step, this system is integrated in time by
the implicit Euler method.

The concept of the logarithmic norm, introduced in the
theory of numerical methods for stiff ordinary differential
equations, plays an important role in the convergence analysis.

1. Introduction. We consider the nonlinear, parabolic-type
Volterra partial integro-differential equation (VPIDE)
(1.1)

ut(x, t) = g(x, t) +
2∑

i=0

ai(x, t)
∂iu

∂xi
(x, t) +

∫ t

0

b(x, t, s, u(x, s)) ds,

0 < x < 1, 0 < t ≤ T,

where ut := ∂u/∂t. The functions g, ai, i = 0, 1, 2, and b are continuous
on D := {(x, t) ∈ R2 : x ∈ I, t ∈ J} and I × S × R, respectively, with
I := [0, 1], J := [0, T ] and S := {(t, s) ∈ J × J : s ≤ t}. We assume
that the function b is continuously differentiable and therefore satisfies
a Lipschitz condition with respect to its last variable, i.e., there exists
a constant L ≥ 0 such that for all u, v ∈ R, x ∈ I and (t, s) ∈ S,

(1.2) |b(x, t, s, u) − b(x, t, s, v)| ≤ L|u − v|.

We exclude the case a1 = a2 ≡ 0. To equation (1.1) we associate the
following initial and boundary conditions:

u(x, 0) = φ(x), x ∈ I,(1.3)
u(0, t) = u(1, t) = 0, t ∈ J,(1.4)
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where φ is a continuous function defined on I and satisfying φ(0) =
φ(1) = 0.

A survey of the theory and applications of linear and nonlinear
VPIDEs can be found in [7]. Moreover, we refer to [2, 5] where
existence, unicity and asymptotic behavior of the solution of a VPIDE
are given.

In Section 2, we formulate the method of lines for the numerical
solution of (1.1). The error of the discrete scheme is studied in Section
3. Finally, Section 4 contains some numerical results.

2. The method of lines. The method of semidiscretization reduces
the given equation (partial differential equation (PDE) or VPIDE)
in a first step, usually space discretization, to a system of ordinary
differential equations (ODEs) or Volterra integro-differential equations
(VIDEs) which, in a second step, is numerically integrated in time by
well-known methods like Runge-Kutta or collocation schemes. In this
paper, we discuss the method of lines (MOL). In [6] a general framework
for the convergence analysis of the MOL applied to PDEs was set up.
Certain stability concepts of the theory of nonlinear stiff ODEs proved
to be of particular importance in their error analysis.

The MOL consists of two steps: space discretization and time integra-
tion. In a first step, the derivatives with respect to the space variable
x occurring in (1.1) are approximated by finite difference schemes like:

ux(x, t) =
1

2h(x)
(u(x + h(x), t) − u(x − h(x), t)) + O(h(x)2),

(2.1a)

ux(x, t) =
1

h(x)
(u(x + h(x), t) − u(x, t)) + O(h(x)),

(2.1b)

uxx(x, t) =
1

h(x)2
(u(x + h(x), t) − 2u(x, t) + u(x − h(x), t)) + O(h(x)2).

(2.2)

In order to formulate the semidiscretization process, we introduce
a (uniform) partition of the interval I = [0, 1] with mesh points
denoted by xj , j = 0, . . . , M , where xj = jh(x), j = 0, . . . , M , and
h(x) := M−1. Along the lines x = xj , j = 0, . . . , M , the exact solution
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u of (1.1) is then approximated by functions Uj(t), j = 0, . . . , M , i.e.,
Uj(t) ≈ u(xj , t), j = 0, . . . , M , t ∈ J . For j = 1, . . . , M − 1, we have

(2.3) Uj(0) = φ(xj),

and for j = 0 and j = M ,

(2.4) U0(t) = UM (t) = 0, t ∈ J.

This choice is natural in view of (1.3) and (1.4). At each interior mesh
line (xj , t), j = 1, . . . , M − 1, t ∈ J , the approximation of u(xj , t) is
required to satisfy

(2.5)
U ′

j(t) = g(xj , t) + a0(xj , t)Uj(t) + a1(xj , t)D
(j)
1 (h(x), U(t))

+ a2(xj , t)D
(j)
2 (h(x), U(t)) +

∫ t

0

b(xj , t, s, Uj(s)) ds,

where U(t) := (U1(t), . . . , UM−1(t))� and where D
(j)
1 (h(x), U(t)) and

D
(j)
2 (h(x), U(t)) denote finite difference approximations of ux(xj , t) and

uxx(xj , t), respectively. In matrix notation, (2.5) and (2.3) read
(2.6)

U ′(t) = G(t) + A(t)U(t) +
∫ t

0

B(t, s, U(s)) ds, t ∈ J, U(0) = Φ.

Here we have set

G(t) := (g(x1, t), . . . , g(xM−1, t))�, Φ := (φ(x1), . . . , φ(xM−1))�,

(2.7)
A(t) := diag (a0(x1, t), . . . , a0(xM−1, t))

+ diag (a1(x1, t), . . . , a1(xM−1, t))C1

+ diag (a2(x1, t), . . . , a2(xM−1, t))C2,

(2.8) B(t, s, U(s)) :

⎛
⎜⎝

b(x1, t, s, U1(s))
...

b(xM−1, t, s, UM−1(s))

⎞
⎟⎠ .



72 J.-P. KAUTHEN

The matrices C1 and C2 characterize the finite difference schemes used
for the discretization of ux and uxx, respectively. For the discretizations
(2.1a), (2.1b) and (2.2), C1 and C2 are

C1 =
1

2h(x)

⎛
⎜⎜⎜⎜⎝

0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

⎞
⎟⎟⎟⎟⎠ ,(2.9a)

C1 =
1

h(x)

⎛
⎜⎜⎜⎜⎝

−1 1
−1 1

. . . . . .
−1 1

−1

⎞
⎟⎟⎟⎟⎠ ,(2.9b)

and

C2 =
1

h(x)2

⎛
⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎠ ,(2.10)

respectively.

The system (2.6) has a unique continuous solution U(t) on J since
G(t), A(t) and B(t, s, U) are continuous on J and S ×R, respectively,
and B satisfies a Lipschitz condition with Lipschitz constant L : for all
U, V ∈ RM−1 and (t, s) ∈ S,

(2.11) ||B(t, s, U) − B(t, s, V )|| ≤ L||U − V ||,
with || · || denoting some (standard) norm in RM−1. This trivially
follows from (1.2). Equation (2.6) represents a system of (nonlinear)
stiff Volterra integro-differential equations (VIDEs) which will be solved
numerically in a second discretization step. Its dimension is M −1 and
increases as the mesh diameter h(x) diminishes. The same holds for the
stiffness parameter (h(x))−2 (or possibly (h(x))−1) of (2.6).

In order to get a fully discrete scheme, we now discretize the interval
J = [0, T ] by a uniform partition {tn : n = 0, . . . , N}, with tn = nh(t),
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n = 0, . . . , N , and stepsize h(t) := TN−1 > 0. The extension to
nonuniform partitions (variable stepsize) is obvious. Let Vn denote the
numerical approximation at tn = nh(t) of the exact solution U(t) of
(2.6) obtained by the implicit Euler method:

(2.12)

Vn+1 = Vn + h(t)[G(tn+1) + A(tn+1)Vn+1]

+ h(t)2
n∑

i=0

B(tn+1, ti+1, Vi+1),

for n ≥ 0 with V0 := Φ.

3. Error analysis. In order to study the discretization error

(3.1) En := Vn − uh(x)(tn), n = 1, . . . , N,

where uh(x)(t) denotes the restriction of u(x, t) to the lines x = xj ,
j = 1, . . . , M − 1, i.e.,

uh(x)(t) = (u(x1, t), . . . , u(xM−1, t))�, t ∈ J,

we first have to introduce the space truncation error

(3.2)
α(t) := u′

h(x)(t) − G(t) − A(t)uh(x)(t)

−
∫ t

0

B(t, s, uh(x)(s)) ds, t ∈ J,

where u′
h(x) := duh(x)/dt, and the total truncation error

(3.3)
β(tn+1) := uh(x)(tn+1)−uh(x)(tn)−h(t)[G(tn+1)+A(tn+1)uh(x)(tn+1)]

− h(t)2
n∑

i=0

B(tn+1, ti+1, uh(x)(ti+1)).

The truncation errors α and β measure how “well” the system of VIDEs
(2.6) and the fully discrete scheme (2.12), respectively, approximate the
given VPIDE (1.1). The space truncation error α essentially consists
of the error terms of the finite difference formulas used to approximate
the derivatives w.r.t. x (cf. (2.1) and (2.2)). The space discretization
is said to be consistent if

||α(t)|| → 0 as h(x) → 0 for all t ∈ J,
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where || · || is a (standard) norm in RM−1. The total truncation error
β contains, in addition to α, the local error term of the implicit Euler
method for (2.6).

As shown in [6], the concept of the logarithmic matrix norm is a key
to realistic bounds for ||En||. Let μ[·] denote the logarithmic matrix
norm associated to the given vector norm || · || in RM−1. For a given
matrix A it is defined as

μ[A] := lim
Δ→0

||I + ΔA|| − 1
Δ

.

If || · || is an inner product norm, μ[A] can be written as

μ[A] = max
ξ �=0

〈Aξ, ξ〉
||ξ||2 ,

and μ[A] is the smallest possible one-sided Lipschitz constant of A.
For the standard norms || · ||1, || · ||2 and || · ||∞, the corresponding
logarithmic norms are known explicitly; with A = (aij), one has
μ1[A] = maxj(ajj +

∑
i �=j |aij |), μ∞[A] = maxi(aii +

∑
j �=i |aij |) and

μ2[A] = λmax[(A+A�)/2]. (For more details, see, e.g., [1, pp. 27 31].)

Let ν be a finite (possibly negative) constant such that

(3.4) μ[A(t)] ≤ ν < ∞, for all t ∈ J, uniformly in h(x).

In other words, the functions ai, i = 0, 1, 2, and the finite difference
schemes used to approximate the derivatives of u with respect to x
are assumed to be such that (3.4) holds for some norm. Usually in
applications, once the discretization schemes are fixed, an adequate
norm is chosen to determine a ν in (3.4) which is independent of
h(x). In particular, if a1 and a2 are nonnegative and if we use (2.1b)
for the discretization of ux, then μ∞[A(t)] ≤ max{a0(xj , t) : j =
1, . . . , M − 1, t ∈ J}, (for μ[A + B] ≤ μ[A] + μ[B], see [1, p. 31]).

In our error analysis, similarly to the B-convergence theory for ODEs
(see [3]), we want to derive error bounds which are different from
the conventional error estimates in the sense that they depend on the
constant ν in (3.4) and on the Lipschitz constant L of B, rather than
on ||A(t)|| which may become arbitrarily large if h(x) → 0. We are thus
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seeking for an error estimate which is independent of all quantities that
may become very large because of the stiffness of the problem.

Let the norm || · ||∞ of a vector function e : J → RM−1 be defined
by ||e||∞ := max{||e(t)|| : t ∈ J}.

Theorem 3.1. Let || · || be a given norm in RM−1. Assume that
the space discretization for (1.1) is consistent and that (3.4) holds.
Furthermore, assume that the exact solution u of (1.1) is sufficiently
smooth, more precisely that u is as smooth with respect to x as required
for the consistency and the desired accuracy of the space discretization
and that u is continuously differentiable with respect to t and ∂2u/∂t2

is bounded on D. Then the approximation Vn converges to uh(x)(tn) as
h(x) → 0 and h(t) → 0 and we have

(3.5) ||En|| ≤ C||α||∞ + C̃h(t),

for h(t) ≤ h
(t)
0 and for all n = 1, . . . , N , where C and C̃ are finite

constants which do not depend on the grid spacings.

Proof. A simple Taylor expansion shows that

uh(x)(tn+1) = uh(x)(tn) + h(t)u′
h(x)(tn+1) − h(t)2

2
u′′

h(x)(ξn),

tn < ξn < tn+1.

Using (3.2), we obtain

uh(x)(tn+1) = uh(x)(tn) + h(t)[G(tn+1) + A(tn+1)uh(x)(tn+1)

+
n∑

i=0

∫ ti+1

ti

B(tn+1, s, uh(x)(s)) ds] + h(t)α(tn+1)

− h(t)2

2
u′′

h(x)(ξn),

uh(x)(tn+1) = uh(x)(tn) + h(t)[G(tn+1) + A(tn+1)uh(x)(tn+1)]
(3.6)

+ h(t)2
n∑

i=0

B(tn+1, ti+1, uh(x)(ti+1))
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+ h(t)α(tn+1) − h(t)2

2
u′′

h(x)(ξn)

− h(t)3

2

n∑
i=0

dB

ds
(tn+1, ζi, uh(x)(ζi)),

with ti < ζi < ti+1, where we approximated the integral terms by a
one-point quadrature formula. By definition, (see (3.3)), the sum of
the last three terms in (3.6) is equal to β(tn+1), and we have

(3.7) β̃ := max{||β(tn)|| : n = 1, . . . , N} ≤ h(t)||α||∞ +h(t)2 M2 + B0

2

where M2 := max{|(∂2u/∂t2)(x, t)| : (x, t) ∈ D} and B0 is a constant
such that for all t ∈ J , || ∫ t

0
(dB/ds)(t, s, uh(x)(s)) ds|| ≤ B0. Subtrac-

tion of (3.6) from (2.12) yields

Vn+1−uh(x)(tn+1) = Vn−uh(x)(tn)+h(t)A(tn+1)[Vn+1−uh(x)(tn+1)]

+h(t)2
n∑

i=0

[B(tn+1, ti+1, Vi+1)−B(tn+1, ti+1, uh(x)(ti+1))]−β(tn+1),

which is equivalent to

[I − h(t)A(tn+1)]En+1

= En + h(t)2
n∑

i=0

[B(tn+1, ti+1, Vi+1) − B(tn+1, ti+1, uh(x)(ti+1))]

− β(tn+1).

From 1.5.8, properties 7, 3 and 2, of [1, p. 31], together with (3.4), it
follows that

||[I − h(t)A(tn+1)]En+1|| ≥ −μ[−I + h(t)A(tn+1)]||En+1||
= −(−1 + h(t)μ[A(tn+1)])||En+1||
= (1 − h(t)μ[A(tn+1)])||En+1||
≥ (1 − h(t)ν)||En+1||.
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This implies that

(1 − h(t)ν)||En+1|| ≤ ||En|| + h(t)2L

n∑
i=0

||Ei+1|| + β̃,

where we used the Lipschitz condition (2.11) for B. Hence, the sequence
{||En|| : n = 1, . . . , N} satisfies the inequality

||En+1|| ≤ 1
1 − h(t)ν − h(t)2L

[||En|| + h(t)2L
n∑

i=1

||Ei|| + β̃].

This only holds for h(t) ≤ h
(t)
0 with h

(t)
0 defined such that h

(t)
0 ν +

h
(t)2

0 L < 1. There exist positive constants c1 and c2 such that
(1 − h(t)ν − h(t)2L)−1 ≤ 1 + c1h

(t) and

||En+1|| ≤ (1 + c1h
(t))||En|| + c2h

(t)2
n∑

i=1

||Ei|| + (1 + c1h
(t))β̃.

It now follows from [4, Lemma 6] that

(3.8) ||En|| ≤ Rn
1 − Rn

2

R1 − R2
(1 + c1h

(t))β̃, n = 1, . . . , N,

(with E0 = 0), where R1 and R2 are the roots of the characteristic
polynomial

R2 − (2 + c1h
(t) + c2h

(t)2)R + (1 + c1h
(t)) = 0,

i.e.,

R1 = 1 + h(t) c1

2
+ h(t)2 c2

2
+

h(t)

2

√
c2
1 + 4c2 + 2h(t)c1c2 + h(t)2c2

2,

R2 = 1 + h(t) c1

2
+ h(t)2 c2

2
− h(t)

2

√
c2
1 + 4c2 + 2h(t)c1c2 + h(t)2c2

2.

We observe that R1 = 1 + O(h(t)), R2 = 1 + O(h(t)) and that
Rn

1 and Rn
2 are bounded for nh(t) ≤ T . Furthermore, R1 − R2 =

h(t)
√

c2
1 + 4c2 + O(h(t)2). Together with (3.7) and (3.8), this proves
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that there exists a constant C, not depending on the stiffness of (2.6),
such that

||En|| ≤ C
β̃

h(t)
≤ C

(
||α||∞ + h(t) M2 + B0

2

)
,

with h(t) ≤ h
(t)
0 , and for all n = 1, . . . , N .

Remark 3.2. The steplength h(t) has to be sufficiently small for the
implicit system (2.12) for Vn+1 to be uniquely solvable. Therefore, in
addition to h(t) ≤ h

(t)
0 , a second stepsize restriction h(t) ≤ h

(t)
1 will

usually apply.

4. Numerical results. We now solve the following VPIDEs via the
MOL:

ut(x, t) = g(x, t) + a2(x, t)uxx(u, t) +
∫ t

0

b(x, t, s, u(x, s)) ds,

(4.1)

ut(x, t) = g(x, t) + a1(x, t)ux(x, t) +
∫ t

0

b(x, t, s, u(x, s)) ds.

(4.2)

The corresponding semi-discrete systems (2.6) are integrated numeri-
cally in time by the implicit Euler method.

In the following, we use the norm

||e||2 =

√√√√ 1
M − 1

M−1∑
j=1

e2
j , e ∈ RM−1.

If uxx in (4.1) is discretized by the three-point finite difference scheme
(2.2), the space truncation error α(t) satisfies

(4.3) ||α(t)||2 = O(h(x)2), t ∈ J.

By Theorem 3.1, the total error for (4.1) is

(4.4) ||En||2 = O(h(x)2) + O(h(t)), n = 1, . . . , N.
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If ux in (4.2) is discretized by the symmetric scheme (2.1a), the space
truncation error α(t) also satisfies (4.3). An estimate for the total error
for (4.2) is also given by (4.4).

If ux in (4.2) is discretized by the forward difference scheme (2.1b),
the space truncation error α(t) is only of order 1, i.e.,

(4.5) ||α(t)||2 = O(h(x)), t ∈ J.

The total error is (only)

(4.6) ||En||2 = O(h(x)) + O(h(t)), n = 1, . . . , N.

In general it is therefore preferable to use (2.1a) instead of (2.1b).

In the three cases listed above, it can be shown that μ2[A(t)] =
λmax[(A(t) + A(t)�)/2] is independent of h(x) if a1 and a2 are once,
respectively, twice, continuously differentiable w.r.t. x. Here μ2[·] is
the logarithmic norm associated to the norm || · ||2. We note in passing
that a2 in (4.1) always has to be nonnegative as well as a1 if forward
differences are used for (4.2).

If we use the maximum norm in RM−1, the above estimates also
hold, but we may no longer use the symmetrical scheme (2.1a) for the
discretization of ux in (4.2) since then μ∞[A(t)] = O((h(x))−1) which
contradicts (3.4).

The above error bounds are illustrated in the following examples.
Similar results were obtained for the maximum norm.

Example 1. Let a2(x, t) = 2+ sin(x), b(x, t, s, u) = (1− 2x) exp(s−
t)u2 and g(x, t) be chosen such that the exact solution of (4.1) is
u(x, t) = sin(2πx) exp(−xt). Here, as in the next two examples, T
is equal to 1. Let EM

N denote the error at t = T , after N integration
steps in t-direction:

EM
N :=

√√√√ 1
M − 1

M−1∑
j=1

(E(j)
N )2, EN = (E(1)

N , . . . , E
(M−1)
N )�.

For this particular equation, it turned out that the contribution O(h(t))
in (4.4) (with h(t) = T/N and N = 80) is small compared to O((h(x))2)
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and therefore the total error is dominated by the space truncation error.
The results are listed in Table 4.1 and the observed convergence rate
p̂ := ln(E2M

N /EM
N )/ ln(2) is nearly 2.

TABLE 4.1. Error for N = 80 integration steps in t-direction.

M EM
N p̂

5 7.291 e-2
10 1.617 e-2 2.17
20 3.880 e-3 2.06
40 9.600 e-4 2.01
80 2.445 e-4 1.97

Example 2. Let a2(x, t) = x2(1−x)/2, b(x, t, s, u) = (1−2x) exp(s−
t)u2 and g(x, t) be chosen such that the exact solution of (4.1) is
u(x, t) = x(1 − x) exp(−xt). In this example, it is the time integration
error that dominates the total error, i.e., ||EN ||2 ≈ O(h(t)). The
observed order q̂ := ln(EM

2N/EM
N )/ ln(2) is nearly 1 (see Table 4.2).

TABLE 4.2. Error for M = 80 subdivisions in x-direction.

N EM
N q̂

5 2.731 e-3
10 1.401 e-3 0.96
20 7.093 e-4 0.98
40 3.565 e-4 0.99
80 1.782 e-4 1.00

Example 3. Let a1(x, t) = 2+ sin(x), b(x, t, s, u) = (1− 2x) exp(s−
t)u2 and g(x, t) be chosen such that the exact solution of (4.2) is
u(x, t) = sin(2πx) exp(−xt). For the forward difference scheme (2.1b),
the observed order p̂ is nearly 1 (see Table 4.3), as predicted in (4.6).
The central difference scheme (2.1a) provides better results and a higher
order of convergence p̂, namely 2 (see Table 4.3).
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TABLE 4.3. Error for N = 80 integration steps in t-direction.

Forward differences Central differences
M EM

N p̂ EM
N p̂

5 4.887 e-1 4.178 e-1
10 2.239 e-1 1.13 2.963 e-2 3.82
20 1.074 e-1 1.06 8.461 e-3 1.81
40 5.262 e-2 1.03 2.119 e-3 2.00
80 2.600 e-2 1.01 5.686 e-4 1.90
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