
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 3, 2014

SZEGŐ KERNEL TRANSFORMATION LAW FOR
PROPER HOLOMORPHIC MAPPINGS

MICHAEL BOLT

ABSTRACT. Let Ω1,Ω2 be smoothly bounded doubly
connected regions in the complex plane. We establish a
transformation law for the Szegő kernel under proper holo-
morphic mappings. This extends known results concerning
biholomorphic mappings between multiply connected regions
as well as proper holomorphic mappings from multiply con-
nected regions to simply connected regions.

1. Introduction. In this manuscript, we establish a transformation
law for the Szegő kernel under proper holomorphic mappings between
doubly connected regions in the plane.

Let Ω ⊂ C be a bounded region with C∞ smooth boundary. The
Szegő projection S is the orthogonal projection of L2(bΩ) onto the
subspace H2(bΩ) of functions that extend holomorphically to Ω. It
acts by integration against an Hermitian kernel SΩ(·, ·), called the Szegő
kernel, according to

Sf(z) =
∫
w∈bΩ

SΩ(z, w) f(w) dsw for z ∈ Ω.

The integration is carried out with respect to arc length measure, ds.

The Szegő kernel is related to the Green’s function and is considered
to be one of the canonical functions associated with a bounded region
in the plane. Its behavior is less understood than the Bergman kernel,
its closest analytic relative.

The simplest transformation law for the Szegő kernel expresses the
relationship between kernels for biholomorphically equivalent regions.
The idea behind this result is the observation that arc length measure
between biholomorphic regions is related by the derivative of the
mapping. See Bell [2, page 44]. Using identities for the Bergman
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kernel, Jeong extended the result in her thesis to the case of a proper
holomorphic mapping provided the target is simply connected. See
[5, 6].

Here we extend both results and establish a transformation law for
proper holomorphic mappings between doubly connected regions. We
prove:

Theorem 1.1. Let Ω1, Ω2 be bounded, doubly connected regions with
C∞ boundaries, and let f : Ω1 → Ω2 be a proper holomorphic mapping
of order m. Let f1, . . . , fm denote the m local inverses to f , and let
Sk(·, ·) denote the Szegő kernel for Ωk, k = 1, 2. Let −(1/2π) log r be
the conformal modulus of Ω1, and let ω1 be the harmonic function on
Ω2 that takes value 1 on the inner boundary and value 0 on the outer
boundary, respectively. Then the Szegő kernels transform according to

m∑
j=1

S1(z, fj(w))
2f ′j(w) = f ′(z)S2(f(z), w)

2 + λr,m
∂(ω1 ◦ f)

∂z

∂ω1

∂w

for z ∈ Ω1, w ∈ Ω2, where

λr,m =
2(log rm)2

π2

(∑
k>0

k(−1)krmk

1− r2mk
− 1

m

∑
k>0

k(−1)krk

1− r2k

)
.

A region Ω ⊂⊂ C is doubly connected if its complement consists
of two connected components, and a region is nondegenerate if these
components contain more than one point. Every non-degenerate doubly
connected region can be mapped biholomorphically to an annulus
Ar = {z : r < |z| < 1} where r ∈ (0, 1) is independent of the choice of
the biholomorphism. The constant −(1/2π) log r, called the conformal
modulus of Ω, evidently is biholomorphically invariant, and coincides
with Ahlfors’s notion of extremal length [1, page 11].

The proof of Theorem 1.1 involves the corresponding transforma-
tion law for the Bergman kernel, the known relationship between the
Szegő kernel and Bergman kernel, and the transformation law for the
Szegő kernel under biholomorphic mappings. It also relies on a direct
calculation of the Szegő kernel and Bergman kernel for an annulus.

The remainder of the manuscript is organized as follows. In the next
two sections we recall what is known about the Szegő and Bergman
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kernels under proper holomorphic mappings. Theorem 1.1 extends
the results from these sections, but these results also are needed for
the proof of Theorem 1.1. Subsequently, we compute the Szegő and
Bergman kernels for an annulus for the purpose of identifying the
constant λr,m that appears in Theorem 1.1. The last two sections
contain the proof of Theorem 1.1 and some remarks about the case of
regions with higher connectivity.

2. The Szegő kernel under proper holomorphic mappings.
As noted, the Szegő kernel is the Hermitian kernel associated to the
orthogonal projection from L2(bΩ) to H2(bΩ). The underlying inner
product is given by

⟨f, g⟩bΩ =

∫
bΩ

f g ds

where the arc length measure is denoted by ds and where the associated
norm is given by ∥f∥2bΩ = ⟨f, f⟩bΩ in both L2(bΩ) and H2(bΩ).
The Szegő kernel S(z, w) is known to be holomorphic in z and anti-
holomorphic in w for (z, w) ∈ Ω×Ω. The kernel extends to be C∞ on
the expanded set Ω× Ω \ {(z, z) ∈ bΩ× bΩ}.

One way to construct the Szegő kernel is to begin with an orthonor-
mal basis {ψj} for H2(bΩ). Then, for given z ∈ Ω, w ∈ Ω,

S(z, w) =
∑
j

ψj(z)ψj(w).

Using this approach when Ω = ∆ is the unit disc, one finds that
S∆(z, w) = (2π)−1(1− zw)−1.

For a biholomorphic mapping f : Ω1 → Ω2 between bounded regions
with C∞ boundaries, it is known that f extends to be C∞ on Ω1, f

′

does not vanish on Ω1, and f
′ is the square of a holomorphic function

that extends to be C∞ on Ω1. See Bell [2, p42]. This leads to an
isometry L2(bΩ2) → L2(bΩ1) given by u → (u ◦ f)

√
f ′ that also maps

H2(bΩ2) → H2(bΩ1). It, too, yields the following transformation law.

Theorem 2.1. Let f : Ω1 → Ω2 be a biholomorphic mapping between
bounded regions with C∞ boundaries, and let Sk(·, ·) denote the Szegő
kernel for Ωk, k = 1, 2. Then the Szegő kernels transform according to

S1(z, w) = f ′(z)1/2 S2(f(z), f(w)) f ′(w)1/2.
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Jeong later extended Theorem 2.1 and proved the following. Her
motivation was to establish a rationality criterion for proper maps to
the unit disc. See [5, 6].

Theorem 2.2. Let f : Ω1 → Ω2 be a proper holomorphic mapping of
order m between bounded regions with C∞ boundaries, and let Ω2 be
simply connected. Let f1, . . . , fm denote the m local inverses to f , and
let Sk(z, w) denote the Szegő kernel for Ωk, k = 1, 2. Then the Szegő
kernels transform according to

m∑
j=1

S1(z, fj(w))
2 f ′j(w) = f ′(z)S2(f(z), w)

2

for z ∈ Ω1, w ∈ Ω2.

The goal of the present work is to make a first step toward extending
Theorem 2.2 to the case when the target region is multiply connected.

3. The Bergman kernel under proper holomorphic map-
pings. The closest analytic relative to the Szegő kernel is the Bergman
kernel, also defined for a bounded region Ω ⊂ C. We still assume that
Ω has C∞ boundary.

Here, the Bergman projection B is the orthogonal projection from
L2(Ω) onto the subspace B2(Ω) of holomorphic functions. It, too, acts
by integration against an Hermitian kernel KΩ(·, ·), called the Bergman
kernel, according to

Bf(z) =
∫∫

w∈Ω

KΩ(z, w) f(w) dAw for z ∈ Ω.

The integration is carried out with respect to area measure, dA. In this
case, the underlying inner product is given by

⟨f, g⟩Ω =

∫∫
Ω

f g dA,

and the associated norm is given by ∥f∥2Ω = ⟨f, f⟩Ω in both L2(Ω) and
B2(Ω). The Bergman kernel K(z, w) is known to be holomorphic in z
and anti-holomorphic in w for (z, w) ∈ Ω× Ω.
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As for the Szegő kernel, one way to construct the Bergman kernel
is to begin with an orthonormal basis {ψj} for B2(Ω). Then, for given
z ∈ Ω, w ∈ Ω,

K(z, w) =
∑
j

ψj(z)ψj(w).

For the unit disc, one finds that K∆(z, w) = π−1(1− zw)−2.

The behavior of the Bergman kernel under proper holomorphic
mappings is understood completely. A proof of the following can be
found in Bell [2, Section 16].

Theorem 3.1. Let f : Ω1 → Ω2 be a proper holomorphic mapping of
order m between bounded regions with C∞ boundaries. Let f1, . . . , fm
denote the m local inverses to f , and let Kk(z, w) denote the Bergman
kernel for Ωk, k = 1, 2. Then the Bergman kernels transform according
to

(1)
m∑
j=1

K1(z, fj(w)) f ′j(w) = f ′(z)K2(f(z), w)

for z ∈ Ω1, w ∈ Ω2.

Before specializing to the case of a doubly connected region, we
describe an additional result that expresses the relationship between
the Szegő and Bergman kernels for a general region. Let Ω ⊂ C
be a bounded, n-connected region with C∞ boundary. Let {γj}nj=1

denote the n boundary curves of Ω, and for convenience, let γn denote
the outer boundary curve. The harmonic measure functions {ωj}nj=1

associated to Ω are defined as follows. The function ωj is the harmonic
function that solves the Dirichlet problem with boundary value 1 on
γj and boundary value 0 on the remaining boundary curves. The
associated holomorphic functions {F ′

j}, defined on Ω, are then given by
F ′
j = 2∂ωj/∂z. The prime that is used in the notation is traditional.

The following result relates the Szegő and Bergman kernels. For a
proof, see Bell [2, Section 23].

Theorem 3.2. Let Ω be a bounded, n-connected region with C∞
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boundary. Then the Szegő kernel and Bergman kernel are related via

K(z, w) = 4πS(z, w)2 +
n−1∑
j,k=1

cj,kF
′
j(z)F

′
k(w)

for constants cj,k ∈ C.

4. The Szegő kernel and Bergman kernel for an annulus. In
this section we apply the constructions of the previous sections in order
to compute the Szegő and Bergman kernels for an annulus and, for a
given annulus, to identify the constant that appears in Theorem 3.2.
Let Ar = {z ∈ C : r < |z| < 1} for 0 < r < 1.

For the Szegő kernel, one notes that an orthogonal basis for H2(bAr)
is {zj}j∈Z. Then, since

∥zj∥2bAr
=

∫
bAr

|z|2j ds = 2π(1 + r2j+1),

an orthonormal basis for H2(bAr) is {ψj}j∈Z where ψj(z) = zj/√
2π(1 + r2j+1). It follows that the Szegő kernel Sr for Ar is given

by

(2) Sr(z, w) =
1

2π

∑
j∈Z

(zw)j

1 + r2j+1
.

For the Bergman kernel, one notes that an orthogonal basis for
B2(Ar) is again {zj}j∈Z. Since

∥zj∥2Ar
=

∫∫
Ar

|z|2j dA =

{
π(1− r2j+2)/(j + 1) if j ̸= −1
−2π log r if j = −1,

one finds after normalization that the Bergman kernel Kr for Ar is
given by

(3) Kr(z, w) = − 1

2π log r

1

zw
+

1

π

∑
j ̸=−1

(j + 1)(zw)j

1− r2j+2
.

To identify the constant in Theorem 3.2, one first identifies the
harmonic measure functions for Ar as ω1 = log |z|/ log r and ω2 =
− log |z|/ log r + 1. The associated holomorphic functions are F ′

1(z) =
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1/(z log r) and F ′
2(z) = −1/(z log r). Theorem 3.2 asserts for the

annulus that there is a constant cr ∈ C for which

(4) Kr(z, w) = 4πSr(z, w)
2 + cr ·

1

zw
.

To find cr, substitute z = −r/w ∈ Ar for fixed w ∈ Ar. From (2),

Sr(−r/w,w) =
1

2π

∑
j∈Z

(−r)j

1 + r2j+1

=
1

2π

∑
j≥0

(−1)j rj

1 + r2j+1
+

1

2π

∑
j<0

(−1)j rj

1 + r2j+1

=
1

2π

∑
j≥0

(−1)j rj

1 + r2j+1
+

1

2π

∑
k>0

(−1)k r−k

1 + r−2k+1
· r

2k−1

r2k−1

=
1

2π

∑
j≥0

(−1)j rj

1 + r2j+1
+

1

2π

∑
k>0

(−1)k rk−1

1 + r2k−1

=
1

2π

∑
j≥0

(−1)j rj

1 + r2j+1
+

1

2π

∑
l≥0

(−1)l+1 rl

1 + r2l+1

= 0.

(In fact, this calculation can be used to show that the Ahlfors map
fa from Ar to the unit disc has zeros at exactly a and −r/a. See
Tegtmeyer and Thomas [8].) From (3),

Kr(−r/w,w) =
1

2π

1

r log r
+

1

π

∑
j ̸=−1

(j + 1)(−r)j

1− r2j+2
.

Substituting these in (4) and solving gives

cr = − 1

2π

1

log r
+

1

π

∑
j ̸=−1

(j + 1)(−r)j+1

1− r2j+2
(5)

= − 1

2π

1

log r
+

1

π

∑
k ̸=0

k(−1)krk

1− r2k

= − 1

2π

1

log r
+

1

π

(∑
k>0

k(−1)krk

1− r2k
+

∑
l>0

−l(−1)lr−l

1− r−2l
· r

2l

r2l

)
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= − 1

2π

1

log r
+

2

π

∑
k>0

k(−1)k rk

1− r2k
.

5. Proof of Theorem 1.1. We begin by establishing Theorem 1.1
in the case that both regions are annuli. Subsequently, as any doubly
connected region is biholomorphically equivalent to an annulus, we
show that the result follows generally after using Theorem 2.1.

Suppose then that Ω∗
1 = Ar and Ω∗

2 = AR for 0 < r,R < 1, and let
f : Ω∗

1 → Ω∗
2 be a proper holomorphic mapping of order m. It follows

that R = rm, and there exists θ ∈ [0, 2π) so that either f(z) = eiθzm

or f(z) = eiθrm/zm. A proof of this fact can be found, for instance, in
Narasimhan’s book [7, subsection 7.1]. In both cases the relationship
between kernels as found in the last section is expressed by

K∗
1 (z, fj(w)) = 4πS∗

1 (z, fj(w))
2 + cr

1

zfj(w)

K∗
2 (f(z), w) = 4πS∗

2 (f(z), w)
2 + crm

1

f(z)w
,

where S∗
k and K∗

k denote the Szegő and Bergman kernels for Ω∗
k,

k = 1, 2, and where cr (and crm) are given by (5). Substituting these
expressions and applying Theorem 3.1, which describes the behavior of
the Bergman kernels under proper holomorphic mappings, yields

(6)

m∑
j=1

S∗
1 (z, fj(w))

2f ′j(w) +
cr
4π

m∑
j=1

f ′j(w)

zfj(w)

= f ′(z)S∗
2 (f(z), w)

2 +
crm

4π

f ′(z)

f(z)w
.

(We also divided by 4π.) Considering the case f(z) = eiθzm, we use
local inverses fj(w) = ηjm(we−iθ)1/m, where ηm is the principal mth
root of unity, and find that f ′(z)/f(z) = m/z and f ′j(w)/fj(w) =

1/(mw). Considering the case f(z) = eiθrm/zm, we use local in-
verses fj(w) = ηjm r(eiθ/w)1/m and find that f ′(z)/f(z) = −m/z and
f ′j(w)/fj(w) = −1/(mw). In both cases, we find

m∑
j=1

f ′j(w)

zfj(w)
=

1

m

f ′(z)

f(z)w
=

4(log rm)2

m

∂(ω∗
1 ◦ f)
∂z

∂ω∗
1

∂w
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where ω∗
1 = log |w|/(log rm) is the relevant harmonic measure function

for Ω∗
2. Then (6) yields

(7)

m∑
j=1

S∗
1 (z, fj(w))

2f ′j(w)

= f ′(z)S∗
2 (f(z), w)

2 +
crm − cr/m

π
(log rm)2

∂(ω∗
1 ◦ f)
∂z

∂ω∗
1

∂w
.

Since

crm − cr/m =
2

π

(∑
k>0

k(−1)krmk

1− r2mk
− 1

m

∑
k>0

k(−1)krk

1− r2k

)
,

this is the same as what is claimed by Theorem 1.1.

Now consider the general case of bounded, doubly connected regions
Ω1, Ω2 with C∞ boundaries. Let g : Ω1 → Ω2 be a proper holo-
morphic mapping of order m. Then there exist annuli Ar, AR, and
biholomorphic maps ψ : Ω1 → Ar, ϕ : Ω2 → AR, so that after compo-

sition, f
def
= ϕ ◦ g ◦ ψ−1 : Ar → AR is a proper holomorphic mapping

of order m, and necessarily, then R = rm. If local inverses for g are
denoted by gj , then corresponding local inverses for f can be expressed

as fj
def
= ψ ◦ gj ◦ ϕ−1. The relationships between all these mappings is

..ξ,Ω1

. η,Ω2

.

z,Ω∗
1 = Ar

.

w,Ω∗
2 = Arm

.

g

.

gj

.

f

.

fj

.

ψ

.

ψ−1

.

ϕ

.

ϕ−1

Figure 1. Mappings used in the proof of Theorem 1.1.
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illustrated in Figure 1.

The remainder of the proof involves the application of Theorem 2.1
to both sides of (7). To begin, an application of Theorem 2.1 using the
biholomorphic map ψ : Ω1 → Ar gives

S1(ξ, gj(η)) = ψ′(ξ)1/2 S∗
1 (ψ(ξ), (ψ ◦ gj)(η)) (ψ′ ◦ gj)(η)1/2

for ξ ∈ Ω1, η ∈ Ω2. Using substitutions z = ψ(ξ), w = ϕ(η) and
rewriting gives

S∗
1 (z, fj(w)) = S1(ξ, gj(η))ψ

′(ξ)−1/2 (ψ′ ◦ gj)(η)−1/2,

so that on the left-hand side of (7) there appears

m∑
j=1

S∗
1 (z, fj(w))

2f ′j(w) =
m∑
j=1

S1(ξ, gj(η))
2 ψ′(ξ)−1 (ψ′ ◦ gj)(η)−1 f ′j(w)

(8)

=
m∑
j=1

S1(ξ, gj(η))
2 ψ′(ξ)−1 g′j(η) ((ϕ

−1)′ ◦ ϕ)(η)

=

m∑
j=1

S1(ξ, gj(η))
2 g′j(η) · ψ

′(ξ)−1 ϕ′(η)−1.

In the second step we applied the chain rule,

f ′j(w) = ((ψ ◦ gj ◦ ϕ−1)′ ◦ ϕ)(η) = (ψ′ ◦ gj)(η) · g′j(η) · ((ϕ−1)′ ◦ ϕ)(η).

Likewise, an application of Theorem 2.1 to the biholomorphic map
ϕ : Ω2 → Arm gives

S2(g(ξ), η) = (ϕ′ ◦ g)(ξ)1/2 S∗
2 ((ϕ ◦ g)(ξ), ϕ(η))ϕ′(η)1/2,

so that the substitutions give

S∗
2 (f(z), w) = S2(g(ξ), η) (ϕ

′ ◦ g)(ξ)−1/2 ϕ′(η)−1/2.

It follows that on the right-hand side of (7) there appears

f ′(z)S∗
2 (f(z), w)

2 = f ′(z)S2(g(ξ), η)
2 (ϕ′ ◦ g)(ξ)−1 ϕ′(η)−1(9)

= g′(ξ) ((ψ−1)′ ◦ ψ)(ξ)S2(g(ξ), η)
2 ϕ′(η)−1

= g′(ξ)S2(g(ξ), η)
2 · ψ′(ξ)−1 ϕ′(η)−1,
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where in the second step we again applied the chain rule,

f ′(z) = ((ϕ ◦ g ◦ ψ−1)′ ◦ ψ)(ξ) = (ϕ′ ◦ g)(ξ) · g′(ξ) · ((ψ−1)′ ◦ ψ)(ξ).

To finish the proof, substitute (8) and (9) into (7), then multiply

through by ψ′(ξ)ϕ′(η). This gives

m∑
j=1

S1(ξ, gj(η))
2g′j(η) = g′(ξ)S2(g(ξ), η)

2+λr,m
∂(ω∗

1 ◦ f)
∂z

ψ′(ξ)
∂ω∗

1

∂w
ϕ′(η).

The proof is complete upon realization that ω1 = ω∗
1 ◦ϕ is the relevant

harmonic measure for Ω2, and both

∂ω1

∂η
=
∂ω∗

1

∂w
ϕ′(η) and

∂(ω1 ◦ g)
∂ξ

=
∂(ω∗

1 ◦ f ◦ ψ)
∂ξ

=
∂(ω∗

1 ◦ f)
∂z

ψ′(ξ).

6. Final remarks. In previous work, Chung and Jeong established
a transformation law for the Szegő kernel under proper holomorphic
mappings between (general) multiply connected regions [4]. That law,
however, only expresses the relationship between kernels through com-
position with the Ahlfors maps Ωk → ∆, k = 1, 2, and their inverses.
Indeed, the proof of that result is gotten through repeated applica-
tion of Theorem 2.2. Although restricted to doubly connected regions,
Theorem 1.1 demonstrates the contribution of the harmonic measure
functions and expresses the relationship between kernels directly on the
regions Ωk, k = 1, 2.

We also point out recent work of Chung to document other relation-
ships between the Szegő and Bergman kernels involving the harmonic
measure functions and Ahlfors map [3].

To finish, we point out the difficulty in extending the proof of
Theorem 1.1 to the case of regions with higher connectivity. The proof
relied on the fact that proper holomorphic maps between annuli can be
written explicitly. That there are so few of them (essentially z+m and
z−m) can be seen via the Riemann-Hurwitz identity. In particular, by
completing each doubly connected region to its double, namely a torus,
and by extending the proper map to these tori, one sees that any proper
holomorphic map must be unbranched. Already for the case of a map
from a triply connected region to a doubly connected region, one needs
to allow for branching.
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Boston, Inc., Boston, MA, 1985.

8. Thomas J. Tegtmeyer and Anthony D. Thomas, The Ahlfors map and Szegő
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