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A FUNCTIONAL EQUATION AND
DEGENERATE PRINCIPAL SERIES

JUHYUNG LEE

ABSTRACT. A functional equation between the ζ distri-
butions can be obtained from the theory of prehomogeneous
vector spaces. We show that the functional equation can
be extended from the Schwartz space to certain degenerate
principal series.

1. Introduction. The fundamental theorem of prehomogeneous
vector spaces gives a functional equation for the Fourier transformation
of a complex power of associated relative invariants as a distribution.
For a class of prehomogeneous vector spaces of particular interest in
representation theory, the explicit form of the functional equation is
known; see equation (1.1). This class of prehomogeneous vector spaces
occurs as (L,Ad, n), where P = LN is a certain maximal parabolic
subgroup of a reductive Lie group; the cases under consideration are
listed in Table 1 in Appendix A. The main purpose of this paper is
to extend the domain of the functional equation of some prehomoge-
neous vector spaces from the Schwartz space to the space of functions
of certain degenerate principal series representations IndGP (s), realized
as functions on n, for all s ∈ C.

The groups G that we consider are those groups for which there is
a parabolic subgroup P so that P and its opposite parabolic are G-
conjugate, N is abelian and the symmetric space corresponding to G
is not of tube type. Such groups G arise from simple non-Euclidean
Jordan algebras n in the sense that each n occurs as the abelian
nilradical of a maximal parabolic subalgebra of a reductive Lie algebra
g, where g = Lie(G) for some conformal group G. It follows from
Vinberg’s theorem that (L,Ad, n) is a prehomogeneous vector space.
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These prehomogeneous vector spaces also have a relative invariant ∇.
The Levi subgroup L has a finite number of orbits on n, and in fact,
there is an open dense orbit defined by ∇ ̸= 0. The contragradient
(L,Ad, n) with a relative invariant ∇ has the same properties.

It is useful to consider the case GL(2n,R). Then L and n may be
identified with GL(n,R) × GL(n,R) and Mn×n(R), respectively, and
the relative invariant is the determinant. The open dense orbit is given
by On = {X ∈Mn×n(R) : det(X) ̸= 0}.

As tempered distributions, the ζ distributions are defined by the
integrals:

Z(f, t) =

∫
n̄

f(X)∇(X)tdX, for f ∈ S(n)

and

Z(h, t) =

∫
n

h(Y )∇(Y )tdY, for h ∈ S(n).

Here, S(n) (respectively, S(n)) denotes the Schwartz space on n (re-
spectively, n). The integers m, n, d and e in the following discussion
are listed in Table 1 for each group. It is well known that Z(f, t) and
Z(h, t) converge absolutely for Re (t) > −(e+1), and both expressions
are complex analytic functions of t. Moreover, these analytic functions
in t extend meromorphically to the whole complex plane and satisfy
the functional equation:

(1.1)
πnt/2

Γn(t)
Z(f, t−m/n) =

πn(−t+m/n)/2

Γn(−t+m/n)
Z(f̂ ,−t), for f ∈ S(n).

Here, Γn(t) =
∏n−1

j=0 Γ((t− jd)/2) (Γ is the gamma function on C) and̂ denotes the Fourier transform. The functional equation concerning
the Fourier transform of a complex power of the relative invariants as
a tempered distribution was established by Mikio Sato and is called
the fundamental theorem of prehomogeneous vector spaces, see, for
example, [6, Theorem 4.17]. For our choices of the groupsG the explicit
functional equation (1.1) is contained in [3, 11].

Consider the family of degenerate principal series representations
IndGP (s) for s ∈ C. Each can be realized as a space of certain functions
on n, which is denoted by I(s). The Schwartz space S(n) is contained in
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I(s) for all s. The compact picture C∞(K/M) is given by a restriction

of functions in IndGP (s) and we fix an element φ in C∞(K/M). The
function φ is independent of s, and we let Fs be the corresponding
function in I(s). In this paper, we consider the family of integrals
Z(Fs, t) and prove the following theorems.

Theorem 1.1. Let Fs ∈ I(s). Then the family of integrals Z(Fs, t) is
complex analytic on −(e + 1) < Re (t) < Re (s) − d(n − 1) and has a
meromorphic continuation to all of C2.

Theorem 1.2. Let Fs ∈ I(s). Then the functional equation

(1.2)
πnt/2

Γn(t)
Z

(
Fs, t−

m

n

)
=

πn(−t+m/n)/2

Γn(−t+m/n)
Z(F̂s,−t)

holds as meromorphic functions in (s, t) ∈ C2.

The organization of our paper is as follows. We set up some notation
and give some properties about the groups that we consider, together
with an integral formula for ‘polar coordinates’ in Section 2 in a form
convenient for our purposes. We define principal series representations
I(s), and give formulas for the action by elements of certain commuting
copies of sl(2,R) in Section 3. Section 4 contains the functional
equation between the ζ distributions and the convergent range of the
integral Z(Fs, t) for Fs ∈ I(s). Section 5 contains the proofs of the
main results.

We apply the polar coordinates to the integral Z(Fs, t) to reduce it
to the integrals over a noncompact radial set and a compact set. Then
the main part of the proof shows the meromorphic continuation of
the integral over the noncompact set. Our main technique is applying
a string of differential operators to extend the defining range of the
integral Z(Fs, t) in two variables, s and t. Such differential operators
are obtained from the Lie algebra action given in Section 3. Section 6
contains some comments on representation theory.

2. Preliminaries. The choices for the groups G with which we
work are given in Appendix A, Table 1. These groups G arise from
simple non-Euclidean Jordan algebras. Such a G is characterized by
the existence of a parabolic subgroup P = LN (a Levi decomposition)
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such that P and its opposite parabolic P = LN are G-conjugate, N is
abelian and the symmetric space corresponding to G is not of tube type.
Much of the background material in Sections 2, 3 and 4 is contained
in [1, 4, 8]. G has a Cartan involution θ so that θ sends P to the
opposite parabolic. We let K be the fixed point group of θ, a maximal
compact subgroup of G. The real Lie algebras of various Lie groups are
expressed by the corresponding Fraktur letters. The Cartan involution
determines a Cartan decomposition g = k+ s.

Following [8], there is a maximal abelian subalgebra b of l ∩ s with
the following properties.

(1) There are commuting copies of sl(2,R), denoted by sl(2,R)j , in g,
spanned by {Fj ,Hj , Ej} a standard basis in the sense that:

θ(Ej) = −Fj and θ(Hj) = −Hj

[Ej , Fj ] = Hj , [Hj , Ej ] = 2Ej and [Hj , Fj ] = −2Fj ,

with Ej ∈ n and Fj ∈ n. Then b =
∑n

j=1 RHj . Therefore, we

can view
∏n

j=1 sl(2,R)j as a subalgebra of g and will denote the

element aHj + bEj + cFj by
(
a b
c −a

)
j
. There is a corresponding Lie

group
∏n

j=1 SL (2,R)j in G.

(2) For

ϵk

( n∑
j=1

ajHj

)
≡ ak,

the b-roots in g, l and n are

Σ(g, b)={±(ϵj − ϵk) : 1≤j<k≤n} ∪ {±(ϵj+ϵk) : 1≤j, k≤n}
Σ(l, b) = {±(ϵj−ϵk) : 1≤j<k≤n}

and
Σ(n, b) = {ϵj + ϵk : 1 ≤ j, k ≤ n}.

For each G, the roots in n have just two possibilities for the multi-
plicity. This defines integers d and e:

each short root has multiplicity 2d, and each long root
has multiplicity e+ 1.

(In the case of SO(p, q), Case 4 in Tables 1 and 2, d is a half integer.
When n = 1, d is zero.) We set m = dim(n). Then m = n(d(n− 1) +
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(e+ 1)). Define Σ+(g, b) = {ϵj − ϵk : 1 ≤ j < k ≤ n} ∪ Σ(n, b). Define
a character Λ0 on b as

Λ0 ≡
n∑

j=1

ϵj .

Then Λ0 extends to a character of l, and we write eΛ0 for the corre-
sponding character of L.

There is a diffeomorphism of n × L × n onto a dense open set in
G given by (X, ℓ, Y ) 7→ nXℓnY , where nX = exp(X) and nY =
exp(Y ). Therefore, any g ∈ NLN has a unique decomposition as
g = N(g)ℓ(g)N(g). Furthermore, L =MA, where A = exp(a),

a =
∩
j<k

ker(ϵj − ϵk).

Since the L part of the decomposition has a component in A, we define
a(g) ∈ A by g ∈ NMa(g)N . We can see this directly for SL(2,R), as
follows.

(2.1)

(
a b
c d

)
=

(
1 0
c/a 1

)(
a 0
0 1/a

)(
1 b/a
0 1

)
if a ̸= 0.

Here, a(g) = diag(a, 1/a) with a > 0.

We describe the orbits of L in n. If we set Xq ≡ F1 + · · · + Fq,
q = 1, 2, . . . , n and X0 ≡ 0, then, by [5, 12] the L-orbits in n are,
precisely, Oq = L(Xq), q = 0, 1, 2, . . . , n. We write Oq = L/Sq, Sq the
stabilizer of Xq. As ad(Xn) : l → n is onto, On is open in n. Moreover,
it is also dense and a semisimple symmetric space of rank n.

Example 2.1. If G = GL(2n,R), then the subgroups L and N are
given by:

L =

{(
ℓ1 0
0 ℓ2

)
: ℓj ∈ GL(n,R)

}
,

N =

{
nY =

(
I Y
0 I

)
: Y ∈Mn×n(R)

}
.

s = Sym (2n,R) in the Cartan decomposition. The n-commuting
copies of sl(2,R) in g are given as follows. Let Eij be the matrix
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with 1 in the ij-place and 0′s elsewhere. We set, for j = 1, . . . , n,

Ej = Ej,n+j ∈ n, Hj = Ej,j − En+j,n+j , Fj = En+j,j ∈ n.

Then we define sl(2,R)j as the Lie algebra generated by {Fj , Hj , Ej}.
The dimension of n is m = n2. For j ̸= k, the ϵj + ϵk’s are short roots
in n with multiplicity 2 and the 2ϵj ’s are long roots with multiplicity 1.

The Bruhat decomposition g = N(g)ℓ(g)N(g) is given by the identity,

g =

(
A B
C D

)
=

(
I 0
X I

)(
ℓ1 0
0 ℓ2

)(
I Y
0 I

)
, for det(A) ̸= 0,

where ℓ1 = A, Y = A−1B, X = CA−1 and ℓ2 = D − CA−1B.

The Iwasawa decomposition of G with respect to P is G = K exp(m∩
s)AN . We will write it as g = κ(g)µ(g)eH(g)n(g). This decomposition
for SL(2,R) is given by the identity:(

a b
c d

)
=

(
a/

√
a2 + c2 −c/

√
a2 + c2

c/
√
a2 + c2 a/

√
a2 + c2

)(√
a2 + c2 0

0 1/
√
a2 + c2

)
(
1 (ab+ cd)/(a2 + c2)
0 1

)
.

In particular, for X = ( 0 0
x 0 ),

(2.2) eH(nX) =

(√
1 + x2 0

0 1/
√
1 + x2

)
.

The following lemma is easily proven by uniqueness of the decomposi-
tion.

Lemma 2.2. For k ∈ K ∩ L and X ∈ n, κ(nk·X) = k κ(nX) k−1.

We define

w ∈
n∏

j=1

SL(2,R)j as w =
n∏

j=1

(
0 1
−1 0

)
j

,

which is in K and satisfies Ad(w)n = n. We also define functions on
dense open subsets of n and n by

∇(X) ≡ eΛ0(log(a(wnX))), X ∈ n,
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and

∇(Y ) ≡ ∇(θ(Y )), Y ∈ n.

Then both ∇ and ∇ are invariant under K ∩ L. For G = GL(2n,R),
∇ = ∇ = | det |. The next lemma follows from equation (2.1).

Lemma 2.3. For positive real numbers of xj’s,

∇
( n∑

j=1

xjFj

)
=

n∏
j=1

xj .

Proof. In each SL(2,R)j , by equation (2.1), we have the following
SL(2,R) computations.

a(wnxiF ) = a

(
w

(
1 0
xj 1

))
= a

((
xj 1
−1 0

))
=

(
xj 0
0 1/xj

)
.

This proves the lemma. �

We describe a “polar coordinate” expression for the Lebesgue mea-
sure on n. In [10], it is shown that the elements{ n∑

j=1

xjFj : x1 > · · · > xn > 0

}
give a complete set of orbit representatives for the action of K ∩ L on
On. We write Ω for the cone Ω = {(x1, · · · , xn) : x1 > · · · > xn > 0}.
Each dxj denotes the Lebesgue measure on R.

Proposition 2.4 ([4, Proposition 1.2], [14, Proposition 7.1.3]). Let
dX be the Lebesgue measures on n. Then we have∫

n

f(X) dX

= c

∫
K∩L

[ ∫
Ω

f

(
k ·

n∑
j=1

xjFj

) n∏
j=1

xej
∏

1≤i<j≤n

(x2i − x2j )
d

n∏
j=1

dxj

]
dk.

The scalar c in the above formula is independent of f and depends
upon the normalization of the measure dX.
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3. Generalized principal series representations and the Lie
algebra action. For s ∈ C, we may define a family of normalized
principal series representations as induced representations:

IndGP (s) = {f : G −→ C : f is smooth and

f(gman) = e−(s+m/n)Λ0(log(a))f(g),man ∈ P =MAN}.

The group G acts by left translation (g · f)(g1) = f(g−1g1). Then the
compact picture is obtained from the induced picture by restricting to
K. We set φ = f |K , f ∈ IndGP (s). The compact picture may be written
as

C∞(K/M) = {φ : K −→ C : φ is smooth and

φ(km) = φ(k), k ∈ K and m ∈M}.

Note that the action of G corresponding to the left translation does
depend on s, but the function φ in the compact picture is independent
of s.

The noncompact picture is given by restricting the induced picture
to N . For f ∈ IndGP (s), we set Fs(X) = f(nX). Then IndGP (s) may be
identified with

I(s) = {Fs ∈ C∞(n) : Fs(X) = f(nX), for some f ∈ IndGP (s)}.

By the Bruhat decomposition, g ∈ NP acts by

g · Fs(X) = e−(s+m/n)Λ0(a(g−1nX))Fs(log(N(g−1nX))).

In particular,

(ℓ · Fs)(X1) = e−(s+m/n)Λ0(a(ℓ−1))Fs(ℓ
−1 ·X1)

and

(nX · Fs)(X1) = Fs(X1 −X).

We may express functions in the noncompact picture in terms of
functions in the compact picture. By the Iwasawa decomposition, we
have

Fs(X) = e−(s+m/n)Λ0(H(nX))φ(κ(nX)).
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If φ ≡ 1, then Fs is called the spherical function. We denote it by hs,
that is,

hs(X) = e−(s+m/n)Λ0(H(nX)).

Note that hs is invariant under K. We give an explicit formula for
functions in I(s).

Lemma 3.1. Let X = k ·Y , for k ∈ K ∩L and Y =
∑n

j=1 xjFj. Then
the spherical function is

(3.1) hs(X) =
1∏n

j=1(1 + x2j )
(s+m/n)/2

.

Therefore, Fs ∈ I(s) can be expressed as

(3.2) Fs(X) =
(k−1 · φ) (κ(nY ))∏n

j=1(1 + x2j )
(s+m/n)/2

.

Proof. Equation (3.1) follows directly from equation (2.2). On the
other hand,

φ(κ(nX)) = φ(kκ(nY )k
−1) = (k−1 · φ)(κ(nY ))

by Lemma 2.2. This proves equation (3.2). �

We describe the action by elements of the Lie subalgebras sl(2,R)j
of g. The Lie algebra action will play an important role in proving the
main results. For the group representation on I(s), the corresponding
Lie algebra representation is given by the formula, for Y ∈ g, as

Y ·Fs(X)=
d

dt

∣∣∣
t=0

exp(tY ) · f(nX)

=
d

dt

∣∣∣
t=0

e−(s+m/n)Λ0(ℓ(exp(−tY )nX))Fs(log(N(exp(−tY )nX))).

Lemma 3.2. Let

X =
n∑

j=1

xjFj .

The action of sl(2,R)j on I(s) is given by :

(i) Ek · Fs(X) = (s+m/n)xkFs(X) + x2k(∂Fs)/(∂xk)(X),
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(ii) Hk · Fs(X) = (s+m/n)Fs(X) + 2xk(∂Fs)/(∂xk)(X),
and

(iii) Fk · Fs(X) = −(∂Fs)/(∂xk)(X).

Proof. For sufficiently small values of t, we may assume that 1
− txk > 0. In

∏n
j=1 SL(2,R)j , by the Bruhat decomposition, we have:

exp(−tEk) exp(X) = exp

(∑
j ̸=k

xjFj +
xk

1− txk
Fk

)
(
1− txk 0

0 1/(1− txk)

)
k

(
1 −t/(1− txk)
0 1

)
k

,

exp(−tHk) exp(X) = exp

(∑
j ̸=k

xjFj + xke
2tFk

)
exp (−tHk) ,

and

exp(−tFk) exp(X) = exp

(∑
j ̸=k

xjFj + (xk − t)Fk

)
.

This proves the lemma. �

4. Zeta distributions and integrals for functions in I(s). The
functions ∇(X)t and ∇(Y )t are locally L1 functions for Re (t) >
−(e+ 1), and they define tempered distributions by the integrals:

Z(f, t) =

∫
n

f(X)∇(X)tdX, for f ∈ S(n)

and

Z(h, t) =

∫
n

h(Y )∇(Y )tdY, for h ∈ S(n).

Here, S(n) (respectively, S(n)) denotes the space of Schwartz functions
on n (respectively, n). Note that, in the range Re (t) > −(e+ 1), both
expressions are complex analytic functions of t. We will see that there
is a meromorphic continuation to all of t ∈ C. This can be viewed by a
general result of [2] and the following statements which are contained

in [13]. Both ∇2
and ∇2 are polynomials by [1, Lemma 2.10], for



DEGENERATE PRINCIPAL SERIES 1997

example. There is a polynomial b(t) so that

∇(∂X)2∇(X)t = b(t)∇(X)t−2

and

∇(∂Y )
2∇(Y )t = b(t)∇(Y )t−2.

In particular, for bk(t) = b(t)b(t− 2)b(t− 4) · · · b(t− 2(k − 1)),

∇(∂X)2k∇(X)t = bk(t)∇(X)t−2k

and

∇(∂Y )
2k∇(Y )t = bk(t)∇(Y )t−2k.

We integrate by parts to obtain

Z(∇(∂X)2kf, t) = bk(t)Z(f, t− 2k)

and

Z(∇(∂Y )
2kh, t) = bk(t)Z(h, t− 2k),

for sufficiently large Re (t). Since the left hand side is analytic for
Re (t) > −(e + 1), both Z(f, t) and Z(h, t) continue to meromorphic
functions on Re (t) > −(e+ 1)− 2k for any k.

We now turn to the Fourier transformation and functional equation.
Let B denote the Killing form of g. Then B gives a nondegenerate
pairing between n and n. Since the form −B(·, θ(·)) is positive definite
on g, we may define inner products

⟨X1, X2⟩ = − n

4m
B(X1, θ(X2)) on n

and

⟨Y1, Y2⟩ = − n

4m
B(Y1, θ(Y2)) on n.

For example, if G = GL(2n,R), then ⟨X1, X2⟩ is the trace form on n.
Define the Fourier transforms by

f̂(Y ) =

∫
n

f(X)e−2πi⟨X,Y ⟩dX, for f ∈ L1(n)
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and

ĥ(X) =

∫
n

h(Y )e−2πi⟨X,Y ⟩dY, for h ∈ L1(n).

We may regard the Fourier transform f̂ on n (respectively, ĥ on n) as
a function on n (respectively, n). The functional equation relates the
two distributions ∇ and ∇ via the Fourier transform. We let Γ denote
the gamma function on C.

Theorem 4.1 ([11]). Let t ∈ C and f ∈ S(n). As meromorphic
functions

(4.1)
πnt/2

Γn(t)
Z

(
f, t− m

n

)
=

πn(−t+m/n)/2

Γn(−t+m/n)
Z(f̂ ,−t),

where

Γn(t) =
n−1∏
j=0

Γ

(
t− jd

2

)
.

To show that the functional equation (4.1) holds for functions in
I(s), we consider the integral

Z(Fs, t) =

∫
n

Fs(X)∇(X)tdX, for Fs ∈ I(s).

Lemma 4.2. Z(Fs, t) converges absolutely on −(e + 1) < Re (t) <
Re (s)− d(n− 1).

Proof. Combining Lemma 2.3, Proposition 2.4 and Lemma 3.1, we
obtain:

(4.2) Z(Fs, t) = c

∫
K∩L

[ ∫
Ω

φ(k κ(nY ))∏n
j=1(1 + x2j )

(s+m/n)/2

n∏
j=1

xt+e
j

∏
1≤i<j≤n

(x2i − x2j )
d

n∏
j=1

dxj

]
dk,
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for some constant c. Here Y =
∑n

j=1 xjFj . By expanding (x2i − x2j )
d,

we can write the integrand as a finite linear combination of terms

φ(k κ(nY ))

n∏
j=1

xt+e+k
j

(1 + x2j )
(s+m/n)/2

, where k = 0, 2, . . . , 2d(n− 1).

Each is bounded by the maximum of |φ| and a product of variable
integrals of the form:∫ ∞

0

x
Re (t)+e+k
j

(1 + x2j )
(Re (s)+m/n)/2

dxj ,

which converge if −1 < Re (t) + e+ k < Re (s) +m/n− 1. This proves
Lemma 4.2. �

Corollary 4.3. Fs ∈ L1(n) for Re (s) > d(n − 1) and Fs ∈ L2(n) for
Re (s) > −(e+ 1)/2.

Proof. If t = 0 in Lemma 4.2, we get the condition on s so that
Fs ∈ L1(n). Note also that Fs ∈ L2(n) if and only if h2s ∈ L1(n). This is
the case when e+k < 2(s+(m/n))−1 for all k = 0, 2, . . . , 2d(n−1). �

The meromorphic continuation of Z(Fs, t) in (s, t) given in the
following lemma has a proof similar to the proof that Z(f, t) has a
continuation to C, where f ∈ S, as described in the beginning of this
section.

Lemma 4.4. Z(Fs, t) can be extended meromorphically to the range∪
k∈Z≥0

{
(s, t) ∈ C2 : −(e+ 1)− 2k < Re (t) < Re (s)− d(n− 1)− 2k

}
.

Proof. Note that ∇ t
(X) vanishes on ∇(X) = 0 for Re (t) > 0

and Fs(X) vanishes at infinity for Re (s) > −m/n. Also, since each
∂α, |α| = 1, acts as an element in the enveloping algebra U(g),
∂α(Fs) ∈ I(s) for any multi-index α. So is ∇(∂X)2k(Fs), Fs ∈ I(s), for
any k ∈ Z≥0. Therefore, for Fs ∈ I(s),

(4.3) Z(∇(∂X)2kFs, t) = bk(t)Z(Fs, t− 2k)
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holds as convergent integrals when 2k < Re (t) < Re (s)− d(n− 1) by
Lemma 4.2. Since the left hand side is analytic on −(e+1) < Re (t) <
Re (s) − d(n − 1), Z(Fs, t) continues to a meromorphic function on
−(e+ 1)− 2k < Re (t) < Re (s)− d(n− 1)− 2k for all k ∈ Z≥0. �

5. Proof of the main results. In this section, we prove the
following theorems.

Theorem 5.1. Let Fs ∈ I(s). Then the family of integrals Z(Fs, t) is
complex analytic on −(e + 1) < Re (t) < Re (s) − d(n − 1) and has a
meromorphic continuation to all of C2.

Theorem 5.2. Let Fs ∈ I(s). Then the functional equation:

(5.1)
πnt/2

Γn(t)
Z

(
Fs, t−

m

n

)
=

πn(−t+m/n)/2

Γn(−t+m/n)
Z(F̂s,−t)

holds as meromorphic functions in (s, t) ∈ C2.

We will use the integral formula Proposition 2.4 for the polar
coordinates to reduce the integral Z(Fs, t) to the integrals over a
noncompact radial set and a compact set. The main part of the proof
of Theorem 5.1 is to have a meromorphic continuation of the integral
over the noncompact set. We use the formulas of the action by the Lie
subalgebras sl(2,R)j . These formulas give us appropriate differential
operators that we will use to extend the defining range of s and t. On
the other hand, Theorem 5.2 can be proven using [6, Lemma 4.34] and
Theorem 5.1.

5.1. Proof of Theorem 5.1. (R+)n contains n! disjoint cones of the
form,

σΩ = {x = (x1, . . . , xn) : xσ(1) > · · · > xσ(n) > 0}.

Here σ is in Sn, the symmetric group on n letters. Note also that
the disjoint union ∪σ∈SnσΩ is dense and open in (R+)n. Then the
integrand of (4.2) is invariant under the action of permuting xj ’s except
the possible negative sign from the term∏

1≤i<j≤n

(x2i − x2j )
d.
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We define the sign function on (R+)N as:

ε(x1, · · · , xN ) = sign

(∏
i<j

(xi − xj)

)
.

Then we can rewrite equation (4.2) as

Z(Fs, t) =
c

n!

∫
K∩L

[ ∫
(R+)n

(k−1 · φ)(κ(nY ))∏n
j=1(1 + x2j )

(s+m/n)/2

n∏
j=1

xt+e
j

∏
1≤i<j≤n

(x2i − x2j )
d ε(x)d

n∏
j=1

dxj

]
dk,

where

Y =

n∑
j=1

xjFj .

By expanding (x2i −x2j )d, the integral Z(Fs, t) can be viewed as a finite
linear combination of integrals of the form:

(5.2)∫
K∩L

[ ∫
(R+)n

(k−1 · φ)(κ(nY ))∏n
j=1(1 + x2j )

(s+m/n)/2

n∏
j=1

x
t+cj
j ε(x)d

n∏
j=1

dxj

]
dk,

where e ≤ cj ≤ e + 2d(n − 1). As the first step toward proving
Theorem 5.1, we assume that k = I in equation (5.2) and consider the
integral over the noncompact set (R+)n. Note that the meromorphic
continuation of the integrals of the form (5.2) implies the meromorphic
continuation of the integral Z(Fs, t). To make an induction argument
work in the following discussion, we need to consider the more general
integral given in equation (5.3), which makes the power in the integrand

arbitrary on xj ’s and
√
1 + x2j . Then, the meromorphic continuation

of equation (5.2) can be considered as a special case.

We introduce some notation. Let:

a = (a1, . . . , an) ∈ Nn, b = (b1, . . . , bn), c = (c1, . . . , cn) ∈ (R+)n.

Let N be a positive integer with N 6 n. Let:

p = (p1, . . . , pN ) ∈ ZN with 1 6 p1 < · · · < pN 6 n.



2002 JUHYUNG LEE

q = (q1, . . . , qn) ∈ Zn with 1 6 qj 6 n for all j = 1, . . . , n.

For x = (x1, . . . , xn) ∈ (R+)n, we define xp = (xp1 , . . . , xpN ) ∈ (R+)N

and [xq] = κ(nY ) ∈ K, for Y =
∑n

j=1 xqjFj .

Proposition 5.3. Let φ ∈ C∞(K/K ∩M). Then the integral :

(5.3) Tn (sa+ b, ta+ c,p, φ[xq])

:=

∫
(R+)n

n∏
j=1

x
ajt+cj
j

(1 + x2j )
(ajs+bj+m/n)/2

· ε(xp)
d φ[xq] dxn · · · dx1,

converges absolutely and is complex analytic on

(5.4) D0 =

{
(s, t) ∈ C2 : max

j

{
−1− cj
aj

}
< Re (t)

< Re (s) + min
j

{
bj +m/n− 1− cj

aj

}}
.

Moreover, it has a meromorphic continuation to all of (s, t) ∈ C2.

The proof of the convergence range D0 is analogous to the proof
of Lemma 4.2. The main ingredient for proving Proposition 5.3 is
to apply some differential operators from the Lie algebra action. For
j = 1, . . . , n, we define differential operators Dj

s,t by the action of the
Lie algebra element:(

0 t
s− t+ n− 2 0

)
j

= tEj + (s− t+ n− 2)Fj .

Then we have

Dj
s,t =

(
s+

m

n

)
t xj + t

(
1 + x2j

) ∂

∂xj
−
(
s+

m

n
− 2

)
∂

∂xj
,

by Lemma 3.2. Let

Dj
s,t

†
=

(
s+

m

n

)
t xj − t

∂

∂xj
◦
(
1 + x2j

)
+

(
s+

m

n
− 2

)
∂

∂xj
.
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Then Dj
s,t

†
is the formal adjoint of Dj

s,t, and we have

(5.5) Dj
s,t

†
xtj =

(
s+

m

n
− t− 2

)
t xt−1

j

(
1 + x2j

)
.

We shall denote the constant (s + (m/n) − t − 2)t by (s : t). For a
function f on an open interval (a, b), we set

[f(x)]x→b−

x→a+ := lim
x→b−

f(x)− lim
x→a+

f(x)

and

f(x)|x→b− := lim
x→b−

f(x),

if the limits exist. By integration of parts, it is easily proven that

(5.6)

∫ b

a

f(xl)
(
Dl

s,t g(xl)
)
dxl =

∫ b

a

(
Dl

s,t

†
f(xl)

)
g(xl) dxl

+

[{
t
(
1 + x2l

)
−
(
s+

m

n
− 2

)}
f(xl)g(xl)

]xl→b−

xl→a+

,

for all (s, t) ∈ C2 at which each term is defined. Here, f and
g are continuous on [a, b] and differentiable on (a, b). We define
El(s, t,p, φ[xq]) as 0 if d is even or d is odd and l ̸= pi for all
i = 1, . . . , N . If d is odd and l = pi for some i = 1, . . . , N , then

El(s, t,p, φ[xq])

=
i=1N∑
(pi ̸=l)

2 · {t(1 + x2pi
)− (s+m/n− 2)}xtpi

(1 + x2pi
)(s+m/n)/2

(ε(xp)φ[xq])
∣∣∣
xl→x−

pi

.

Note that El does not contain the variable xl.

Lemma 5.4. For (s, t) ∈ C2 with 0 < Re (t) < Re (s) + (m/n)− 2,∫ ∞

0

xtl ε(xp)
dDl

s,t

(
φ[xq]

(1 + x2l )
(s+m/n)/2

)
dxl

= (s : t)

∫ ∞

0

xt−1
l ε(xp)

d

(
φ[xq]

(1 + x2l )
(s−2+m/n)/2

)
dxl

+ El(s, t,p, φ[xq]).
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Remark 5.5. Note that the integrand contains the possibly discon-
tinuous function ε(xp)

d. This means that the integral must be broken
into some of the integrals with end points of the discontinuities.

Proof. We treat the following two cases.

Case 1. d is even or l ̸= pi for all i = 1, . . . , N . Then ε(xp)
d is

continuous with respect to the variable xl. We apply the integration
by parts equation (5.6), along with equation (5.5) on (0,∞). We note
that

(5.7)

[{
t
(
1 + x2l

)
−
(
s+

m

n
− 2

)}
xtl ε(xp)

d(
φ[xq]

(1 + x2l )
(s+m/n)/2

)]xl→∞

xl→0+
= 0,

on 0 < Re (t) < Re (s) +m/n− 2. This proves Case 1. �
Case 2. d is odd and l = pi for some i = 1, . . . , N . Then ε(xp)

d

is not continuous. Without loss of generality, we may assume that
0 < x1 < · · · < x̂l < · · · < xn in the following computations. Then,
we consider the partition of the interval (0,∞) defined by xpi

’s. Those
N −1 points can be used to divide (0,∞) into N non-overlapping open
subintervals:

(xp0 , xp1), (xp1 , xp2), . . . , (xpi−1 , xpi+1), . . . , (xpN
, xpN+1

),

where xp0 = 0 and xpN+1
= ∞. Therefore, we can write∫ ∞

0

xtl ε(xp)
dDl

s,t

(
φ[xq]

(1 + x2l )
(s+m/n)/2

)
dxl

=

N∑
k=0
(k ̸=i)

∫ xpk+1

xpk

xtl ε(xp)
dDl

s,t

(
φ[xq]

(1 + x2l )
(s+m/n)/2

)
dxl.

Since ε(xp)
d is a constant (±1) on each subinterval, by equations (5.6)

and (5.5), we have∫ xpk+1

xpk

xtl ε(xp)
dDl

s,t

(
φ[xq]

(1 + x2l )
(s+m/n)/2

)
dxl
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= (s : t)

∫ xpk+1

xpk

xt−1
l ε(xp)

d

(
φ[xq]

(1 + x2l )
(s−2+m/n)/2

)
dxl

+

[{
t(1+x2l )−(s+n−2)

}
xtl ε(xp)

d

(
φ[xq]

(1 + x2l )
(s+m/n)/2

)]xl→x−
pk+1

xl→x+
pk

.

Case 2 follows from equations (5.7) and the fact that

ε(xp)|xl→x−
pk

= −ε(xp)|xl→x+
pk
. �

The equation in Lemma 5.4 can be used to compute an integral
whose integrand contains differential operators of the form Dl

s,t. Let a
be a positive integer. We define:

D̃l
s,t = Dl

s,t ◦
1

(1 + x2l )
.

Define ψa[x] = φ[xq] and ψa−1, . . . , ψ0 inductively by the equation:

ψk[x]

(1 + x2l )
(s−2k+m/n)/2

= Dl
s−2k,t−k

ψk+1[x]

(1 + x2l )
(s−2k+m/n)/2

for k = 0, 1, . . . , a− 1. Then we have

ψ0[x]

(1 + x2l )
(s+m/n)/2

=

( a−1∏
k=0

D̃l
s−2k,t−k

)
φ[xq]

(1 + x2l )
(s−2a+m/n)/2

.

Since Ds−2k,t−k acts as an element in the Lie algebra on I(s − 2k), it
preserves the representation space I(s− 2k). Therefore, the condition
that φ ∈ C∞(K/K ∩ M) implies ψk ∈ C∞(K/K ∩ M) for all k =
0, . . . , a− 1. We let γ0(s : t) = 1. Define

γk(s : t) =
k−1∏
r=0

(s− 2r : t− r) for k = 1, . . . , a− 1

and

El,a(s, t,p, φ[xq]) =

a−1∑
k=0

γk(s : t)E
l(s− 2k, t− k,p, ψk+1[x]).
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Corollary 5.6. For (s, t) ∈ C2 with a < Re (t) < Re (s)−a+(m/n)−2,∫ ∞

0

xtl ε(xp)
d ψ0[x]

(1 + x2l )
(s+m/n)/2

dxl

= γa(s : t)

∫ ∞

0

xt−a
l ε(xp)

d φ[xq]

(1 + x2l )
(s−2a+m/n)/2

dxl

+El,a(s, t,p, φ[xq]).

Proof. We show the following equation by induction on k (for k =
0, . . . , a): ∫ ∞

0

xtl ε(xp)
d ψ0[x]

(1 + x2l )
(s+m/n)/2

dxl(5.8)

= γk(s : t)

∫ ∞

0

xt−k
l ε(xp)

d ψk[x]

(1 + x2l )
(s−2k+m/n)/2

dxl

+

k−1∑
r=0

γr(s : t)E
l(s− 2r, t− r,p, ψr+1[x]).

Then the corollary follows when k = a.

If k = 0, then it is trivial. We suppose equation (5.8) is true (for k).
Then, by the definition of ψk and Lemma 5.4, we have∫ ∞

0

xt−k
l ε(xp)

d ψk[x]

(1 + x2l )
(s−2k+m/n)/2

dxl

=

∫ ∞

0

xt−k
l ε(xp)

d D̃l
s−2k,t−k

ψk+1[x]

(1 + x2l )
(s−2(k+1)+m/n)/2

dxl

= (s− 2k : t− k)

∫ ∞

0

x
t−(k+1)
l ε(xp)

d ψk+1[x]

(1 + x2l )
(s−2(k+1)+m/n)/2

dxl

+ El(s− 2k, t− k,p, ψk+1[x]).

We substitute the above computations into (5.8) to obtain the induction
statement for k + 1.

By equation (5.7), the equation (5.8) is valid on

0 < Re (t)− k < s− 2k +
m

n
− 2, for k = 0, . . . , a.

This gives the explicit convergence range a < Re (t) < Re (s) − a +
m/n− 2. �



DEGENERATE PRINCIPAL SERIES 2007

Corollary 5.6 is used to compute an integral Tn over (R+)n whose
integrand contains differential operators of the form Dl

s,t for l =
1, 2, . . . , n. Recall that a, b, c, N , p and φ[xq] are as in Proposition 5.3.
Let s = sa + b = (s1, . . . , sn) and t = ta + c = (t1, . . . , tn). Define
ηn[x] = φ[xq] and ηn−1, . . . , η0 by the equations, inductively,

ηk−1[x]

(1 + x2k)
(sk+m/n)/2

=

( ak−1∏
r=0

D̃k
sk−2r,tk−r

)
ηk[x]

(1 + x2k)
(sk−2ak+m/n)/2

for n > k > 1. Then, we have

η0[x]∏n
k=1(1 + x2k)

(sk+m/n)/2

=

n∏
k=1

( ak−1∏
r=0

D̃k
sk−2r,tk−r

)
φ[xq]∏n

k=1(1 + x2k)
(sk−2ak+m/n)/2

.

Since φ ∈ C∞(K/K∩M), ηk ∈ C∞(K/K∩M) for all k = 0, . . . , n−1.
We let γ0(s : t) = 1. Define

γk(s : t) =
k∏

r=1

γar (sr : tr) for k = 1, . . . , n− 1

and

En−1(s, t,p, φ[xq])

=
n−1∑
k=0

γk(s : t)

∫
(R+)n−1

∏
j<k

x
tj−aj

j

(1 + x2j )
(sj−2aj+m/n)/2

∏
j>k

x
tj
j

(1 + x2j )
(sj+m/n)/2

Ek,ak(sk, tk,p, ηk[x])
∏
j ̸=k

dxj .

Corollary 5.7. For sufficiently large α and small β, we have

(5.9) Tn (s, t,p, η0[x])

= γn(s : t)Tn (s− 2a, t− a,p, φ[xq]) +En−1(s, t,p, φ[xq]),

on α < Re (t) < Re (s) + β. In particular, if d is even, then we have

Tn (s, t,p, η0[x]) = γn(s : t)Tn (s− 2a, t− a,p, φ[xq]) .
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Proof. We use induction on k (for k = 0, . . . , n) to obtain the
following statement:

Tn (s, t;p; η0(x)) = γk(s : t)

∫
(R+)n

∏
j6k

x
tj−aj

j

(1 + x2j )
(sj−2aj+m/n)/2

(5.10)

∏
j>k

x
tj
j

(1 + x2j )
(sj+m/n)/2

· ε(xp)
d · ηk(x)

n∏
j=1

dxj

+
k−1∑
r=0

γr(s : t)

∫
(R+)n−1

∏
j<r

x
tj−aj

j

(1+x2j )
(sj−2aj+m/n)/2

∏
j>r

x
tj
j

(1+x2j )
(sj+m/n)/2

·Er,ar (sr, tr,p, ηr[x])
∏
j ̸=r

dxj .

Then the lemma follows when k = n.

If k = 0, then it is trivial. We suppose the above statement is true
(for k). By the Fubini theorem and Corollary 5.6, we have the following
equalities on the convergence range of the integrals.∫

(R+)n

∏
j6k

x
tj−aj

j

(1 + x2j )
(sj−2aj+m/n)/2

∏
j>k

x
tj
j

(1 + x2j )
(sj+m/n)/2

· ε(xp)
d

· ηk[x]
n∏

j=1

dxj

=

∫
(R+)n−1

∏
j6k

x
tj−aj

j

(1 + x2j )
(sj−2aj+m/n)/2

∏
j>k+1

x
tj
j

(1 + x2j )
(sj+m/n)/2

·
(∫ ∞

0

x
tk+1

k+1 · ε(xp)
d · ηk[x]

(1 + x2k+1)
(sk+1+m/n)/2

dxk+1

) ∏
j ̸=k+1

dxj

=

∫
(R+)n−1

∏
j6k

x
tj−aj

j

(1 + x2j )
(sj−2aj+m/n)/2

∏
j>k+1

x
tj
j

(1 + x2j )
(sj+m/n)/2

·
(∫ ∞

0

x
tk+1

k+1

ak+1−1∏
r=0

D̃k+1
sk+1−2r,tk+1−r

ε(xp)
d ·ηk+1[x]

(1+x2k+1)
(sk+1−2ak+1+m/n)/2

dxk+1

)
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∏
j ̸=k+1

dxj

= γak+1
(sk+1 : tk+1)

∫
(R+)n

∏
j6k+1

x
tj−aj

j

(1 + x2j )
(sj−2aj+m/n)/2

∏
j>k+1

x
tj
j

(1 + x2j )
(sj+m/n)/2

· ε(xp)
d · ηk+1[x]

n∏
j=1

dxj

+

∫
(R+)n−1

∏
j<k+1

x
tj−aj

j

(1 + x2j )
(sj−2aj+m/n)/2

∏
j>k+1

x
tj
j

(1+x2j )
(sj+m/n)/2

·Ek+1,ak+1(sk+1, tk+1,p, ηk+1[x])
∏

j ̸=k+1

dxj .

We substitute the above computation for equation (5.10) to obtain the
induction statement for k + 1. �

Corollary 5.7 is used to prove Proposition 5.3.

Proof of Proposition 5.3. The analyticity of the integral Tn is a
standard application of Morera’s theorem as follows. The continuity
follows from the Lebesgue dominated convergence theorem. For any
simple closed curve C ∈ D0 in t ∈ C (respectively, s ∈ C) for fixed
s (respectively, t), the integral over C of the integrand of Tn is 0 by
Cauchy’s integral formula. By Fubini’s theorem, we show the integral
over C of the integral Tn is 0.

We use the induction on n to prove the meromorphic continuation
part. For n = 1,

En−1(s, t,p, φ[xq]) = 0

because ε(x) = 1. This case can be proven by equation (5.9). We
suppose that Tn−1(s, t,p, φ[xq]) has a meromorphic continuation to

all of (s, t) in C2 for all choices of s, t, p, q, and φ ∈ C∞(K/K ∩M).
Then, En−1(s, t,p, φ[xq]) can be extended to a meromorphic function

in (s, t) ∈ C2 because it is a finite sum of integrals of the form Tn−1.
We rewrite equation (5.9) in the following form:
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(5.11) Tn (s, t,p, φ[xq])

=
Tn (s+ 2a, t+ a,p, η0[x])−En−1(s+ 2a, t+ a,p, φ[xq])

γn(s+ 2a : t+ a)
.

Then the right hand side of equation (5.11) can be defined as

(5.12) D1 =

{
(s, t) ∈ C2 : max

j

{
−1− cj
aj

}
− 1 < Re (t)

< Re (s) + min
j

{
bj +m/n− 1− cj

aj

}
+ 1

}
,

which contains D0. Therefore, the left hand side of equation (5.11)
can be extended to D1 as a meromorphic function in (s, t). We apply
equation (5.11) repeatedly to extend the defining range of Tn to all of
(s, t) ∈ C2 meromorphically. �

Proof of Theorem 5.1. We can regard Z(Fs, t) as a finite linear com-
bination of integrals of the form (5.2), which is

(5.13)

∫
K∩L

Tn

(
s1, t1+ c,x, (k−1 · φ)[x]

)
dk.

Here, K ∩ L is compact. Therefore, we may apply an analogous argu-
ment with the analytic part of the proof of Proposition 5.3. Further-
more, the meromorphic part follows from the fact that the integrand
of equation (5.13) has a meromorphic continuation to all of (s, t) in
C2. �

5.2. Proof of Theorem 5.2. We begin with the definition of ν(M,N)
(F ) on CN (n):

ν(M,N)(F ) = sup
X∈n

{
(1 + ∥X∥2)M ·

∑
α,|α|6N

|∂αF (X)|
}
.

It is known that the functional equation (4.1) still holds for functions
satisfying certain decay condition. Precisely, we have the following
proposition.
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Proposition 5.8 ([6, Lemma 4.34]). Suppose F ∈ C∞(n) satisfies
ν(M0 + 1,M0)(F ) < ∞ for sufficiently large M0. Then the functional
equation (4.1) holds as meromorphic functions in t:

πnt/2

Γn(t)
Z

(
F, t− m

n

)
=

πn(−t+m/n)/2

Γn(−t+m/n)
Z(F̂ ,−t).

Note also that functions in I(s) have a decay condition for sufficiently
large Re (s) by Lemma 3.1.

Lemma 5.9. Let Re (s) > 2M −m/n. If Fs ∈ I(s), then ν(M,N)(Fs)
<∞ for all N > 0.

Proof. For X ∈ n, we write

X = m ·
n∑

j=1

xjFj , m ∈M.

Then we have

∥X∥2 =
⟨ n∑

j=1

xjFj ,
n∑

j=1

xjFj

⟩
=

n

4m
Tr

(
ad

( n∑
j=1

xjFj

)
ad

( n∑
j=1

xjEj

))

=
n

4m
· 4(d(n− 1) + (e+ 1))

n∑
j=1

x2j

=
n∑

j=1

x2j .

On the other hand, since each ∂α, |α| = 1, acts as an element in the
enveloping algebra U(g), so ∂α(Fs) ∈ I(s) for any multi-index α. Then
∂α(Fs)(X) is of the form

φ(κ(nY ))∏n
j=1(1 + x2j )

(s+m/n)/2

for some φ ∈ C∞(K/M). Here, Y =
∑n

j=1 xjFj .
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Therefore, for any nonnegative integer N , we have

ν(M,N)(Fs) = sup
X

{(
1 + ∥X∥2

)M ·
∑

α,|α|6N

|∂αFs|
}

6 c sup
(R+)n

{ (
1 +

∑n
j=1 x

2
j

)M

∏n
j=1(1 + x2j )

(Re (s)+m/n)/2

}
,

which is finite because M 6 (Re (s) +m/n)/2. �

Corollary 5.10. For sufficiently large Re (s), the functional equation

(5.14)
πnt/2

Γn(t)
Z

(
Fs, t−

m

n

)
=

πn(−t+m/n)/2

Γn(−t+m/n)
Z(F̂s,−t).

holds for functions Fs in I(s) as meromorphic functions of t ∈ C.

We combine Theorem 5.1 and Corollary 5.10 to conclude Theo-
rem 5.2.

6. Some comments on representation theory. The standard
intertwining map

B̃s : Ind
G
P (s) −→ IndGP (−s)

is defined by:

B̃s(f)(X) =

∫
n

f(nXwnX1) dX1

for those values of s for which the integral converges. See, for example,

[7, page 174]. We may define Ãs on I(s) by

Ãs(Fs)(X) = Z

(
τXFs, s−

m

n

)
=

∫
n

Fs(X1)∇(X1 −X)s−m/n dX1,

where τXFs = Fs(· + X). Then the integral Ãs(Fs)(X) converges
absolutely for Re (s) > d(n − 1) by Lemma 4.2. The next lemma says

that it equals B̃s(f)(X).
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Lemma 6.1. Let Fs ∈ I(s) be the function corresponding to f ∈
IndGP (s). Then

Ãs(Fs) = B̃s(f) for Re (s) > d(n− 1).

A short calculation along with [7, pages 183, 200] proves Lemma 6.1.

Therefore, Ãs is a G-intertwining operator from I(s) to I(−s) for
Re (s) > d(n− 1). By Lemma 6.1, Proposition 6.2 is a slight variation
of a special case of the main result in [15]. The proof here is different
than that in [15].

Proposition 6.2. For f ∈ IndGP (s), let Fs be the corresponding element

of I(s). Then Ãs(Fs) is complex analytic in s for Re (s) > d(n − 1)
and has meromorphic continuation to all of C.

Proof. The meromorphic continuation part follows by setting t =
s− (m/n) in Theorem 5.1. �

For s ∈ R, the induced picture IndGP (s) has a ‘standard’ Hermitian
form. See [7, Proposition 14.23], for example. This is given by

⟨f1, f2⟩ =
∫
n

f1(nY )
πns/2

Γn(s)
B̃s(f2)(nY ) dY.

By Lemma 6.1, this becomes a ‘standard’ Hermitian form on I(s)
defined by

(6.1) ⟨Fs, Gs⟩ =
∫
n

Fs(Y )
πns/2

Γn(s)
Ãs(Gs)(Y ) dY,

as convergent integrals for Re (s) > d(n− 1).

A formal argument says that we have the following string of equali-
ties:

⟨Fs, Fs⟩ =
∫
n

Fs(Y )
πns/2

Γn(s)
Ãs(Fs)(Y ) dY(6.2)

=

∫
n

Fs(Y )
πns/2

Γn(s)
Z(τY Fs, s− (m/n)) dY



2014 JUHYUNG LEE

=

∫
n

Fs(Y )
πn(−s+m/n)/2

Γn(−s+m/n)
Z
(
τ̂yFs,−s

)
dY

=
πn(−s+m/n)/2

Γn(−s+m/n)

·
∫
n

∫
n

Fs(Y )e−2πi⟨X,Y ⟩F̂s(X)∇(X)−s dX dY

=
πn(−s+m/n)/2

Γn(−s+m/n)

∫
n

F̂s(X)F̂s(x)∇(X)−s dX

=
πn(−s+m/n)/2

Γn(−s+m/n)

∫
n

|F̂s(X)|2∇(X)−s dX.

However, the first two equalities hold as convergent integrals for
Re (s) > d(n − 1). The third equality is functional equation (1.2).
Note that, in general, there is no range on which all the above integrals
converge.

In the case of SL(2,R), for 0 < s < 1, the functional equation
(1.2) holds as convergent integrals, and all integrals in equation (6.2)
converge for all functions in I(s). Therefore, we have

⟨Fs, Fs⟩ =
π(1−s)/2

Γ((1− s)/2)

∫
R

|F̂s(x)|2|x|−s dx for 0 < s < 1.

Therefore, for SL(2,R), the functional equation (1.2) for functions
in I(s) is used to show that ⟨·, ·⟩ is positive definite. Therefore, for
0 < s < 1, ⟨·, ·⟩ is an invariant inner product on I(s) and so, I(s) is
unitarizable.

The representations I(s) for our class of groups have been given
unitary realizations for certain values of s in [4, 1]. Understanding
the string of equalities (6.2) may serve as a more direct alternative for
studying the unitary structure of these representations.

Acknowledgments. This work was inspired in part by [9], and I
thank my advisor Dr. Zierau for helping me throughout the project.
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APPENDIX

A. Tables. The next two tables give information on the groups
under consideration in this paper.

Table 1.

G n = rank(n) m = dim(n) d e

1 GL(2n,R), n ≥ 2 n n2 1 0
2 O(2n, 2n) n n(2n− 1) 2 0
3 E7(7) 3 27 4 0
4 O(p, q), p, q ≥ 3 2 p+ q − 2 (p+ q − 4)/2 0

5 Sp(n,C) n n(n+ 1) 1 1
6 SL(2n,C) n 2n2 2 1
7 SO(4n,C) n 2n(2n− 1) 4 1
8 E7,C 3 54 8 1
9 SO(p,C), p ≥ 3 2 2(p− 2) p− 4 1

10 Sp(n, n) n n(2n+ 1) 2 2
11 GL(2n,H) n 4n2 4 3
12 SO(p, 1) 1 p 0 p− 1

Table 2. Jordan algebras for the groups in Table 1.

V ≃ n L ∇
1 M(n× n,R) GL(n,R)×GL(n,R) | det |
2 Skew(2n : R) GL(2n,R) Pfaffian
3 Herm(3,Osplit) E6(6)×R× deg. 3 poly
4 Rp−1,q−1 R×O(p− 1, q − 1) (X,X)

5 Sym(n,C) GL(n : C) | det |
6 M(n× n,C) S(GL(n,C)×GL(n,C)) | det |
7 Skew(2n,C) GL(2n,C) |Pfaffian|
8 Herm(3,O)C E6,CC× |deg. 3 poly|
9 Cp−1 SO(p− 2 : C)×C× |(Z,Z)|
10 Sym(2n,C) ∩M(n× n,H) GL(n,H) | detC(Z)|1/2

11 M(n× n,H) GL(n,H)×GL(n,H) | detC(Z)|1/2
12 Rp−1 SO(p− 1)×R× ∥ · ∥
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