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EXISTENCE AND UNIQUENESS OF POSITIVE
SOLUTIONS FOR INTEGRAL BOUNDARY PROBLEMS

OF NONLINEAR FRACTIONAL DIFFERENTIAL
EQUATIONS WITH p-LAPLACIAN OPERATOR

SIHUA LIANG AND JIHUI ZHANG

ABSTRACT. In this paper, we deal with the following
integral boundary problem of nonlinear fractional differential
equations with p-Laplacian operator

Dγ
0+(ϕp(Dα

0+u(t))) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
∫ η
0 u(s) ds, Dα

0+u(t)|t=0 = 0,

where 0 < γ < 1, 2 < α < 3, Dα
0+ is the standard

Riemann-Liouville fractional derivative, ϕp(s) = |s|p−2s, p >
1, (ϕp)−1 = ϕq , 1/p + 1/q = 1. By the properties of the
Green function, the lower and upper solution method and
fixed-point theorem in partially ordered sets, some new
existence and uniqueness of positive solutions to the above
boundary value problem are established. As applications,
examples are presented to illustrate the main results.

1. Introduction. Fractional differential equations arise in many
engineering and scientific disciplines as the mathematical models of
systems and processes in the fields of physics, chemistry, aerodynamics,
electrodynamics of complex media, polymer rheology, Bode’s analysis
of feedback amplifiers, capacitor theory, electrical circuits, electron-
analytical chemistry, biology, control theory, fitting of experimental
data, and so on, and involves derivatives of fractional order. Fractional
derivatives provide an excellent tool for the description of memory
and hereditary properties of various materials and processes. This is
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the main advantage of fractional differential equations in comparison
with classical integer-order models. For an extensive collection of such
results, we refer the reader to the monographs by Samko et al. [28],
Podlubny [27] and Kilbas et al. [15]. For the basic theory and recent
development of the subject, we refer to a text by Lakshmikantham [16].
For more details and examples, see [1, 2, 3, 4, 6, 7, 8, 17, 18, 21] and
the references therein. However, the theory of boundary value problems
for nonlinear fractional differential equations is still in the initial stages,
and many aspects of this theory need to be explored; in particular, the
existence and uniqueness of positive solutions for integral boundary
problems of nonlinear fractional differential equations with p-Laplacian
operators are relatively scarce.

In [29], Wang, Xiang and Liu considered the existence and multi-
plicity of positive solutions for the following boundary value problem of
nonlinear fractional differential equations with p-Laplacian operators:

Dγ
0+(ϕp(D

γ
0+u(t)))u(t) + f(t, u(t), Dρ

0+u(t)) = 0, 0 < t < 1,
u(0) = u′(1) = u′′(0) = 0, Dγ

0+u(t)|t=0 = 0,

where 0 < γ < 1, 2 < α < 3, 0 < ρ ≤ 1 and Dγ
0+ denotes the Caputo

derivative. By using the fixed point theorem, results for existence and
multiplicity of positive solutions to the above boundary value problem
are obtained. But the uniqueness is not treated.

Li, Luo and Zhou [19] considered the following three point boundary
value problems of fractional order differential equations:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, Dβ
0+
u(1) = aDβ

0+
u(ξ),

whereDα
0+ is the standard Riemann-Liouville fractional derivative. The

existence and multiplicity results of positive solutions are obtained by
using some fixed-point theorems. But the uniqueness is not treated.

On the other hand, the study of the existence of solutions of multi-
point boundary value problems for linear second-order ordinary differ-
ential equations was initiated by Il’in and Moiseev [14]. Then Gupta
[10] studied three-point boundary value problems for nonlinear second-
order ordinary differential equations. Since then, nonlinear second-
order three-point boundary value problems have also been studied by
several authors. We refer the reader to [9, 11, 20, 22, 23] and the
references therein. However, all these papers are concerned with prob-
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lems with three-point boundary condition restrictions on the slope of
the solutions and the solutions themselves, for example,

u(0) = 0, αu(η) = u(1);

u(0) = βu(η), αu(η) = u(1);

u′(0) = 0, αu(η) = u(1);

u(0)− βu′(0) = 0, αu(η) = u(1);

αu(0)− βu′(0) = 0, u′(η) + u′(1) = 0;

etc. In this paper, we deal with the following three-point boundary
value problem

Dγ
0+(ϕp(D

α
0+u(t))) + f(t, u(t)) = 0, 0 < t < 1,(1.1)

u(0) = u′(0) = 0, u′(1) =

∫ η

0

u(s)ds, Dα
0+u(t)|t=0 = 0,(1.2)

where 0 < γ < 1, 2 < α ≤ 3 and Dα
0+ is the standard Riemann-

Liouville fractional derivative, ϕp(s) = |s|p−2s, p > 1, (ϕp)
−1 = ϕq,

1/p + 1/q = 1. η satisfies 0 < ηα < α(α − 1). We will give some new
existence and uniqueness criteria for boundary value problems (1.1) and
(1.2) by using the lower and upper solution method and a fixed point
theorem in partially ordered sets. Finally, we present some examples
to demonstrate our results. The existence of fixed points in partially
ordered sets has been considered recently in [5, 12, 24, 25, 26]. This
work is motivated by papers [5, 29]. We also point out that problems
(1.1) and (1.2) are motivated by the constitutive equation of viscoelastic
fluid coming from rheology [13].

2. Preliminaries. We need the following definitions and lemmas
that will be used to prove our main results.

Definition 2.1. Let (E, ∥ · ∥) be a real Banach space. A nonempty,
closed, convex set P ⊂ E is said to be a cone, provided the following
are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.

If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that
is, x ≤ y if and only if y − x ∈ P .
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Definition 2.2 ([27]). The integral

Is0+f(x) =
1

Γ(s)

∫ x

0

f(t)

(x− t)1−s
dt, x > 0,

where s > 0, is called the Riemann-Liouville fractional integral of order
s and Γ(s) is the Euler gamma function defined by

Γ(s) =

∫ +∞

0

ts−1e−t dt, s > 0.

Definition 2.3 ([15]). For a function f(x) given in the interval [0,∞),
the expression

Ds
0+f(x) =

1

Γ(n− s)

(
d

dx

)n ∫ x

0

f(t)

(x− t)s−n+1
dt,

where n = [s] + 1, [s] denotes the integer part of the number s, called
the Riemann-Liouville fractional derivative of order s.

The following two lemmas, found in [3, 15], are crucial in finding
an integral representation of fractional boundary value problems (1.1)
and (1.2).

Lemma 2.1 ([3, 15]). Let α > 0 and u ∈ C(0, 1) ∩ L(0, 1). Then the
fractional differential equation

Dα
0+u(t) = 0

has

u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

ci ∈ R, i = 0, 1, . . . , n, n = [α] + 1

as unique solutions.

Lemma 2.2 ([3, 15]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a
fractional derivative of order α > 0 belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

for some ci ∈ R, i = 0, 1, . . . , n, n = [α] + 1.
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The following fixed-point theorems in partially ordered sets are
fundamental and important to the proofs of our main results.

Theorem 2.1 ([12]). Let (E,≤) be a partially ordered set, and suppose
that there exists a metric d in E such that (E, d) is a complete metric
space. Assume that E satisfies the following condition:

(2.1) if {xn} is a nondecreasing sequence in E such that xn → x,
then xn ≤ x, for all n ∈ N.

Let T : E → E be a nondecreasing mapping such that

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)), for x ≥ y,

where ψ : [0,+∞) → [0,+∞) is a continuous and nondecreasing
function such that ψ is positive in (0,+∞), ψ(0) = 0 and lim

t→∞
ψ(t) =

∞. If there exists x0 ∈ E with x0 ≤ T (x0), then T has a fixed point.

If we consider that (E,≤) satisfies the following condition

(2.2) for x, y ∈ E there exists z ∈ E which is comparable to x and
y,

then we have the following result.

Theorem 2.2 ([24]). Adding condition (2.2) to the hypotheses of
Theorem 2.1, we obtain uniqueness of the fixed point.

3. Related lemmas.

Lemma 3.1. Let 0 < ηα < α(α− 1). If h ∈ C[0, 1], then the boundary
value problems

Dα
0+u(t) + h(t) = 0, 0 < t < 1, 2 < α ≤ 3,(3.1)

u(0) = u′(0) = 0, u′(1) =

∫ η

0

u(s) ds,(3.2)

have a unique solution

(3.3) u(t) =

∫ 1

0

G(t, s)h(s) ds,
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where

(3.4) G(t, s) = G1(t, s) +G2(t, s),

(3.5)

G1(t, s) =
1

Γ(α)

{
tα−1(1− s)α−2 − (t− s)α−1 0 ≤ s ≤ t ≤ 1,
tα−1(1− s)α−2 0 ≤ t ≤ s ≤ 1,

(3.6) G2(t, s) =
αtα−1

α(α− 1)− ηα

∫ η

0

G1(t, s) dt.

Proof. By Lemma 2.2, the solution of (3.1) can be written as

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 −

∫ t

0

(t− s)α−1

Γ(α)
h(s) ds.

From (3.2), we know that c2 = c3 = 0 and

u′(t) = c1(α− 1)− (α− 1)

∫ t

0

(t− s)α−2

Γ(α)
h(s) ds.

Thus, together with u′(1) =
∫ η

0
u(s) ds, we have

c1 =
1

α− 1

∫ η

0

u(s) ds+

∫ 1

0

(1− s)α−2

Γ(α)
h(s) ds.

Therefore, the unique solution of boundary value problem (3.1)–(3.2)
is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s) ds+

tα−1

α− 1

∫ η

0

u(s) ds

+ tα−1

∫ 1

0

(1− s)α−2

Γ(α)
h(s) ds

= −
∫ t

0

(t− s)α−1

Γ(α)
h(s) ds+

tα−1

α− 1

∫ η

0

u(s) dx

+

∫ t

0

tα−1(1− s)α−2

Γ(α)
h(s) ds

+

∫ 1

t

tα−1(1− s)α−2

Γ(α)
h(s) ds

=
1

Γ(α)

∫ t

0

(tα−1(1− s)α−2 − (t− s)α−1)h(s) ds
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+
1

Γ(α)

∫ 1

t

tα−1(1− s)α−2h(s) ds+
tα−1

α− 1

∫ η

0

u(s) ds

=

∫ 1

0

G1(t, s)h(s) ds+
tα−1

α− 1

∫ η

0

u(s) ds,(3.7)

where G1(t, s) is defined by (3.5).

From (3.7), we have∫ η

0

u(t) dt =

∫ η

0

∫ 1

0

G1(t, s)h(s) ds dt+
ηα

α(α− 1)

∫ η

0

u(s) ds.

It follows that

(3.8)

∫ η

0

u(t) dt =
α(α− 1)

α(α− 1)− ηα

∫ η

0

∫ 1

0

G1(t, s)h(s) ds dt.

Substituting (3.8) into (3.7), we obtain

u(t) =

∫ 1

0

G1(t, s)h(s) ds+
αtα−1

α(α− 1)− ηα

∫ η

0

∫ 1

0

G1(t, s)h(s) ds dt

=

∫ 1

0

G1(t, s)h(s) ds+

∫ 1

0

G2(t, s)h(s) ds

=

∫ 1

0

G(t, s)h(s) ds,

where G(t, s), G1(t, s) and G2(t, s) are defined by (3.4), (3.5) and (3.6),
respectively. The proof is complete. �

Lemma 3.2. Let 0 < ηα < α(α−1). If f ∈ C([0, 1]×[0,+∞), [0,+∞)),
then the boundary value problem (1.1)–(1.2) is equivalent to the integral
equation

(3.9) u(t) =

∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds,

where G(t, s) is defined by (3.4).

Proof. By the boundary value problem (1.1)–(1.2) and Lemma 2.2,
we have

ϕp(D
α
0+u(t)) = ctγ−1 −

∫ t

0

(t− s)γ−1

Γ(γ)
f(s, u(s)) ds.
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By Dα
0+u(t)|t=0 = 0, there is c = 0, and then

Dα
0+u(t) = −ϕq

(∫ t

0

(t− s)γ−1

Γ(γ)
f(s, u(s)) ds

)
.

Therefore, boundary value problem (1.1)–(1.2) is equivalent to the
following problem

Dα
0+u(t) + ϕq

(∫ t

0

(t− s)γ−1

Γ(γ)
f(s, u(s)) ds

)
= 0,

0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) =

∫ η

0

u(s) ds.

By Lemma 3.1, boundary value problem (1.1)–(1.2) is equivalent to the
integral equation (3.9). The proof is complete. �

Lemma 3.3. The function G1(t, s) defined by (3.5) satisfies:

(i) G1 is a continuous function and G1(t, s) ≥ 0 for (t, s) ∈
[0, 1]× [0, 1];

(ii)

sup
t∈[0,1]

∫ 1

0

G1(t, s) ds =
1

(α− 1)Γ(α+ 1)
.

Proof.

(i) The continuity of G1 is easily checked. On the other hand, for
0 ≤ t ≤ s ≤ 1, it is obvious that

G1(t, s) =
tα−1(1− s)α−2

Γ(α)
≥ 0.
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In the case 0 ≤ s ≤ t ≤ 1 (s ̸= 1), we have

G1(t, s) =
1

Γ(α)

[
tα−1(1− s)α−1

1− s
− (t− s)α−1

]
≥ 1

Γ(α)

[
tα−1(1− s)α−1 − (t− s)α−1

]
=

1

Γ(α)

[
(t− ts)α−1 − (t− s)α−1

]
≥ 0.

Moreover, as G1(t, 1) = 0, then we conclude that G1(t, s) ≥ 0
for all (t, s) ∈ [0, 1]× [0, 1].

(ii) Since∫ 1

0

G1(t, s) ds =

∫ t

0

G1(t, s) ds+

∫ 1

t

G1(t, s) ds

=
1

Γ(α)

∫ t

0

(tα−1(1− s)α−2 − (t− s)α−1) ds

+
1

Γ(α)

∫ 1

t

tα−1(1− s)α−2 ds

=
1

Γ(α)

(
tα−1

α− 1
− 1

α
tα
)
.

On the other hand, let

σ(t) =

∫ 1

0

G1(t, s) ds =
1

Γ(α)

(
tα−1

α− 1
− 1

α
tα
)
.

Then, as

σ′(t) =
1

Γ(α)

(
tα−2 − tα−1

)
> 0 for t > 0,

the function ρ(t) is strictly increasing and, consequently,

sup
t∈[0,1]

σ(t) = sup
t∈[0,1]

∫ 1

0

G1(t, s) ds = σ(1) =
1

Γ(α)

(
1

α− 1
− 1

α

)
=

1

α(α− 1)Γ(α)
=

1

(α− 1)Γ(α+ 1)
.

The proof is complete. �
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Remark 3.1. Obviously, by Lemmas 3.2 and 3.3, we have u(t) ≥ 0 if
f(t, u(t)) ≥ 0 on t ∈ [0, 1].

Lemma 3.4. G1(t, s) is strictly increasing in the first variable.

Proof. For s fixed, we let

g1(t) =
1

Γ(α)

(
tα−1(1− s)α−2 − (t− s)α−1

)
for s ≤ t,

g2(t) =
1

Γ(α)
tα−1(1− s)α−1 for t ≤ s.

It is easy to check that g1(t) is strictly increasing on [s, 1] and g2(t) is
strictly increasing on [0, s]. Then we have the following cases:

Case 1. t1, t2 ≤ s and t1 < t2. In this case, we have g2(t1) < g2(t2),
i.e. G1(t1, s) < G1(t2, s).

Case 2. s ≤ t1, t2 and t1 < t2. In this case, we have g1(t1) < g1(t2),
i.e. G1(t1, s) < G1(t2, s).

Case 3. t1 ≤ s ≤ t2 and t1 < t2. In this case, we have
g2(t1) ≤ g2(s) = g1(s) ≤ g1(t2). We claim that g2(t1) < g1(t2). In
fact, if g2(t1) = g1(t2), then g2(t1) = g2(s) = g1(s) = g1(t2) and, from
the monotone of g1 and g2, we have t1 = s = t2, which contradicts
with t1 < t2. This fact implies that G1(t1, s) < G1(t2, s). The proof is
complete. �

Remark 3.2. Obviously, by Lemma 3.4, we have

(3.10)

∫ 1

0

G2(t, s) ds ≤
η

Γ(α) [α(α− 1)− ηα] (α− 1)
.

Proof. In fact, from Lemmas 3.4 and (3.6), we have

G2(t, s) ≤ G2(1, s) =
αηG1(1, s)

α(α− 1)− ηα

=
αη((1− s)α−2 − (1− s)α−1)

Γ(α) [α(α− 1)− ηα]
.
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Thus, ∫ 1

0

G2(t, s)ds ≤
αη

∫ 1

0
((1− s)α−2 − (1− s)α−1) ds

Γ(α) [α(α− 1)− ηα]

=
η

Γ(α) [α(α− 1)− ηα] (α− 1)
,

for s, t ∈ [0, 1]× [0, 1]. �

4. Uniqueness of a positive and nondecreasing solution for
boundary value problems (1.1)–(1.2). In this section, we establish
the existence and uniqueness of a positive and nondecreasing solution
for the boundary value problems (1.1)–(1.2) by using a fixed point
theorem in partially ordered sets. The basic space used in this section
is E = C[0, 1]. Then E is a real Banach space with the norm
∥u∥ = max

0≤t≤1
|u(t)|. Note that this space can be equipped with a partial

order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t), t ∈ [0, 1].

In [24] it is proved that (C[0, 1],≤) with the classic metric given by

d(x, y) = sup
0≤t≤1

{|x(t)− y(t)|}

satisfying condition (2.1) of Theorem 2.1. Moreover, for x, y ∈ C[0, 1]
as the function max{x, y} ∈ C[0, 1], (C[0, 1],≤) satisfies condition (2.2).

For notational convenience, we denote

L :=
1

Γq−1(γ + 1)

(
1

(α− 1)Γ(α+ 1)
+

η

Γ(α) [α(α− 1)− ηα] (α− 1)

)
> 0.

The main result of this section is the following.

Theorem 4.1. The boundary value problem (1.1)–(1.2) has a unique
positive and strictly increasing solution u(t) if the following conditions
are satisfied :

(i) f : [0, 1]× [0,+∞) → [0,+∞) is continuous and nondecreasing
with respect to the second variable and f(t, u(t)) ̸≡ 0 for
t ∈ Z ⊂ [0, 1] with µ(Z) > 0 (µ denotes the Lebesgue measure);
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(ii) there exists 0 < λ+ 1 < L−1 such that, for u, v ∈ [0,+∞) with
u ≥ v and t ∈ [0, 1]

ϕp(ln(v + 2)) ≤ f(t, v) ≤ f(t, u) ≤ ϕp(ln(u+ 2)(u− v + 1)λ).

Proof. Consider the cone

K = {u ∈ C[0, 1] : u(t) ≥ 0} .

As K is a closed set of C[0, 1], K is a complete metric space with the
distance given by d(u, v) = sup

t∈[0,1]

|u(t)− v(t)|.

Now, we consider the operator T defined by

Tu(t) =

∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds,

where G(t, s) is defined by (3.4). By Lemma 3.3 and condition (i), we
have that T (K) ⊂ K.

We now show that all the conditions of Theorems 2.1 and 2.2 are
satisfied.

Firstly, by condition (i), for u, v ∈ K and u ≥ v, we have

Tu(t) =

∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds

≥
∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, v(τ)) dτ

)
ds

= Tv(t).

This proves that T is a nondecreasing operator.

On the other hand, for u ≥ v and by condition (ii), we have

d(Tu, Tv) = sup
0≤t≤1

|(Tu)(t)− (Tv)(t)|

= sup
0≤t≤1

((Tu)(t)− (Tv)(t))

≤
∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds

−
∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, v(τ)) dτ

)
ds
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≤
(
ln(u+ 2)(u− v + 1)λ − ln(v + 2)

)
×
∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1 dτ

)
ds

≤ 1

Γq−1(γ + 1)
ln

(u+ 2)(u− v + 1)λ

v + 2

∫ 1

0

G(t, s) ds

≤ (λ+ 1) ln(u− v + 1)
1

Γq−1(γ + 1)

∫ 1

0

G(t, s) ds.

Since the function h(x) = ln(x + 1) is nondecreasing, by Lemma 3.3
and condition (ii), then we have

d(Tu, Tv) ≤ (λ+ 1) ln(∥u− v∥+ 1)

1

Γq−1(γ + 1)

(
sup

0≤t≤1

∫ 1

0

G1(t, s) ds+ sup
0≤t≤1

∫ 1

0

G2(t, s) ds

)
≤ (λ+ 1) ln(∥u− v∥+ 1) · L
≤ ∥u− v∥ − (∥u− v∥ − ln(∥u− v∥+ 1)).

Let ψ(x) = x− ln(x+ 1). Obviously ψ : [0,+∞) → [0,+∞) is contin-
uous, nondecreasing, positive in (0,+∞), ψ(0) = 0 and lim

x→+∞
ψ(x) =

+∞. Thus, for u ≥ v, we have

d(Tu, Tv) ≤ d(u, v)− ψ(d(u, v)).

As G(t, s) ≥ 0 and f ≥ 0, (T0)(t) =
∫ 1

0
G(t, s)f(s, 0) ds ≥ 0 and, by

Theorem 2.1, we know that problem (1.1)–(1.2) has at least one non-
negative solution. As (K,≤) satisfies condition (2.2), thus, Theorem 2.2
implies the uniqueness of the solution.

Finally, we will prove that this solution u(t) is a strictly increasing
function. As

u(0) =

∫ 1

0

G(0, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds

and G(0, s) = 0, we have u(0) = 0.

Moreover, if we take t1, t2 ∈ [0, 1] with t1 < t2, we can consider the
following cases.
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Case 1. t1 = 0. In this case, u(t1) = 0 and, as u(t) ≥ 0, suppose
that u(t2) = 0. Then

0 = u(t2) =

∫ 1

0

G(t2, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds.

This implies that

G(t2, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
= 0,

almost everywhere (s) and, as G(t2, s) ̸= 0, almost everywhere (s), we
get f(s, u(s)) = 0 almost everywhere (s).

On the other hand, f is nondecreasing with respect to the second
variable. Then we have

f(s, 0) ≤ f(s, u(s)) = 0, almost everywhere (s),

which contradicts condition (i) f(t, 0) ̸= 0 for t ∈ Z ⊂ [0, 1](µ(Z) ̸= 0).
Thus, u(t1) = 0 < u(t2).

Case 2. 0 < t1. In this case, let us take t2, t1 ∈ [0, 1] with t1 < t2.
Then

u(t2)− u(t1) = (Tu)(t2)− (Tu)(t1)

=

∫ 1

0

(G(t2, s)−G(t1, s))

ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds.

Taking into account Lemma 3.4 and the fact that f ≥ 0, we get
u(t2)− u(t1) ≥ 0.

Suppose that u(t2) = u(t1). Then∫ 1

0

(G(t2, s)−G(t1, s))ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds = 0,

and this implies

(G(t2, s)−G(t1, s))ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
= 0
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almost everywhere (s). Again, Lemma 3.4 gives us

f(s, u(s)) = 0 almost everywhere (s),

and, using the same reasoning as above, we have that this contradicts
condition (i) f(t, 0) ̸= 0 for t ∈ Z ⊂ [0, 1](µ(Z) ̸= 0). Thus,
u(t1) = 0 < u(t2). The proof is complete. �

5. Single positive solution of the boundary value problems
(1.1)–(1.2). In this section, we establish the existence of a single
positive solution for boundary value problems (1.1) and (1.2) by the
lower and upper solution methods. We assume that f : [0, 1] ×
[0,+∞) → [0,+∞) is continuous in this section.

Lemma 5.1. If u(t) ∈ C[0, 1] and is a positive solution of (1.1) and
(1.2), then mρ(t) ≤ u(t) ≤Mρ(t), where

ρ(t) =

∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1 dτ

)
ds

and m,M are two constants.

Proof. Since u(t) ∈ C[0, 1], there exists M ′ > 0 so that |u(t)| ≤ M ′

for t ∈ [0, 1]. Taking

ϕp(m) := min
(t,u)∈[0,1]×[0,M ′]

f(t, u(t)),

ϕp(M) := max
(t,u)∈[0,1]×[0,M ′]

f(t, u(t)).

By view of Lemma 3.2, we have

mρ(t) ≤ u(t)

=

∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, u(τ)) dτ

)
ds ≤Mρ(t).

Thus, we have finished the proof of Lemma 5.1. �

Now we introduce the following two definitions about the upper and
lower solutions of fractional boundary value problems (1.1) and (1.2).



968 SIHUA LIANG AND JIHUI ZHANG

Definition 5.1. A function θ(t) is called a lower solution of fractional
boundary value problems (1.1) and (1.2) if θ(t) ∈ C[0, 1] and θ(t) satisfy

−Dγ
0+(ϕp(D

α
0+θ(t))) ≤ f(t, θ(t)), 0 < t < 1, 2 < α ≤ 3,

θ(0) ≤ 0, θ′(0) ≤ 0, θ′(1) ≤
∫ η

0
θ(s) ds, Dα

0+θ(t)|t=0 ≤ 0.

Definition 5.2. A function ζ(t) is called an upper solution of fractional
boundary value problems (1.1) and (1.2) if ζ(t) ∈ C[0, 1] and ζ(t) satisfy

−Dγ
0+(ϕp(D

α
0+ζ(t))) ≥ f(t, ζ(t)), 0 < t < 1, 2 < α ≤ 3,

ζ(0) ≥ 0, ζ ′(0) ≥ 0, ζ ′(1) ≥
∫ η

0
ζ(s) ds, Dα

0+ζ(t)|t=0 ≥ 0.

The main result of this section is the following.

Theorem 5.1. The fractional boundary value problems (1.1) and (1.2)
have a positive solution u(t) if the following conditions are satisfied :

(Hf ) f(t, u) ∈ C([0, 1]× [0,+∞),R+) is nondecreasing relative to u,
f(t, ρ(t)) ̸≡ 0 for t ∈ (0, 1) and there exists a positive constant
µ < 1 such that

kµf(t, u) ≤ f(t, ku), for all 0 ≤ k ≤ 1.

Proof. At first, we will prove that the functions θ(t) = k1g(t), ζ(t) =
k2g(t) are lower and upper solutions of (1.1) and (1.2), respectively,
where

0 < k1 ≤ min

{
1

a2
, a

µ/(1−µ)
1

}
, k2 ≥ max

{
1

a1
, a

µ/(1−µ)
2

}
and

ϕp(a1) = min

{
1, inf

t∈[0,1]
f(t, ρ(t))

}
> 0,

ϕp(a2) = max

{
1, sup

t∈[0,1]

f(t, ρ(t))

}
and

g(t) =

∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1f(τ, ρ(τ)) dτ

)
ds.
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By view of Lemma 3.1, we know that g(t) is a positive solution of the
following equations
(5.1)

Dγ
0+(ϕp(D

α
0+u(t))) + f(t, ρ(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) =
∫ η

0
u(s) ds, Dα

0+u(t)|t=0 = 0.

From the conclusion of Lemma 5.1, we know that

(5.2) a1ρ(t) ≤ g(t) ≤ a2ρ(t), for all t ∈ [0, 1].

Thus, by virtue of the assumption of Theorem 5.1, this shows that

k1a1 ≤ θ(t)

ρ(t)
≤ k1a2 ≤ 1,

1

k2a2
≤ ρ(t)

γ(t)
≤ 1

k2a1
≤ 1,

(k1a1)
µ ≥ k1, (k2a2)

µ ≤ k2.

Therefore, we have

f(t, θ(t)) = f

(
t,
θ(t)

ρ(t)
ρ(t)

)
≥

(
θ(t)

ρ(t)

)µ

f(t, ρ(t))

≥ (k1a1)
µf(t, ρ(t)) ≥ k1f(t, ρ(t)),

k2f(t, ρ(t)) = k2f

(
t,
ρ(t)

γ(t)
γ(t)

)
≥ k2

(
ρ(t)

γ(t)

)µ

f(t, γ(t))

≥ k2(k2a2)
−µf(t, γ(t)) ≥ f(t, γ(t)).

This implies that

−Dγ
0+(ϕp(D

α
0+θ(t))) = k1f(t, ρ(t)) ≤ f(t, θ(t)),

0 < t < 1, 2 < α ≤ 3,
−Dγ

0+(ϕp(D
α
0+ζ(t))) = k2f(t, ρ(t)) ≥ f(t, ζ(t)),

0 < t < 1, 2 < α ≤ 3.

(5.3)

Obviously, θ(t) = k1g(t) and ζ(t) = k2g(t) satisfies the boundary
conditions (1.2). So, θ(t) = k1g(t) and ζ(t) = k2g(t) are the lower
and upper solutions of (1.1) and (1.2), respectively.

Next, we will prove the fractional boundary value problem
(5.4)

Dγ
0+(ϕp(D

α
0+u(t))) + g(t, u(t)) = 0,

0 < t < 1, 0 < γ ≤ 1, 2 < α ≤ 3,
u(0) = u′(0) = 0, u′(1) =

∫ η

0
u(s) ds, Dα

0+u(t)|t=0 = 0
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has a solution, where

g(t, u(t)) =

 f(t, θ(t)) if u(t) ≤ θ(t),
f(t, u(t)) if θ(t) ≤ u(t) ≤ ζ(t),
f(t, ζ(t)) if ζ(t) ≤ u(t).

Thus, we consider the operator A : C[0, 1] → C[0, 1] defined as follows

Au(t) =

∫ 1

0

G(t, s)ϕq

(
1

Γ(γ)

∫ s

0

(s− τ)γ−1g(τ, u(τ)) dτ

)
ds,

where G(t, s) is defined by Lemma 3.1. It is clear that the operator A
is continuous in C[0, 1]. Since the function f(t, u) in nondecreasing in
u, this shows that, for any u ∈ C[0, 1],

f(t, θ(t)) ≤ g(t, u(t)) ≤ f(t, ζ(t)) for t ∈ [0, 1].

The operator A : C[0, 1] → C[0, 1] is continuous in view of the
continuity of G(t, s) and g(t, u(t)). By means of the Arzela-Ascoli
theorem, A is a compact operator. Therefore, from the Leray-Schauder
fixed point theorem, the operator A has a fixed point, i.e., fractional
boundary value problem (5.4) has a solution.

Finally, we will prove that fractional boundary value problems (1.1)
and (1.2) have positive solutions.

Suppose u∗(t) is a solution of fractional boundary value problem
(5.4). Since the function f(t, u) is nondecreasing in u, we know that

f(t, θ(t)) ≤ g(t, u∗(t)) ≤ f(t, ζ(t)) for t ∈ [0, 1].

Thus,

−(Dγ
0+(ϕp(D

α
0+ζ(t)))−Dγ

0+(ϕp(D
α
0+u

∗(t))))

= f(t, ζ(t))− g(t, u∗(t)) ≥ 0,

(ζ − u∗)(0) = (ζ − u∗)′(0) = 0,

(ζ − u∗)′(1) =

∫ η

0

(ζ − u∗)(s) ds,Dα
0+(ζ − u∗)|t=0 = 0,

where z(t) = ϕp(D
α
0+ζ(t)) − ϕp(D

α
0+u

∗(t)). By virtue of Remark 3,
z(t) ≥ 0, i.e.,

ϕp(D
α
0+u

∗(t)) ≤ ϕp(D
α
0+ζ(t)) for t ∈ [0, 1].
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Since ϕp is monotone increasing, we have Dα
0+u

∗(t) ≤ Dα
0+ζ(t), that

is, Dα
0+(ζ(t) − u∗(t)) ≥ 0. By Lemma 3.1 and Remark 3, we have

ζ(t) ≥ u∗(t) for t ∈ [0, 1]. Similarly, θ(t) ≤ u∗(t) for t ∈ [0, 1].
Therefore, u∗(t) is a positive solution of fractional boundary value
problem (1.1) and (1.2). We have finished the proof of Theorem 5.1. �

6. Examples.

Example 6.1. The fractional boundary value problem
(6.1){

D
1/2
0+ (ϕ2(D

5/2
0+ u(t))) + (t2 + 1)[ln(2 + u(t))]2 = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
∫ 1/2

0
u(s) ds, D

5/2
0+ u(t)|t=0 = 0

has a unique and strictly increasing solution.

Proof. In this case, γ = 1/2, α = 5/2, p = 2, η = 1/2, f(t, u) =
(t2 + 1)[ln(2 + u)]2 for (t, u) ∈ [0, 1] × [0,∞). Note that f is a
continuous function and f(t, u) ̸= 0 for t ∈ [0, 1]. Moreover, f is
nondecreasing with respect to the second variable since (∂f)/(∂u) =
[2(t2 + 1)/(u+ 2)] ln(2 + u(t)) > 0 for t ∈ [0, 1]. On the other hand,
since u ∈ C[0, 1], without loss generality, we take 1 ≥ u ≥ v > 0 with
(u− v)(t) ≥ 1/3 and, for t ∈ [0, 1], we have

ϕ2(ln(v + 2)) ≤ (t2 + 1)[ln(v + 2)]2

= f(t, v) ≤ f(t, u) = (t2 + 1)[ln(u+ 2)]2

≤ 2[ln(u+ 2)]2

≤ [ln(u+ 2)(u− v + 1)2]2

≤ ϕ2(ln(u+ 2)(u− v + 1)2).

In this case, λ = 2. By simple computation, we have 0 < λ+ 1 < 1/L.
Thus, Theorem 4.1 implies that boundary value problems (1.1)–(1.2)
have a unique and strictly increasing solution. �

Example 6.2. As an example we mention the following fractional
boundary value problem:
(6.2){

D
1/2
0+ (ϕ2(D

5/2
0+ u(t))) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
∫ 1/2

0
u(s) ds, D

5/2
0+ u(t)|t=0 = 0,
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where Dα
0+ is the standard Riemann-Liouville fractional derivative, and

f(t, u) = t+ uµ, 0 < µ < 1.

Proof. Since kµ ≤ 1, 0 < µ < 1 and 0 ≤ k ≤ 1. It is easy to check
that

kµf(t, u) = kµt+ kµuµ ≤ t+ (ku)µ = f(t, ku).

Thus, by Theorem 5.1, we know that the boundary value problem (6.2)
has a positive solution u(t). �
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