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ON THE EFFICIENT DISCRETIZATION
OF INTEGRAL EQUATIONS OF THE THIRD KIND

SERGEI V. PEREVERZEV, EBERHARD SCHOCK

AND SERGEI G. SOLODKY

ABSTRACT. A new discretization scheme for solving ill-
posed integral equations of the third kind is proposed. We
show that when this scheme is combined with Morozov’s
discrepancy principle for Landweber iteration, the resulting
method is more efficient than the collocation method, in terms
of the order of the number of arithmetic operations required
to achieve a given accuracy in the approximate solution.

1. Introduction. In his fundamental papers on integral equations,
Hilbert [5] introduced the notion of integral equations of the first,
second and of the third kind. A linear integral equation

(1) rx + Kx ≡ r(t)x(t) +
∫ 1

0

k(t, τ )x(τ ) dτ = y(t)

is said to be of the first kind if r ≡ 0, of the second kind if r is a
nonzero constant, and of the third kind if r is a function with zeros in
its domain (if r is never zero the equation is equivalent to an equation of
the second kind). If the function r is continuous and has a finite number
of zeros, then equation (1) is a special type of nonelliptic singular
integral equation investigated by Prössdorf [11]. For functions r with
known zeros approximate methods for solving integral equation (1) were
proposed by Gabbasov, see, for example, [3]. But these methods are
completely unusable if r is, for example, a characteristic function of a
proper subset of positive measure. Moreover, as indicated in [12], if
for each neighborhood V of zero the inverse r−1(V ) of V has positive
measure, then the problem of solving the equation (1) is not well posed
in the sense of Hadamard and therefore regularization techniques are
required for solving (1). In our opinion it makes sense to apply the
regularization methods, even when the function r has a finite number
of zeros with unknown locations.
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Usually, the application of a regularization method is preceded by the
discretization of the problem and there is a close connection between
the amount of discrete information and the choice of the regularization
parameter. The aim of this paper is to discuss this connection for
the approximate solution of ill-posed equations (1). Moreover, some
estimate for the number of arithmetic operations required in order to
reach fixed accuracy ε will be obtained.

2. The discretization scheme. Throughout this paper we shall
consider the integral equations (1) with operators K acting continu-
ously from L2 to the Sobolev space W 1

2 and with y ∈ W 1
2 where L2 is

the Hilbert space of square-summable functions on [0, 1] with the usual
norm ‖ · ‖ and the usual inner product (·, ·) and W 1

2 is the normed
space of functions f(t) having square-summable derivatives f ′ ∈ L2.
The norm on W 1

2 is

‖f‖W 1
2

= ‖f‖ +
∥∥∥∥ d

dt
f

∥∥∥∥.

Moreover, it will be assumed that the operators K have some additional
smoothness. Namely, with γ = (γ1, γ2, γ3),

K ∈ K1
γ :=

{
K : ‖K‖L2→W 1

2
≤ γ1,

‖K∗‖L2→W 1
2
≤ γ2,

∥∥∥∥
(

d

dt
K

)∗∥∥∥∥
L2→W 1

2

≤ γ3

}

where ‖ · ‖X→Y is the usual norm in the space of all linear bounded
operators from X into Y ; B∗ denotes the adjoint operator of B : L2 →
L2. If the kernel k(t, τ ) of the integral operator K has mixed partial
derivatives and

∫ 1

0

∫ 1

0

[
∂i+jk(t, τ )

∂ti∂τ j

]2

dτ dt < ∞, i, j = 0, 1,

then it is easy to see that K ∈ K1
γ for some γ.

Let us consider the Haar orthonormal basis χ1, χ2, . . . , χm, . . . of
piecewise constant functions, where χ1(t) ≡ 1, and for m = 2k−1 + j,
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k = 1, 2, . . . ; j = 1, 2, . . . , 2k−1

χm(t) =

⎧⎨
⎩

2(k−1)/2 t ∈ [(j − 1)/2k−1, (j − 1/2)/2k−1),
−2(k−1)/2 t ∈ [(j − 1/2)/2k−1, j/2k−1),
0 t /∈ [(j − 1)/2k−1, j/2k−1],

and let Pm be the orthogonal projector on span {χ1, χ2, . . . , χm}, that
is,

Pmf(t) =
m∑

i=1

(f, χi)χi(t).

It is well known that [6, pp. 81, 82]

(2) ‖I − Pm‖W 1
2 →L2

≤ cm−1,

where I is the identity operator and c is some absolute constant.
Moreover, if |r′(t)| ≤ d, then for any t ∈ [0, 1]

(3) |r(t) − Pmr(t)| ≤ 3dm−1.

To construct an efficient method for discretizing ill-posed equations
(1), we shall use a specific “hyperbolic cross” approximation of the
kernel function k(t, τ ). This means that instead of (1) we consider now
the equation

(4) xP2nr + Knx = P2ny,

where

Kn =
n∑

k=1

(P2k − P2k−1)KP2n−k + P1KP2n

=
∑

(i,j)∈Γn

χi(χi, Kχj)(χj , ·),

with

Γn = {1} × [1, 2n]
n⋃

k=1

(2k−1, 2k] × [1, 2n−k].

It is obvious that Kn is the integral operator with degenerate kernel

kn(t, τ ) =
∑

(i,j)∈Γn

k̂(i, j)χi(t)χj(τ ),
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where k̂(i, j) denotes the Fourier coefficients of function k(t, τ ) with
respect to the Haar system, i.e.,

k̂(i, j) =
∫ 1

0

∫ 1

0

k(t, τ )χi(t)χj(τ ) dt dτ.

Let card (Γn) be the number of Fourier coefficients k̂(i, j) required to
construct kn(t, τ ). It is easily verified that

card (Γn) � n2n.

As usual, we write T (u) � S(u) if there are constants c and c1 such
that for all u belonging to the domain of definition T (u) and S(u), we
have

cT (u) ≤ S(u) ≤ c1T (u).

Moreover, for simplicity we often use the same symbol c for possibly
different constants.

If we denote by Ndisc the number of all Fourier coefficients

(5) k̂(i, j) = (χi, Kχj), r̂(i) = (r, χi), ŷ(i) = (y, χi)

taking part in the definition of equation (4), then

(6) Ndisc � 2n+1 + card (Γn) � n2n.

Even when we assume for the moment that the solution of (4) exists
and is unique, the direct solution of (4) would take too many arithmetic
operations. Instead we consider iterative methods. We are especially
interested in iterations associated with regularization methods. In this
paper we consider the Landweber iteration

(7)
xm,n = xm−1,n − μB∗

n(Bnxm−1,n − P2ny),
m = 1, 2, . . . , x0,n = 0,

where
Bnf = fP2nr + Knf, B∗

nf = fP2nr + K∗
nf,

0 < μ < 2/‖Bn‖2
L2→L2

.

Further examples of iterative methods are discussed in [13].
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The number of iteration steps m acts as a regularization parameter
and the usual discussion of rates of convergence of iterative methods
for ill-posed equations is done under the assumption that the exact
solution x̄ of (1) belongs to the range of operator |B|p for some p ≥ p0,
where |B|p = (B∗B)p/2 and

Bf(t) = r(t)f(t) + Kf(t).

Therefore, from now on, we assume that the exact solution of (1)
belongs to the class Φp0

γ,p,d, that is, the class of all

(8)

x̄ = |B|pv, ‖v‖ ≤ ρ, p ≥ p0 ≥ 1
K ∈ K1

γ , |r′(t)| ≤ d

y ∈ W 1
2,1 = {f : f ∈ W 1

2 , ‖f‖W 1
2
≤ 1}

for given positive numbers γ, ρ, d and p0 ≥ 1.

In what follows, we need

Lemma 1. Let K ∈ K1
γ and |r′(t)| ≤ d. Then

‖B − Bn‖L2→L2 ≤ cn2−n,

where the constant c depends on γ and d.

Proof. From the definition of the operator Kn, we find

P2nK − Kn =
n∑

k=1

(P2k − P2k−1)K(I − P2n−k) + P1K(I − P2n).

Using an argument like that in the proof of Lemma 3.2 of [8] for
K ∈ K1

γ , we get the estimate

‖(P2k − P2k−1)K(I − P2n−k)‖L2→L2 ≤ c2−n.
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Then, by virtue of (2), we have

‖K − Kn‖L2→L2 ≤ ‖(I − P2n)K‖L2→L2 + ‖P2nK − Kn‖L2→L2

≤ c2−n‖K‖L2→W 1
2

+
n∑

k=1

‖(P2k − P2k−1)K(I − P2n−k)‖L2→L2

+ ‖P1K(I − P2n)‖L2→L2

≤ c2−nγ1 + cn2−n + ‖(I − P2n)K∗‖L2→L2

≤ c2−n(γ1 + γ2) + cn2−n

≤ cn2−n.

Using this bound and (3), we obtain the estimate

‖B − Bn‖L2→L2 ≤ max
0≤t≤1

|r(t) − P2nr(t)| + ‖K − Kn‖L2→L2

≤ 3d2−n + cn2−n ≤ cn2−n,

as claimed.

An appropriate discretization (4) and the number of iteration steps
m depending on a predetermined order of accuracy O(ε) for ‖x̄−xm,n‖
have to be chosen. One of the most widely used strategies for choosing
the regularization parameter m, which are also called “stopping rules”
in the literature, is Morozov’s discrepancy principle. We shall consider
this discrepancy principle in the form tailored to the discretized version
of Landweber iteration (7) for equations (1) from Φp0

γ,ρ,d:

Let d1 > 1. A stopping rule for (7) is given by choosing the first
integer m such that m ≤ mmax � ε−2/p0 and

(9) ‖P2nf − Bnxm,n‖ ≤ d1ε
(p0+1)/p0 .

If there is no m ≤ mmax such that (9) holds, then choose m = [mmax]+1
with [mmax] denoting the largest integer which is not greater than
mmax � ε−2/p0 .

Now we can state the main result.

Theorem 2. Let n2−n � ε(p0+1)/p0 , and let the number of iteration
steps m in (7) be chosen according to the discrepancy principle (9). If
equation (1) belongs to the class Φp0

γ,ρ,d, p0 ≥ 1, then

‖x̄ − xm,n‖ = O(ε).
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Proof. The regularization method (7) is generated by the function

gm(λ) = λ−1[1 − (1 − μλ)m], λ > 0.

Namely, xm,n = Rm,nP2ny, where

Rm,n = gm(B∗
nBn)B∗

n.

We put Sm,n = I − Rm,nBn. From [10] one sees that

(10)

‖Rm,n‖L2→L2 ≤ c1m
1/2, ‖Sm,n‖L2→L2 ≤ c2,

‖I − BnRm,n‖L2→L2 ≤ 1, ‖Sm,n|Bn|p‖L2→L2 ≤ c1,pm
−p/2,

‖BnSm,n|Bn|p‖L2→L2 ≤ c2,pm
−(p+1)/2.

Using (2), (10) and Lemma 1, we find from the definition xm,n

(11)
‖x̄ − xm,n‖ ≤ ‖Sm,nx̄ + Rm,n[(I − P2n)y − (B − Bn)x̄]‖

≤ ‖Sm,nx̄‖ + cm1/2(‖(I − P2n)y‖ + ‖B − Bn‖L2→L2)

≤ ‖Sm,nx̄‖ + cm1/2
max(2

−n + n2−n)

≤ ‖Sm,nx̄‖ + cε−1/p0ε(p0+1)/p0

� ‖Sm,nx̄‖ + ε.

Let us estimate ‖Sm,nx̄‖. Using the inequality

‖|B|p − |Bn|p‖L2→L2 ≤ c‖B − Bn‖min{1,p}
L2→L2

| ln(‖B − Bn‖L2→L2)|,

see [14, p. 93], (8), (10) and Lemma 1 for p ≥ p0 ≥ 1 we have

(12)

‖Sm,nx̄‖ ≤ ‖Sm,n|Bn|pv‖ + ‖Sm,n(|B|p − |Bn|p)v‖
≤ c1,pρm−p/2 + c2ρn22−n

≤ c(m−p/2 + ε(p0+1)/p0 ln(1/ε)).

If m > ε−2/p, the assertion of the theorem follows from (11) and (12).

Assume now that m < m1 = [ε−2/p]+ 1. With an argument like that
in the proof of Theorem 3.3 of [10], we get the estimate

(13) ‖Sm,nx̄‖2 ≤ c(‖Sm1,nx̄‖2 + m1‖BnSm,nx̄‖2).
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On the other hand, from (2), (9), (10) and Lemma 1, we know that

‖BnSm,nx̄‖ ≤ ‖P2ny − Bnxm,n‖
+ ‖I − BnRm,n‖L2→L2(‖(Bn − B)x̄‖ + ‖y − P2ny‖)

≤ d1ε
(p0+1)/p0 + c(n2−n + 2−n)

� ε(p0+1)/p0 .

Moreover, using the inequality (12), we obtain

‖Sm1,nx̄‖2 ≤ c(m−p/2
1 + ε(p0+1)/p0 ln(1/ε))2 ≤ cε2.

Thus, from (13) one sees that for m < m1 and p ≥ p0,

‖Sm,nx̄‖2 ≤ cε2 + m1ε
(2(p0+1)/p0) ≤ c(ε2 + ε2−(2/p)+(2/p0)) � ε2.

Combining this estimate and (11) for m < m1, we have

‖x̄ − xm,n‖ = O(ε).

The theorem is proved.

Corollary 3. Let Ndisc be an amount of discrete information (5)
required to construct an approximate solution xm,n. From Theorem 2
and (6) it follows that within the framework of discretization scheme
(4) we can guarantee on the class Φp0

γ,ρ,d the order of accuracy ε in the
case when

Ndisc �
(

1
ε

)(p0+1)/p0

ln2 1
ε
.

3. Complexity of the algorithm. Let us estimate the number
Nop of arithmetic operations on the values of Fourier coefficients (5)
required to construct an approximate solution xm,n.

Proposition 4. Let

g(t) =
2n∑
i=1

giχi(t)
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be an arbitrary element of subspace span {χ1, χ2, . . . , χ2n}. To repre-
sent an element

f(t) = g(t)P2nr(t) ∈ span {χ1, χ2, . . . , χ2n}
in the standard form

(14) f(t) =
2n∑
i=1

fiχi(t)

it suffices to perform no more than c2n arithmetic operations on the
coefficients gi and r̂(i).

Proof. Note that g(t), P2nr(t) and f(t) are the constants on the
dyadic intervals

Δn,i =
(

i − 1
2n

,
i

2n

)
, i = 1, 2, . . . , 2n.

Keeping in mind that, see [6, p. 78]

P2nϕ(t) = 2n

∫
Δn,i

ϕ(τ ) dτ, t ∈ Δn,i,

for any t ∈ Δn,i, i = 1, 2, . . . , 2n, we have

(15)

P2nf(t) = 2n

∫
Δn,i

g(τ )P2nr(τ ) dτ

= 2n

∫
Δn,i

g(τ ) dτ · 2n

∫
Δn,i

P2nr(τ ) dτ

= P2ng(t)P2nr(t)
= g(t)P2nr(t)
= f(t).

Thus f(t) = P2nf(t) ∈ span {χ1, χ2, . . . , χ2n}.
Let us denote by hkj , k = 1, 2, . . . , n, j = 1, 2, . . . , 2k−1, the

Haar functions χ2, χ3, . . . , χ2n , labeled by two indices. Namely, for
m = 2k−1 + j,

χm(t) = hk,j(t).
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Then, for any ϕ ∈ L2, we put ϕ(k, j) = ϕ̂(2k−1 + j). We also introduce
the averages ϕ̄(k, j) of ϕ(t) on Δk,j as

ϕ̄(k, j) = |Δk,j |−1

∫
Δk,j

ϕ(τ ) dτ,

where |Δk,j | denotes the length of Δk,j . It is well known, see, for
example, [6, p. 78], that

(16)
ϕ̄(1, 1) = ϕ̂(1) + ϕ(1, 1),
ϕ̄(1, 2) = ϕ̂(1) − ϕ(1, 1),

and further

ϕ̄(m, 2j − 1) = ϕ̄(m − 1, j) + 2(m−1)/2ϕ(m, j),

ϕ̄(m, 2j) = ϕ̄(m − 1, j) − 2(m−1)/2ϕ(m, j),(17)
m = 2, 3, . . . , n; j = 1, 2, . . . , 2m−1.

It is easy to see that, using (16) and (17), we can compute the averages
ḡ(n, i) and r̄(n, i), where i = 1, 2, . . . , 2n, of functions g(t) and r(t), and
evaluating the whole set of these averages requires no more than c2n

arithmetic operations on the coefficients gj , r̂(j).

If the averages ḡ(n, i) and r̄(n, i) are known, then by virtue of (15),

f̄(n, i) = ḡ(n, i)r̄(n, i), i = 1, 2, . . . , 2n,

and evaluating the whole set of f̄(n, i) requires 2n multiplications. Now,
according to the method for calculating the Haar coefficients [1] the
rest of the averages f̄(m, j) and the Fourier coefficients f(m, j) can be
computed for m = n, n−1, . . . , 2; j = 1, 2, . . . , 2m−1, from the formulas

f̄(m − 1, j) = (f̄(m, 2j − 1) + f̄(m, 2j))/2,

f(m, j) = 2−(m+1)/2(f̄(m, 2j − 1) − f̄(m, 2j)),
f(1, 1) = (f̄(1, 1) − f̄(1, 2))/2,

f̂(1) = (f̄(1, 1) + f̄(1, 2))/2.

One can see that evaluating the whole set of averages and Fourier
coefficients requires 2n+1 − 2 additions and 2n+1 multiplications. To
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complete the proof it only remains for us to note that in the represen-
tation (14) we have f1 = f̂(1) and

fi = f(k, j), k = 1, 2, . . . , n, j = 1, 2, . . . , 2k−1

for i = 2k−1 + j. With an argument like that in the proof of Lemma
18.2 of [9, p. 300], we get the following assertion.

Proposition 5. Let g(t) be an arbitrary element of span {χ1, χ2, . . . ,
χ2n}. To represent the elements Kng, K∗

ng ∈ span {χ1, χ2, . . . , χ2n}
in the standard form (14) it suffices to perform no more than cn2n

arithmetic operations on the coefficients ĝ(i) and k̂(i, j).

Theorem 6. Under the assumptions of Theorem 2 one can guarantee
on the class Φp0

γ,ρ,d the order of accuracy ε with

(18) Nop = O

((
1
ε

)(p0+3)/p0

ln2 1
ε

)
.

Proof. By virtue of (7) for any m = 1, 2, . . . , we have

xm,n = xm−1,n − μδm−1P2nr − μK∗
nδm−1,

δm−1 = xm−1,nP2nr + Knxm−1,n − P2ny.

From the definition of operator Kn and (15), one sees that xm,n ∈
span {χ1, χ2, . . . , χ2n} for any m. Let card (AO) be the number of
arithmetic operations required for the passage from xm−1,n to xm,n.
From Theorem 2 and Propositions 4 and 5, it follows that

card (AO) ≤ cn2n �
(

1
ε

)(p0+1)/p0

ln2 1
ε
.

On the other hand, within the framework of stopping rule (9),

Nop ≤ mmaxcard (AO) � ε−2/p0card (AO)

�
(

1
ε

)(p0+3)/p0

ln2 1
ε
,
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as claimed.

Remark. Let us assume that equation (1) belongs to Φp0
γ,ρ,d but

the function r(t) has a finite number of known zeros. In this case
the collocation method proposed in [3] can be applied. Within the
framework of this method finding the approximate solution xn of
(1) reduces to solving a system of O(n) linear algebraic equations.
Moreover, from Theorem 1 of [3], it follows that

‖x̄ − xn‖ = O

(
1√
n

)
.

Then, for guaranteeing accuracy ε, it is necessary to solve the system
consisting of n � ε−2 algebraic equations. To solve this system, for
example, by Gaussian elimination, it is necessary to perform N1 �
n3 � ε−6 arithmetic operations. When N1 is compared with estimation
(18), it is apparent that for the class Φp0

γ,ρ,d the scheme (4) and (7) with
stopping rule (9) is more economical than the collocation method of [3].

4. Differential equations and integral equations of the third
kind. Integral equations of the third kind are closely related to some
singular problems in differential equations.

4.1. Volterra equations. Let A, B be (n, n)-matrices with entries
ajk, bjk and c an n-vector with entries cj , which are continuous, respec-
tively differentiable real or complex functions.

The system of linear ordinary differential equations

Ay′ = By + c

is a system of differential-algebraic equations, see, e.g., [4], if the matrix
A is singular. On the other hand, since

(Ay)′ = A′y + Ay′,

we have

(Ay)(t) =
∫ t

0

(A′(τ ) + B(τ ))y(τ ) dτ + c(t).
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This is a system of Volterra equations of the third kind.

In the special case n = 1, it is well known, see [7, p. 34], that a
Volterra integral equation of the first kind is equivalent to a Volterra
integral equation of the second kind if the kernel function does not
vanish on the diagonal. If the kernel function has zeros on the diagonal,
then this equation is equivalent to a Volterra equation of the third kind.

4.2. Fredholm equations. Let L be a linear differential operator with
a continuous inverse T , let A, B, c be as above. Then the boundary
problem

L(Ay) = By + c

is equivalent to the system of integral equations of the third kind

Ay = TBy + Tc.

In the case n = 1 and if a11 has zeros, then we have boundary value
problems with “regular” and with “irregular” singularities, see, e.g., [2,
p. 299].
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