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TWO COUNTEREXAMPLES IN ABSTRACT
FACTORIZATION

JASON JUETT

ABSTRACT. We give examples that provide negative an-
swers to three questions about abstract factorization posed
by Anderson and Frazier. We show that (1) an atomic do-
main need not be τ -atomic for τ divisive, (2) an atomic do-
main need not be a comaximal factorization domain (CFD)
and (3) for τ divisive, a nonzero nonunit of a τ -UFD need
not be a τ -product of τ -primes. Along the way, we gen-
eralize the theorem of Anderson and Frazier that a UFD
is a τ -UFD for τ divisive (with a simplified proof), and
we demonstrate a method for constructing domains with no
pseudo-irreducible elements.

1. Introduction. Let D be an integral domain. We denote the
units of D by U(D) and then set D∗ = D \ (0) and D# = D∗ \ U(D).
We call an element of D# irreducible or an atom if it cannot be written
as a product of two elements of D#. A reducible element of D is an
element of D# that is not irreducible. We use Red(D) and Irr(D) to
denote the reducible and irreducible elements of D, respectively. We
call D atomic if every element of D# has a factorization into atoms;
such a factorization is called an atomic factorization. It is possible to
define weaker kinds of irreducible if we only admit certain factoriza-
tions of elements, and these give rise to different abstractions of atom-
icity. The τ -factorizations introduced in [3] give a good framework
for studying generalized factorization and give us one way of defining
weaker notions of irreducible. Here τ is a symmetric relation on D#

and a τ -factorization of a ∈ D# is a factorization a = λa1 · · · an, where
n ≥ 1, λ ∈ U(D), each ai ∈ D#, and aiτaj for i ̸= j. The second
section of the paper reviews the definitions and some of the basic the-
ory laid out in [3], [4], [9] and [10]. The relationship between the
different kinds of atomic domains will be the topic of the third section
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of this paper. Here a ∈ D# is a τ -atom if each of its τ -factorizations
is trivial (a = λ(λ−1a)) and D is τ -atomic if every element of D# has
a τ -factorization into τ -atoms. In the case where aτb ⇔ (a, b) = D, τ -
atomic domains called comaximal factorization domains (CFD’s) were
studied in [9]. We show that an atomic domain need not be a CFD,
thus answering in the negative a question raised in [3]. Along the way,
we demonstrate a method for constructing the comaximal factorization
analog of the antimatter domains studied in [6].

It is well known that an integral domain D is a unique factor-
ization domain (UFD) if and only if D is atomic and each atom is
prime, or equivalently, every element of D# is a product of prime ele-
ments. The notion of a UFD is easily extended to τ -factorization. A
domain D is defined to be a τ -UFD if (1) D is τ -atomic and (2) if
λa1 · · · an = µb1 · · · bm are two τ -factorizations where each ai, bj is a
τ -atom, then n = m and after reordering, if necessary, ai and bi are
associates, denoted ai ∼ bi. In the fourth section we investigate the
relationship between D being a τ -UFD and the elements of D# having
a τ -factorization into various forms of “τ -primes.” In particular, we
give an example of a τ -UFD where τ is both multiplicative and divisive
(see Section 2) in which a τ -atom need not be τ -prime. This answers
a question raised in [3]. Furthermore, this investigation will lead us
to a simplified proof of (a generalization of) [3, Theorem 2.11], which
shows that a UFD is a τ -UFD for τ divisive.

2. Review of τ-factorization. In this section we review some of
the definitions and basic theory concerning τ -factorization introduced
in [3]. Unless noted otherwise, all of the definitions from τ -factorization
theory that we will use in this paper come from Section 2 of that paper.

Let D be an integral domain and τ be a symmetric relation on
D#. A (reduced) factorization of a ∈ D# is a product a = λa1 · · · an,
where λ ∈ U(D) (λ = 1) and each ai ∈ D#; we call n the length of
the factorization. A factorization of length 1 is called trivial. A τ -
factorization is a factorization a = λa1 · · · an where aiτaj for i ̸= j;
we say that each ai τ -divides a, written ai |τ a. We sometimes call
a τ -factorization λa1 · · · an a τ -product of the ai’s, each of which we
call a τ -factor. An element of D# is τ -irreducible or a τ -atom if it
has no nontrivial τ -factorizations. A τ -atomic factorization is a τ -
factorization into τ -atoms. We call D τ -atomic if every element of D#
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has a τ -atomic factorization. We say D satisfies the τ -ascending chain
condition on principal ideals (τ -ACCP) if for each sequence {an}∞n=1 in
D# with each an+1 |τ an, there is an N ≥ 1 with aN ∼ aN+1 ∼ · · · .
If D is τ -atomic, we say that D is a

(1) τ -bounded factorization domain (τ -BFD) if every element of D#

has an upper bound on the lengths of its τ -atomic factorizations;
(2) τ -finite factorization domain (τ -FFD) if every element of D# has

only finitely many τ -atomic factorizations up to associates and or-
der;

(3) τ -half factorial domain (τ -HFD) if every element of D# has all of
its τ -atomic factorizations of the same length; and

(4) τ -unique factorization domain (τ -UFD) if the τ -atomic factoriza-
tions of an element of D# are unique up to order and associates.

Several properties that the relation τ can possess have been defined
and studied. The following will be useful for this paper. We call τ

(1) associate-preserving (respectively, divisive) if whenever a, a′, b, b′ ∈
D#, a′ ∼ a (respectively, a′ | a), and b′ ∼ b (respectively, b′ | b),
we have aτb ⇒ a′τb′;

(2) multiplicative if (aτb and aτc) ⇒ aτbc;
(3) refinable [4] if, whenever λa1 · · · an and ai = b1 · · · bm are τ -factori-

zations, then so is λa1 · · · ai−1b1 · · · bmai+1 · · · an; and
(4) combinable [4] if, whenever λa1 · · · an is a τ -factorization, then so

is each factorization λa1 · · · ai−1(aiai+1)ai+2 · · · an.

Note that, if τ is combinable, then any nonzero nonunit with a non-
trivial τ -factorization has a τ -factorization of length 2. In [3, Proposi-
tion 2.2] it is shown that a divisive relation is refinable and associate-
preserving, and that a multiplicative relation is combinable. Another
way to see the latter fact is to observe that τ is combinable if and only
if (aτb, aτc, and bτc) ⇒ aτbc. However, a refinable and associate-
preserving relation need not be divisive, and a combinable relation
need not be multiplicative. For example, if a, b ∈ D# are reducible
non-associates and τ is the symmetric relation on D# determined by
(λa)τ(µb) for λ, µ ∈ U(D), then τ is refinable, associate-preserving, and
combinable, but neither divisive nor multiplicative. While one may be
hard-pressed to come up with a natural combinable relation that is not
multiplicative, there are some interesting relations that are refinable
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and associate-preserving but not divisive. For example, the symmet-
ric relation τ(2) on Z# given by aτ(2)b ⇔ a ≡ b mod 2 is refinable,
associate-preserving, and multiplicative, but is not divisive. (See [3,
Section 5] for details.)

We pause to review several of the more interesting examples of τ -
factorization that have been studied.

Example 2.1 ([3, Example 2.1(1)-(2)]). We use τD to denote the sym-
metric relation D#×D#. The relation τD is clearly multiplicative and
divisive, and the τD-factorizations are simply the factorizations. The
notions of τD-atomic, τD-ACCP, τD-BFD, τD-FFD, τD-HFD, and τD-
UFD reduce to the classical factorization concepts of atomic, ACCP,
BFD, FFD, HFD, and UFD. A good survey of these topics for stan-
dard factorizations can be found in [1]. At the other extreme, if we
take τ∅ = ∅, every τ∅-factorization is trivial, every element of D# is a
τ∅-atom, and a |τ∅ b ⇔ a ∼ b.

Example 2.2 ([3, Example 2.1(5)]). We use τd to denote the sym-
metric relation on D# given by aτdb ⇔ (a, b) = D. One familiar
with star operations (see [8, Section 32]) can generalize this as follows.
If ⋆ is a star operation on D, we define a symmetric relation τ⋆ on
D# by aτ⋆b ⇔ (a, b)⋆ = D. It is easy to see that τ⋆ is multiplica-
tive and divisive. (In particular, the τd relation is multiplicative and
divisive.) The comaximal factorizations studied in [9] are simply τd-
factorizations. (Technically, they study the reduced τd-factorizations,
but the fact that τd is associate-preserving means that it does not make
any difference for our purposes whether we study τd-factorizations or
reduced τd-factorizations, and we will follow the convention of [3] of
simply considering a comaximal factorization to be a τd-factorization.)
In the terminology of [9], a pseudo-irreducible is a τd-atom, a com-
plete comaximal factorization is a τd-atomic factorization, a comaximal
factorization domain (CFD) is a τd-atomic domain, a bounded CFD is
a τd-BFD, and a unique comaximal factorization domain (UCFD) is a
τd-UFD. In [9, Theorem 1.7], UCFD’s were characterized as the CFD’s
in which every 2-generated invertible ideal is principal. The paper [3]
generalized the comaximal factorizations to the ⋆-factorizations, which
are simply τ⋆-factorizations. (And every ⋆-factorization phrase is sim-
ilarly abbreviated: “⋆-atom” for “τ⋆-atom,” “⋆-UFD” for “τ⋆-UFD,”
etc.) Some results about ⋆-factorizations generalizing the earlier ones
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about comaximal factorizations were proved. For example, if every 2-
generated ⋆-invertible ⋆-ideal is principal, then D is a ⋆-UFD. Whether
the converse is true remains an open question.

Example 2.3 ([3, Example 2.1(6)]). Two elements a and b of an inte-
gral domain D are said to be relatively prime if they have no common
nonunit factor, in which case we write [a, b] = 1. We use τ[ ] to denote

the symmetric relation on D# given by aτ[ ]b ⇔ [a, b] = 1. It is easy to
see that τ[ ] is divisive. However, in general it is not multiplicative nor
even combinable. A nice characterization of when τ[ ] is multiplicative
exists [5, Theorem 3.1]: the relation τ[ ] is multiplicative if and only if
D satisfies the conclusion of Gauss’s lemma, i.e., when the product of
any two primitive polynomials in D[x] is primitive. For an example of
when τ[ ] is not combinable, we consider the following one from [3]. Let
K ( L be fields andD = K+xL[[x]]. The paper [3] shows that for each
u ∈ L \ K the element u(u + 1)x3 has the nontrivial τ[ ]-factorization
x(ux)((u+ 1)x), but it has no τ[ ]-factorization of length 2. Thus τ[ ] is
not combinable in this case.

Let D be an integral domain. The relations on D# are partially
ordered by inclusion, and we correspondingly write τ1 ≤ τ2 in place
of τ1 ⊆ τ2. For example, for τ any symmetric relation we have τ∅ ≤
τ ≤ τD, and for any star operation ⋆ we have τd ≤ τ⋆ ≤ τv ≤ τ[ ],

where v is the v-operation. Let τ1 ≤ τ2 be symmetric relations on D#.
The following diagram of implications holds, where a dotted line indi-
cates that the implication holds if the relations involved are refinable
and associate-preserving, and two parallel dotted lines indicate that it
holds if τ1 is divisive and τ2 is refinable and associate-preserving. In
particular, all of the implications in the diagram below hold when the
relations involved are divisive.

τ2-HFD

%%LL
LLL

LLL
LL

τ2-UFD

99rrrrrrrrrr
//

��

τ2-FFD //

��

τ2-BFD //

��

τ2-ACCP //

��

τ2-atomic

τ1-UFD // τ1-FFD // τ1-BFD // τ1-ACCP // τ1-atomic
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The fact that the above diagram holds in the special case with τ2 =
τD and τ1 divisive was demonstrated in [3, Section 2], and we observe
that, with the notable exception of the UFD case, trivial changes to
the proofs given there give the most general version stated above. The
fact that a UFD is a τ -UFD for τ divisive is shown in [3, Theorem
2.11], and its proof was later adapted in [10, Theorem 4.12] to prove
the case for any divisive relations τ1 ≤ τ2. Both proofs are somewhat
involved and make essential use of the fact that τ2 is divisive and not
merely refinable and associate-preserving. We will present a simplified
proof that shows the strongest result, but it makes use of the concept
of “τ -primes,” so we will defer this until Section 4.

Examples given in [3] and [1] show that no further nontrivial impli-
cations can be added to the above diagram in the case where τ2 = τD
and τ1 is divisive. The one exception is the question posed by the au-
thors of [3] of whether atomic implies τ -atomic for τ divisive. Two
related additional questions that they posed are if an atomic domain is
⋆-atomic, and if an atomic domain is a CFD. In the next section we will
answer all three questions in the negative by constructing an atomic
domain that is not a CFD. So, in the language of τ -factorization, an
atomic domain is not necessarily τ -atomic, even if τ is both multiplica-
tive and divisive.

3. An atomic domain that is not a CFD. In this section we
construct an atomic domain that is not a CFD. We can start our con-
struction with any domain that is not a CFD. While any non-CFD will
do, we might as well spend a moment constructing a family of non-
CFD’s with some nice properties. In particular, we will deviate from
CFD’s as far as possible, constructing domains that have no pseudo-
irreducibles; we call such a domain an anti-CFD. (Clearly fields are the
only domains that can simultaneously be a CFD and an anti-CFD.) The
analogous standard factorization concept is an antimatter domain: a
domain with no atoms. These were first studied in [6]. Among many
other interesting results, that paper proved [6, Theorem 2.13] that ev-
ery domain is a subring of an antimatter domain that is not a field. We
briefly note another such embedding in which the antimatter domain is
a one-dimensional valuation domain. Let D be a domain with quotient
field K and M be the maximal ideal of the monoid domain K[x;Q+]
consisting of the elements with zero constant term. Because the ele-
ments of K[x;Q+]M are (up to associates) the monomials in K[x;Q+],
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we see that K[x;Q+]M is a one-dimensional (see [7, Theorems 17.1,
21.4]) antimatter valuation domain. (See the proof of [6, Theorem
2.13] for a completely different embedding method.) Of course, we
cannot hope to have an exactly analogous result for anti-CFD’s since
valuation domains are quasilocal and all of their nonzero nonunits are
pseudo-irreducible, but we will prove the next best thing: every domain
is a subring of a one-dimensional Bezout anti-CFD.

Our construction will make use of some of the monoid domain tech-
niques employed in [2]. In analogy with the pure monoids intro-
duced in [2], for each k ≥ 0 we call an additive monoid S k-pure
if (1) it is order isomorphic to a submonoid of the additive monoid
Q+ = {r ∈ Q | r ≥ 0}, (2) it is locally cyclic, meaning every finitely
generated submonoid is cyclic, and (3) for each s ∈ S there is a natural
number n ≥ 2 (depending on s) with s/n ∈ S and n not a power of k.
A pure monoid is a 0-pure monoid. In [2] it is shown that if S is a pure
monoid, then s2 − s1 ∈ S for every s1, s2 ∈ S with s1 < s2; in fact, the
proof applies to any locally cyclic submonoid of Q+. Two examples of
pure monoids given in [2] are (Q+,+) and (Z+

T ,+), where T ̸= {1} is
a multiplicative subset of Z+ = {n ∈ Z | n ≥ 0}. One last fact that we
will use several times in this section is that for a domain D, the units
of the Laurent polynomial ring D[x, x−1] are the elements of the form
uxm, where u ∈ U(D) and m ∈ Z.

Theorem 3.1. Let K be a field of characteristic p ≥ 0, and let S be a
locally cyclic submonoid of Q+. Then K[x;S] is Bezout and every non-
constant monomial is pseudo-irreducible. If K is algebraically closed,
then the following are equivalent.

(1) S is p-pure.
(2) No non-monomial is pseudo-irreducible.

Proof. The fact that K[X;S] is Bezout follows from [7, Theorem 13.6].

Because no two non-constant monomials are relatively prime, in or-
der to show that every non-constant monomial is pseudo-irreducible
it will suffice to show that the non-constant monomials form a satu-
rated subset of K[x;S]#. Take any f, g ∈ K[x;S]# with fg a non-
constant monomial. By the locally cyclic property we get that fg is
a non-constant monomial in K[xs] for some s ∈ S with f, g ∈ K[xs].
Therefore fg ∈ U(K[xs, 1/xs]), and hence f, g ∈ U(K[xs, 1/xs]). It is
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well-known that this implies that f and g have the form a(xs)m = axms

for some m ∈ Z and a ∈ K, and this leads us to the conclusion that f
and g are non-constant monomials.

Assume K is algebraically closed.

(1) ⇒ (2). Assume that S is p-pure and let f ∈ K[x;S]# be any non-
monomial. Write f = a1x

s1+· · ·+anx
sn , where n ≥ 2, a1, . . . , an ∈ K∗,

and 0 ≤ s1 < · · · < sn. Then f = xs1(a1+a2x
s2−s1 + · · ·+anx

sn−s1) is
a factorization inK[x;S]. If s1 > 0, then xs1 and a1+· · ·+anx

sn−s1 are
relatively prime (hence comaximal since K[x;S] is Bezout) by the fact
that every non-unit divisor of the former is a non-constant monomial
and the latter has no non-constant monomial divisors. So let us assume
s1 = 0. It will suffice to consider the case an = 1. By the fact that
S is locally cyclic, f = a1 + · · · + an−1x

sn−1 + xsn is a polynomial in
xq for some q ∈ S. Because K is algebraically closed, this polynomial
splits into a product of monic linear polynomials in xq, say f = (xq +
b1)

k1 · · · (xq + bm)km , where m, k1, . . . , km ≥ 1 and b1, . . . , bm ∈ K∗ are
distinct. If m ≥ 2, then this is a nontrivial comaximal factorization, so
we may assume m = 1. By the fact that S is p-pure there are j ≥ 0
and N ≥ 2 with p - N and q/(pjN) ∈ S. (Here we regard 00 as 1).

Then xq/pj

+ b
1/pj

1 = (xq/(pjN))N + b
1/pj

1 splits into N distinct monic

linear polynomials in xq/(pjN) by the fact that K is algebraically closed

and p - N . The fact that (xq + b1)
k = (xq/pj

+ b
1/pj

1 )p
jk then reduces

this case to the previously covered m ≥ 2 case.

(2) ⇒ (1). Assume that every non-monomial has a nontrivial comax-
imal factorization and take any nonzero s ∈ S. By the locally cyclic
property, the non-monomial xs + 1 has a nontrivial comaximal factor-
ization in K[xt] for some t ∈ S. By the fact that s is the sum of
the leading exponents of the factors in this factorization, we get that
t = s/N for some N ≥ 2. If N = pk for some k ≥ 1, then p > 0
and the unique atomic factorization of xs + 1 in the UFD K[xt] is

xs + 1 = (xt + 1)p
k

, so the factors in the aforementioned nontrivial co-
maximal factorization have a common divisor of xt + 1, contradicting
comaximality. Therefore, N is not a power of p, as desired. �

The last part of the above theorem is false if we drop the algebraically
closed hypothesis. For example, the paper [2] notes that Q[x;Q+] has
an irreducible non-monomial x− 2.
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If K is an algebraically closed field and S is a pure monoid, then
[2, Theorem 1] shows that K[x;S] is an antimatter domain. However,
Theorem 3.1 shows that if K has positive characteristic p, then we need
S to be p-pure and not merely pure if we want to have this monoid
domain as close to an anti-CFD as possible. It is interesting to note
that K[x;S] can even end up being a UCFD if we only assume S is
pure.

Example 3.2. Let K be an algebraically closed field of positive char-
acteristic p and let S be the pure monoid Z+

T , where T = {pm | m ≥ 0}.
We claim that K[x;S] is a UCFD. Because [9, Corollary 1.9] asserts
that a Bezout CFD is a UCFD, it will suffice to show that K[x;S] is a
CFD. The proof of “(1) ⇒ (2)” in Theorem 3.1 shows that, up to asso-
ciates, we can write every nonzero nonunit of K[x;S] as a comaximal
product whose factors are each either a non-constant monomial or of
the form (x1/pn

+ b)k for some n ≥ 0, k ≥ 1, and b ∈ K∗. So it will
suffice to show that elements of these two forms are pseudo-irreducible.
Both of these cases are covered by Theorem 3.1, the former explicitly,
and the latter by adapting the proof of “(2) ⇒ (1).”

From Theorem 3.1 we obtain the following embedding result in the
spirit of the ones about antimatter domains mentioned above.

Corollary 3.3. Every domain is a subring of a one-dimensional Be-
zout anti -CFD.

Proof. Let D be a domain, K be the algebraic closure of its quotient
field, R = K[x;Q+], and T be the saturated multiplicatively closed
subset of K[x;Q+] consisting of the nonzero monomials. By Theorem
3.1 and [7, Theorems 17.1, 21.4], we see that R is a one-dimensional Be-
zout domain and that its only pseudo-irreducibles are the non-constant
monomials. It follows that RT is a one-dimensional Bezout domain,
and it only remains to show that it is an anti-CFD. Note that any non-
monomial in R with nonzero constant term has a nontrivial comaximal
factorization into elements of that same form. By the fact that the
nonzero nonunits of RT are (up to associates) the non-monomials in R
with nonzero constant term, we see that RT has no pseudo-irreducible
elements. �

We next review a construction used in [11]. Let D be an inte-
gral domain with quotient field K. For S ⊆ D∗, define L(D;S) =
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D[{xs, sx
−1
s | s ∈ S}], where {xs}s∈S is a family of algebraically in-

dependent indeterminates. We will abbreviate L(D; {s1, . . . , sn}) by
L(D; s1, . . . , sn). The domain L(K;S) is simply the Laurent polyno-
mial ring overK in the variables {xs}s∈S . As a consequence of algebraic
independence, each element of L(K;S) has a unique Laurent polyno-
mial representation. Writing x = xs, the domain L(D; s) is the set of
Laurent polynomials

∑n
k=m ckx

k, where m ≤ n are integers, ck ∈ D
for k ≥ 0, and ck ∈ (s−k) for k < 0. The following facts are shown to
hold for ∅ ( S ⊆ D# in [11, Lemma 3.2], where L = L(D;S).

(1) L ∩K = D.
(2) U(L) = U(D), so D# ⊆ L#.
(3) Red(D) ⊆ Red(L).
(4) If S ⊆ Red(D), then Irr(D) ⊆ Irr(L).
(5) Each s ∈ S can be written as a product s = xs(s/xs) of two non-

associate atoms in L.

We add the following additional fact related to comaximal factoriza-
tions.

Lemma 3.4. Let D be an integral domain and ∅ ( S ⊆ D#. For
each a ∈ D#, the comaximal factorizations of a in D coincide with the
comaximal factorizations of a in L(D;S). So D is a CFD (respectively,
bounded CFD, d-FFD, d-HFD, UCFD, anti -CFD) if L(D;S) is.

Proof. Take any a ∈ D#. It follows from fact (2) above that any
comaximal factorization of a in D is a comaximal factorization of a in
L(D;S).

Let a = fg be any length 2 reduced comaximal factorization of a
in L(D;S). Then there is a nonempty finite subset {s1, . . . , sn} of S
with a = fg a comaximal factorization in L(D; s1, . . . , sn). Let us first
consider the case n = 1. Write s = s1 and x = xs. The equation
a = fg implies that f, g ∈ U(K[x, x−1]), so without loss of generality
we have f = cxm and g = dx−m for some m ≥ 0 and c ∈ D and
d ∈ (sm) with cd = a. The fact that f and g are comaximal in L(D; s)
implies that there are h1, h2 ∈ L(D; s) with fh1 + gh2 = 1. Write
h1 = akx

k+· · ·+a−kx
−k and h2 = bkx

k+· · ·+b−kx
−k for some k ≥ m,

where aj , bj ∈ D for j ≥ 0 and aj , bj ∈ (s−j) for j < 0. The coefficient
of xj in fh1 + gh2 is caj−m + dbj+m, where we set ai = bi = 0 for
i /∈ {−k, . . . , k}. We have a−m, d ∈ (sm), so 1 = ca−m + dbm ∈ (sm),
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simultaneously showing that c and d are comaximal in D and that
m = 0. Thus, f = c and g = d, so a = fg is a comaximal factorization
in D. Now, if n ≥ 2, we have a = fg a comaximal factorization in
L(D; s1, . . . , sn−1) by the case n = 1, and hence a = fg is a comaximal
factorization in D by induction.

Now let a = λf1 · · · fn be any comaximal factorization of a in L(D;S).
By fact (2) we get λ ∈ U(D), so f1 · · · fn is a comaximal factorization
of λ−1a ∈ D# in L(D;S). If n = 1, then f1 = λ−1a ∈ D#, so λf1
is a comaximal factorization of a in D. So, let us assume n ≥ 2.
Then, f1(f2 · · · fn) is a length 2 reduced comaximal factorization of
λ−1a in L(D;S), so by the previous paragraph we have f1(f2 · · · fn) a
comaximal factorization in D, and by induction f2 · · · fn is a comaxi-
mal factorization in D, so λf1 · · · fn is a comaximal factorization in D
by the refinability of τd.

It follows from the above work that the complete comaximal factor-
izations of a given a ∈ D# in D coincide with its complete comaximal
factorizations in L(D;S). The last statement of the lemma follows
immediately from this observation. �

In the above lemma, we can also note that D satisfies d-ACCP if
L(D;S) does. This same statement would be true with any domain T
with D# ⊆ T# in place of L(D;S).

We continue with the construction from [11]. Let D be an integral
domain. Inductively define A0(D) = D and An(D) = L(An−1(D);
Red(An−1(D))) for n ≥ 1. Define A∞(D) =

∪∞
n=0 A

n(D). The follow-
ing facts were proved in [11, Theorem 3.3], where A∞ = A∞(D).

(1) A∞ ∩K = D.
(2) U(A∞) = U(D), so D# ⊆ (A∞)#.
(3) Red(D) ⊆ Red(A∞).
(4) Irr(D) ⊆ Irr(A∞).
(5) Any reducible element in A∞ is a product of two non-associate

atoms in A∞.

(We have added “non-associate” to (5); this additional fact can be
readily deduced from fact (2) and a careful reading of the proof of [11,
Theorem 3.3 (5)].)

We augment these with the following.
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Theorem 3.5. Let D be an integral domain. For each a ∈ D#, the
comaximal factorizations of a in D coincide with the comaximal factor-
izations of a in A∞(D). So D is a CFD (respectively, bounded CFD,
d-FFD, d-HFD, UCFD, anti -CFD) if A∞(D) is.

Proof. Take any a ∈ D#. It follows from fact (2) that any comaxi-
mal factorization of a in D is a comaximal factorization in A∞. Now
let a = λf1 · · · fn be any comaximal factorization of a in A∞. Then
there is a k ≥ 1 with λf1 · · · fn a comaximal factorization in Ak(D) =
L(Ak−1(D); Red(Ak−1(D))), and hence a comaximal factorization in
Ak−1(D) by Lemma 3.4, and hence a comaximal factorization in D by
induction.

The proof of the last statement is similar to the proof of the last
part of Lemma 3.4. �

We are now ready to give the promised example. Coincidentally,
this also will provide an example of a τ[ ]-atomic domain that is not a
CFD.

Example 3.6. (Every domain is a subring of a domain that is atomic
and τ[ ]-atomic but not a CFD.) Given a domain, Corollary 3.3 extends
it to a domain R that is not a CFD, and we further extend it to A∞(R),
which is both atomic and τ[ ]-atomic by fact (5) from the above list but
is not a CFD by Theorem 3.5.

4. Generalizations of prime elements. Let D be an integral do-
main and τ a symmetric relation on D#. In [3, Section 2] the follow-
ing two generalizations of primeness were defined: a nonzero nonunit is
τ -prime (respectively, |τ -prime) if whenever it divides (respectively, τ -
divides) a τ -factorization, it divides (respectively, τ -divides) one of the
τ -factors. We add a third generalization, defining a nonzero nonunit to
be half |τ -prime if whenever it τ -divides a τ -factorization, it divides one
of the τ -factors. (These three are special cases of the τ1-τ2-τ3-primes
defined in [3, Section 2]. For three symmetric relations τ1, τ2, τ3 on
D#, we say that a ∈ D# is τ1-τ2-τ3-prime if, whenever a |τ2 λa1 · · · an,
a τ1-factorization, a |τ3 ai for some i.) For example, the pseudo-primes
studied in [9] are τd-primes. In [3, Proposition 2.4] it was shown that,
if τ is multiplicative and divisive, then a τ -prime is |τ -prime. We note
that their proof actually demonstrates the following stronger result. If
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τ is combinable and divisive, then the half |τ -primes and |τ -primes coin-
cide. In summary, the following diagram of implications holds, where a
dotted line indicates that the implication holds if τ is both combinable
and divisive.

prime // τ -prime // half |τ -prime //

~~

τ -irreducible

|τ -prime

OO

There are no further nontrivial implications, even in the case where τ
is both multiplicative and divisive. This we briefly demonstrate with
the following examples:

(1) it is well known that an irreducible need not be prime;
(2) the previously defined relation τ(2) on Z# is refinable, associate-

preserving, and multiplicative, but the |τ(2)-primes are precisely

the odd primes (see [3, Section 5]);
(3) the relation τ∅ is multiplicative and divisive and every nonzero

nonunit is τ∅ prime;
(4) Example 4.3 below exhibits a multiplicative and divisive relation τ

and a |τ -prime that is not τ -prime.

In the case of standard factorization, there is a strong link be-
tween unique factorization and prime elements. Analogously, in τ -
factorization, there is a strong link between unique τ -factorization and
the various kinds of “τ -primes.” For example, it follows immediately
from [10, Lemma 4.9] that if τ1 ≤ τ2 are divisive relations and every
nonzero nonunit is a τ2-product of τ2-primes, then D is a τ1-UFD. In
particular, this provides a proof of the fact that a UFD is a τ -UFD
for τ -divisive that considerably simplifies the one given in [3, Theorem
2.11]. However, in order to know whether the proof applies to the more
general fact that a τ2-UFD is a τ1-UFD for divisive relations τ1 ≤ τ2,
we would need to know whether in this setup every nonzero nonunit
is necessarily a τ2-product of τ2-primes. This motivates us to consider
the following statements and the implications between them.

(1) D is a τ -UFD.
(2) D is τ -atomic and every τ -atom is |τ -prime.
(3) D is τ -atomic and every τ -atom is half |τ -prime.
(4) D is τ -atomic and every τ -atom is τ -prime.
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One could study the implications between these statements with
various degrees of hypotheses on τ , but by far the most natural and
interesting hypothesis to impose is that τ is refinable and associate-
preserving. This case is fully solved by the following theorem.

Theorem 4.1. If τ is refinable and associate-preserving, then (4) ⇒
(1) ⇔ (2) ⇔ (3).

Proof. The fact that (2) and (4) each imply (3) is obvious, and the
proof of (1) ⇔ (2) can be obtained by small changes to the proof of [3,
Theorem 2.7], so all that remains is (3) ⇒ (1). For this, it will suffice
to show that any two τ -factorizations of the same nonzero nonunit into
half |τ -primes are equal up to order and associates. Suppose, to the
contrary, that there are two such τ -factorizations λa1 · · · am = µb1 · · · bn
that are not equal up to order and associates. We can choose such an
example with m + n minimal, and we observe that this forces ai � bj
for each i, j. Therefore, using this fact along with the fact that the ai’s
and bj ’s are half |τ -prime, it follows easily by induction that we may
reorder so that a1 | b1 | a2 | · · · | an | bn | an+1. However, the element
an+1 is half |τ -prime, so it must divide (and hence be an associate of)
some bi, a contradiction. �

We remark that for some of the implications one can drop one or
both of the hypotheses on τ in the above theorem. Perhaps the most
interesting observation along these lines is that the proof of (3) ⇒ (1)
above did not require any assumptions on τ . However, the full strength
of the theorem’s hypotheses was needed for (1) ⇒ (3), as the following
example shows.

Example 4.2. (In a τ -UFD, an atom (hence τ -atom) need not be half
|τ -prime, even for τ associate-preserving or refinable.)

(Associate-preserving case.) Let R be an integral domain, D =
R[x, y2, xy], and τ be the symmetric relation on D# determined by
(λx2)τ(µy2), (λxy)τ(µxy), and (λx)τ(µx) for λ, µ ∈ U(D). Note that
τ is associate-preserving and that D is a τ -UFD. (The key fact to
note for the latter is that τ -factorizations of the form (λx2)(µy2) are
not τ -atomic, so the associates of (xy)2 do indeed have unique τ -atomic
factorizations.) However, because (xy)2 = (x2)(y2) are τ -factorizations
and xy does not divide x2 or y2, the atom xy is not half |τ -prime.
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(Refinable case.) Let R be an integral domain whose characteris-
tic is not 2, D = R[x2, x3], and τ be the symmetric relation on D#

determined by (x2)τ(x4), (x2)τ(−x2), and (x3)τ(x3). Observe that
the only nontrivial τ -factorizations are those of the forms λ(x2)(x4),
λ(x2)(−x2), and λ(x3)n (n ≥ 2). From this we check that τ is refinable
and D is a τ -UFD. (For the former, the key issue to note is that the τ -
factorizations of the form λ(x2)(x4) do not violate refinability because
x4 has no nontrivial reduced τ -factorization. The key issue for the lat-
ter is that of the τ -factorizations λ(x2)(x4) = λ(x3)2, only the second
is τ -atomic.) However, because (x2)(x4) = (x3)2 are τ -factorizations
and x2 - x3, the atom x2 is not half |τ -prime.

Of course all four statements are equivalent in the case τ = τD, and
[9, Theorem 1.7] shows that they are also equivalent in the case τ = τd.
These two relations are both divisive (and in fact also multiplicative),
so the question that [3] poses is a natural one: does (1) ⇒ (4) for τ
divisive? If this were the case, then all four statements would be equiva-
lent for τ divisive, and, as mentioned above, one could use [10, Lemma
4.9] to considerably simplify the previous proofs of the fact that τ2-
UFD implies τ1-UFD for divisive τ1 ≤ τ2. Unfortunately, however, the
following example shows that (1) ; (4), even for τ both multiplicative
and divisive.

Example 4.3. (In a τ -UFD, an atom (hence a τ -atom) need not be
τ -prime, even if τ is both multiplicative and divisive.) Let R be an
integral domain and D = R[x2, y2, xy], where x and y are algebraically
independent indeterminates over D. Define τ to be the symmetric
relation on D# determined by (ux2m)τ(vy2n) for m,n ≥ 1 and u, v ∈
U(R). Note that τ is divisive and multiplicative. The only elements
in D# that are not τ -atoms are those of the form λ(x2m)(y2n), which
also happens to be their unique τ -atomic factorization (up to associates
and order). So D is a τ -UFD. Now, xy | (x2)(y2), where the latter is a
τ -factorization, but xy - x2, y2, so the atom xy is not τ -prime.

Although that last example may seem discouraging, we end this pa-
per on a positive note, showing how one can use the half |τ -primes to
give the desired simplified proof. (This also allows one to weaken the
requirement that the larger relation is divisive, which was an essential
component of previous proofs.) This, along with the above example,
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leads us to propose that perhaps the half |τ -primes are more funda-
mental than the τ -primes.

Theorem 4.4. Let τ1 ≤ τ2 be symmetric relations on D# with τ1
divisive and τ2 refinable and associate-preserving. If D is a τ2-UFD,
then it is a τ1-UFD.

Proof. As discussed in Section 2, a small modification of the corre-
sponding proof in [3, Section 2] shows that a τ2-BFD is a τ1-BFD, so it
will suffice to show that every τ1-atom is half |τ1 -prime ifD is a τ2-UFD.
So we assume that D is a τ2-UFD and that λca1 · · · am = µb1 · · · bn are
τ1-factorizations with m ≥ 0, n ≥ 1, and c τ1-irreducible, and we need
to show that c divides some bi. Because τ2 is associate-preserving and
D is τ2-atomic, we can find reduced τ2-factorizations of c, each ai, and
each bj into τ2-atoms. We replace each factor in the τ2-factorizations
λca1 · · · am = µb1 · · · bn with these reduced τ2-factorization into τ2-
atoms, and by the refinable property the result is two τ2-atomic factor-
izations of the same element. Using uniqueness and collecting factors as
appropriate, we obtain c = b′1 · · · b′n, where each b′i | bi. Using divisive-
ness, we see that this is a τ1-factorization (ignoring any unit factors).
So, because c is τ1-irreducible, exactly one b′i is a nonunit, and we
obtain c ∼ b′i | bi, as desired. �

We make one final remark that this is one of the few results where we
need a relation to be divisive rather than merely associate-preserving
and refinable. For example, recall the symmetric relation τ(2) on Z#

given by aτ(2)b ⇔ a ≡ b mod 2. This relation is refinable, associate-
preserving, and multiplicative, yet the UFD Z is a τ(2)-HFD but not a
τ(2)-UFD. (See [3, Section 5] for further details.)
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