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STATISTICAL CONVERGENCE OF
FUNCTIONAL SEQUENCES

B.T. BILALOV AND T.Y. NAZAROVA

ABSTRACT. Statistical convergence in Lebesgue spaces
is considered in this paper. A criterion for statistical con-
vergence is given. It is shown that the known Tauberian
theorems for scalar case are valid in this case, too.

1. Introduction. Apparently, the concept of statistical convergence
of a sequence of numbers, as the generalization of the classical concept
of a limit of a sequence, was first introduced by Fast in [5]. In [6, 7, 16,
17], the basic properties of statistically convergent sequences have been
studied. Later a lot of research appeared with various generalizations
of this concept (see [1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 18]).
In [10, 11, 12], this concept was used in the theory of approximation
by positive operators.

In this paper, we consider the statistical convergence in Lebesgue
spaces Lp. We introduce the concept of statistical fundamentality in
Lp and prove its equivalence to the one of statistical convergence. We
also prove that the Tauberian theorems of [6] stay valid in our case.

2. Preliminaries. We will use the standard notation. N will be the
set of all positive integers; R is the set of all real numbers; χM (·) is the
characteristic function of M . Throughout this paper, we will denote by
|M | the cardinality of the setM . C(M) denotes the space of continuous
functions on M .

Recall the definition of the concept of statistical convergence of
sequences of numbers. Let {an}n∈N ⊂ R be some sequence and a ∈ R
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a number. For all ε > 0, put

aε ≡ {n ∈ N : |an − a| ≥ ε} .

The value

δ (M) = lim
n→∞

∑n
k=1 χM (k)

n
,

is called a statistical density (stat density) of M .

Definition 2.1. The sequence {an}n∈N is called statistically convergent
to a, if δ(aε) = 0, for all ε > 0, and this is denoted as

st lim
n→∞

an = a.

Many properties of statistically convergent sequences have been
studied, and this concept is generalized in various directions. More
details about these and related facts can be found in [1]–[18].

We will need the Tauberian theorems on statistically convergent
sequences. Let {an}n∈N ⊂ R be a sequence. Let ∆an = an − an+1.
The following theorem is true.

Theorem 2.2. ([6]). Let st limn→∞ an = a and ∆an = o(1/n). Then
there exist limn→∞ an and limn→∞ an = a.

The converse statement is not always true, i.e., the following theorem
is true.

Theorem 2.3. ([6]). Let {rk}k∈N be a decreasing sequence of positive
numbers such that {krk}k∈N is unbounded. Then there exist {ak}k∈N ⊂
R : st limk→∞ ak = 0 and ∆ak = o(rk), while limk→∞ ak does not
exist.

3. Statistical convergence in Lp. Let {fn(x)}n∈N be some se-
quence of functions fn : M → R and M ⊂ R some set. This sequence is
called statistically convergent to A at the point x0 ∈ M , if the sequence
{fn(x0)}n∈N statistically converges to A, i.e., st limn→∞ fn(x0) = A.
This sequence is called statistically convergent to f(x) on M if

(3.1) st lim
n→∞

fn (x) = f (x) , for all x ∈ M.
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Definition 3.1. We say that {fn}n∈N statistically uniformly converges
to f on M if

(3.2) st lim
n→∞

sup
x∈M

|fn (x)− f (x)| = 0.

This kind of convergence is denoted as fn
st→→ f on M .

It is clear that, if fn
st−→→ f on M , then the relation (3.1) holds. But

the converse of this statement is not true.

Suppose that the relation (3.2) is true. Put αn = supx∈M |fn(x) −
f(x)|, for all n ∈ N. Consequently, st lim

n→∞
αn = 0. It is known that

∃K ≡ {nk}k∈N: n1 < n2 < · · · , δ(K) = 1 and limk→∞ αnk
= 0. Thus,

the sequence {fnk
}k∈N converges uniformly to f in M . Hence, if fn(x)

is continuous on M and fn
st→→ f on M , then f is also continuous on M .

Moreover, for M ≡ [a, b], we have

st lim
n→∞

∫ b

a

fn (x) dx =

∫ b

a

f (x) dx.

So, the following statement is true.

Statement 3.2. Let {fn}n∈N ⊂ C[a, b] and fn
st−→→ f on [a, b]. Then

f ∈ C[a, b] and

st lim
n→∞

∫ b

a

fn (x) dx =

∫ b

a

f (x) dx.

Consider the Lp-case. Let fn, f ∈ Lp(a, b), 1 ≤ p < +∞.

Definition 3.3. We say that fn
st→ f in Lp if

(3.3) st lim
n→∞

∫ b

a

|fn (x)− f (x)|p dx = 0, 1 ≤ p < +∞.

If the relation (3.3) is true, then there exists K ≡ {nk}k∈N, n1 <
n2 < · · · , δ(K) = 1:

lim
n→∞

∫ b

a

|fnk
(x)− f (x)|p dx = 0.
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This implies that there exists a subsequence {fkn}n∈N of the sequence
{fnk

}k∈N such that fkn
(x) → f(x) for almost every x ∈ [a, b]. Let

K ≡ {K ⊂ N : δ (K) = 1} .

In the sequel, we will need the following easily provable:

Lemma 3.4. Let Kj ∈ K , j = 1, 2 ⇒ K1

∩
K2 ∈ K .

In fact, let In ≡ {1; . . . ;n}. We have:

K1

∩
K2 =

(
K1

∪
K2

)\[
(K2\K1)

∪
(K1\K2)

]
.

Consequently,

(3.4) K1

∩
K2

∩
In

=

[(
K1

∪
K2

)∩
In

]\[(
(K2\K1)

∪
(K1\K2)

)∩
In

]
.

As(
(K2\K1)

∪
(K1\K2)

)∩
In=

(
(K2\K1)

∩
In

)∪(
(K1\K2)

∩
In

)
,

taking into account

(K2\K1)
∩

In ⊂ Kc
1

∩
In =⇒ |(K2\K1)

∩
In|

|In|
≤ |Kc

1

∩
In|

|In|
−→ 0,

n → ∞,

|(K1\K2)
∩

In|
|In|

−→ 0, n → ∞,

we get
|((K2\K1)

∪
(K1\K2))

∩
In|

|In|
−→ 0, n → ∞.

From (K1

∩
In) ⊂ (K1

∪
K2)

∩
In and K1 ∈ K , it follows that

|(K1

∪
K2)

∩
In|

|In|
−→ 1, n → ∞,
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and hence, K1

∪
K2 ∈ K . Then, from (3.4), we directly obtain

|K1

∩
K2

∩
In|

|In|
=

|(K1

∪
K2)

∩
In|

|In|

− |((K2\K1)
∪
(K1\K2))

∩
In|

|In|
−→ 1, n → ∞,

i.e., K1

∩
K2 ∈ K . Lemma 3.4 is proved.

Definition 3.5. We say that {fn}n∈N is statistically fundamental (st-
fundamental) in Lp if, for all ε > 0, there exists nε ∈ N : δ(∆ε) = 0,
where

∆ε ≡
{
n ∈ N : ∥fn − fnε∥p ≥ ε

}
,

∥f∥p =

(∫ b

a

|f (t)|p dt
)1/p

.

It is absolutely clear that, if fn
st→ f in Lp, then the sequence {fn}n∈N

is st-fundamental in Lp. In fact, let ε > 0 be an arbitrary number.
Put Aε ≡ {n : ∥fn − f∥p ≥ ε}. It is clear that δ(Ac

ε/2) = 1, where

M c ≡ N\M . Take for all nε ∈ Ac
ε/2 : ∥fnε − f∥ < ε/2. We have

{n : ∥fn − f∥ < ε/2} ⊂ {n : ∥fn − fnε∥ < ε} ,

i.e., Ac
ε/2 ⊂ Ac

ε. Hence, δ(∆c
ε) = 1 ⇒ δ(∆ε) = 0.

Now, vice versa, let {fn}n∈N be st-fundamental in Lp. Denote by
Or(x0) the ball in Lp, i.e., Or(x0) ≡ {x ∈ Lp : ∥x−x0∥ < r}. From st-
fundamentality, it follows that there exists nj ∈ N : δ(Kj) = 1, where
Kj ≡ {n : ∥fn − fnj∥p ≤ 21−j}, j = 1, 2. By Lemma 3.4, we obtain

K1

∩
K2 ∈ K . Put M1 ≡ O1(fn1)

∩
O2−1(fn2) (M is a closure of M

in Lp). It is obvious that fn ∈ M1, for all n ∈ (K1

∩
K2) ≡ K(1).

Thus, there exists n3 ∈ N : K3 ∈ K , where K3 ≡ {n : ∥fn − fn3∥p ≤
2−2}. Let K(2) = K(1)

∩
K3. It is clear that K(2) ∈ K . Now, let

M2 ≡ M1

∩
O2−2(fn3). Denote by dp(M) the diameter of the set M ,

i.e., dp(M) = sup
x,y∈M

∥x − y∥p. Continuing in the same way, we obtain

a sequence of closed sets {Mn}n∈N in Lp, whose diameters tend to
zero: dp(Mn) ≤ 2−n+1 → 0, n → ∞. Moreover, K(n) ∈ K , where
K(n) ≡ {n : fn ∈ Mn}. It is absolutely clear that Mn ⊃ Mn+1 ⊃ · · · .
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Take for all xn ∈ Mn. We have

∥xn − xn+p∥p ≤ dp (Mn) −→ 0, n → ∞, for all p ∈ N.

Hence, the sequence {xn}n∈N is fundamental in Lp, and let xn → f ,
n → ∞. It is absolutely clear that f ∈

∩
n Mn, i.e.,

∩
n Mn is

non-empty. From dp(Mn) → 0, n → ∞, it directly follows that
{f} =

∩
n Mn, i.e.,

∩
n Mn consists of one element. As K(m) ∈ K ,

then there exists {nm}m∈N ⊂ N; n1 < n2 < · · · :

1

n

∣∣∣{k ∈ In : k ∈ Kc
(m)

}∣∣∣ < 1

m
, for all n > nm.

Assume that

N0 ≡
{
k ∈ N : nm < k ≤ nm+1 and k ∈ Kc

(m)

}
,

and

gk =

{
f, if k ∈ N0 and (k > n1) ;
fk, if otherwise.

Take ε > 0. If k ∈ N0 and (k > n1), then ∥gk − f∥p = 0 < ε.
If k /∈ N0 ⇒ k ∈ K(m) ⇒ fk ∈ Mm ⇒ ∥fk − f∥p ≤ ∥fk −
fnm∥p + ∥fnm − f∥p ≤ 2−m+2 < ε, for sufficiently great values of

m. Consequently, limk→∞ gk = f . Let us show that δ(K̃) = 0, where

K̃ ≡ {k ∈ N : fk ̸= gk}. Let nm < n < nm+1. Let us prove that

{k ≤ n : fk ̸= gk} ⊂
{
k ≤ n : k ∈ Kc

(m)

}
.

Let fk ̸= gk, k ≤ n. Consequently, k ∈ N0 ⇒ k ∈ Kc
(m). Thus,

1

n
|{k ≤ n : fk ̸= gk}| ≤

1

n

∣∣∣{k ≤ n : k ∈ Kc
(m)

}∣∣∣ < 1

m
.

It is clear that, if n → ∞, then m → ∞. Then, from the previous
relation, we get

(3.5) lim
n→∞

|{k ≤ n : fk ̸= gk}|
n

= 0.

Consequently, {k ≤ n : fk ̸= gk}c ∈ K and limn→∞ gn = f . Let us
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show that st limn→∞ fn = f . Take ε > 0. We have

(3.6)
{
k ≤ n : ∥fk − f∥p ≥ ε

}
⊂ {k ≤ n : fk ̸= gk}∪{

k ≤ n : ∥gk − f∥p ≥ ε
}
.

As limk→∞ gk = f in Lp, then ∥gk − f∥p < ε, for all k ≥ nε.
Consequently,∣∣∣{k ≤ n : ∥gk − f∥p ≥ ε

}∣∣∣ ≤ nε

=⇒ 1

n

∣∣∣{k ≤ n : ∥gk − f∥p ≥ ε
}∣∣∣ → 0, n → ∞.

Then, using (3.5), from (3.6) we obtain 1/n{k ≤ n : ∥fk − f∥p ≥ ε} ≤
1/n{k ≤ n : fk ̸= gk}+ 1/n{k ≤ n : ∥gk − f∥p ≥ ε} → 0, n → ∞. So,
st limn→∞ fn = f . Thus, we have proved the following theorem.

Theorem 3.6. Let {fn}n∈N ⊂ Lp be some sequence. Then the
following statements are equivalent to each other :

(i) There exists st limn→∞ fn;
(ii) {fn}n∈N is st-fundamental ;
(iii) there exists {gn}n∈N ⊂ Lp : there exists limn→∞ gn and {n :

fn = gn} ∈ K .

This theorem immediately implies the following:

Corollary 3.7. Let {fn}n∈N ⊂ Lp and st limn→∞ fn = f . Then
there exists {nk}k∈N ⊂ N : n1 < n2 < · · · , limk→∞ fnk

= f and
δ({nk}k∈N) = 1.

In the case of a sequence of numbers, there is no regular matrix
summation method which would include a statistical convergence (see
[6]). The same statement stays valid in our case. The following lemma
is true.

Lemma 3.8. Let {tk}k∈N be some sequence of numbers and
∑∞

k=1χA0(k)
= +∞, where A0 ≡ {k ∈ N : tk ̸= 0}. Then there exists {fk}k∈N ⊂
Lp :

∑∞
k=1 tkfk(t) = ∞ for all t ∈ [a, b].
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In fact, let’s take a subsequence {mk}k∈N such that

mk > k2 and tmk
̸= 0.

Define

xmk
(t) ≡ 1

tmk

for all t ∈ [a, b] , for all k ∈ N;

xk (t) ≡ 0, for all t ∈ [a, b] , for all k /∈ {m1;m2; . . .} .

We have
∞∑
k=1

tkxk (t) =

∞∑
k=1

tmk
xmk

(t) =

∞∑
k=1

1 = ∞, for all t ∈ [a, b] .

On the other hand, it is easy to see that xk
st→ 0 in Lp. Lemma 3.8 is

proved.

The following theorem is true.

Theorem 3.9. There is no matrix summation method which possesses
statistical convergence in Lp.

Proof. From Lemma 3.8, it follows directly that if there is an
appropriate matrix A ≡ (aij)i,j∈N, then for all i ∈ N, there exists
mi ∈ N : aij = 0, for all j ≥ mi. It is absolutely clear that A should
have an infinite number of nonzero elements. Let an1k′

1
̸= 0. Assume

k1 = max{j ∈ N : an1j ̸= 0}. It is clear that an1k1 ̸= 0. Choose the
indices {nm; km}m∈N from the following conditions

anmkm ̸= 0, km ≥ m2 and anmj = 0, for all j > km.

Now we define a sequence of functions {xn(t)}n∈N as follows:

xk1 (t) ≡ a−1
n1k1

, for all t ∈ [a, b] , . . . ,

xkm (t) ≡ a−1
nmkm

[
m−

m−1∑
i=1

anikixki (t)

]
, for all t ∈ [a, b] , . . . ,

xk (t) ≡ 0, for all t ∈ [a, b] , for all k /∈ {k1; k2; . . .} .

We have:
yn (t) ≡ (Ax (t))n =

∑
i:ni≤n

anikixki (t) ,
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where x(t) ≡ (x1(t);x2(t); . . .). Thus,

yn ≡
∑

i:ni≤n

1, for all n ∈ N.

In particular,
ynm = m, m ∈ N.

Obviously, yn(t)
n→∞ in Lp. On the other hand, from km ≥ m2, it

directly follows that |{k ≤ n : xk ̸= 0}| ≤
√
n, and, as a result,

st limn→∞ xn(t) = 0 in Lp. �

Note that the examples in the scalar case, given in [6], show that
the statistical convergence does not imply many summation methods.
The same statement is true about the statistical convergence in Lp.

4. Tauberian theorems. Let {fn}n∈N ⊂ Lp be some sequence.
Put ∆fn = fn − fn+1. The following analogue of Theorem 2.2 is true
in Lp.

Theorem 4.1. Let st limn→∞ fn = f in Lp and ∥∆fk∥p = ō(1/k).
Then there exists limn→∞ fn in Lp and limn→∞ fn = f .

Proof. We will follow [6]. Assume st limn→∞ fn = f . Then,
by Theorem 2.3, there exists {gn}n∈N ⊂ Lp : limn→∞ gn = f and
{n : gn = fn} ∈ K . Every k ∈ N can be represented as k = mk + pk,
where

mk =

{
max {i ≤ k : xi = yi} , Ak ̸= ∅,
−1, Ak = ∅,

Ak = {i ≤ k : xi = yi}. As proved in [6], it holds that

lim
k→∞

pk
mk

= 0.

It is clear that there exists B > 0 : ∥∆fk∥p ≤ B/k, for all k ∈ N. We
have

∥gmk
− fk∥p = ∥fmk

− fmk+pk
∥p

≤
mk+pk−1∑

i=mk

∥∆fi∥p ≤ B
pk
mk

−→ 0, k → ∞.
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As limk→∞ gmk
= f in Lp, it directly follows that limk→∞ fk = f . �

The following analogue of Theorem 2.3 is also true.

Theorem 4.2. Let {rk}k∈N be a decreasing sequence of positive num-
bers such that {krk}k∈N is unbounded. Then there exists {fk}k∈N ⊂
Lp : st limk→∞ fk = 0 in Lp, ∥∆fk∥p = ō(rk), while limk→∞ fk does
not exist in Lp.

In fact, let {xk}k∈N be the sequence constructed in the proof of [6,
Theorem 4]. Let

fk (t) = xk, for all t ∈ [a, b] , for all k ∈ N.

This is the sequence which was sought.

Note that the scheme of the proof of [6, Theorem 5] remains valid
in this case, i.e., the following theorem is true.

Theorem 4.3. Let {ki} ⊂ N be an increasing sequence satisfying

lim
j→∞

inf
i≥j

ki+1

ki
> 1,

and {fk}k∈N ⊂ Lp : ∆fk = 0, if k ̸= ki, for all i ∈ N. If there exists
st limk→∞ fk = f in Lp, then there exists limk→∞ fk = f in Lp.

Remark 4.4. Similar results can be obtained for other functional
spaces such as Sobolev spaces, Morrey-type spaces, etc.
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