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GEOMETRY OF CANONICAL SELF-SIMILAR TILINGS

ERIN P.J. PEARSE AND STEFFEN WINTER

ABSTRACT. We give several different geometric charac-
terizations of the situation in which the parallel set Fε of a
self-similar set F can be described by the inner ε-parallel set
T−ε of the associated canonical tiling T , in the sense of [15].
For example, Fε = T−ε ∪ Cε if and only if the boundary of
the convex hull C of F is a subset of F , or if the boundary
of E, the unbounded portion of the complement of F , is the
boundary of a convex set. In the characterized situation, the
tiling allows one to obtain a tube formula for F , i.e., an ex-
pression for the volume of Fε as a function of ε. On the way,
we clarify some geometric properties of canonical tilings.

Motivated by the search for tube formulas, we give a gen-
eralization of the tiling construction which applies to all self-
affine sets F having empty interior and satisfying the open
set condition. We also characterize the relation between the
parallel sets of F and these tilings.

1. Introduction. As the basic object of our study is a self-affine
system and its attractor, the associated self-affine set, we begin by
defining these terms.

Definition 1.1. For j = 1, . . . , N , let Φj : Rd → Rd be an
affine contraction whose eigenvalues λ all satisfy 0 < |λ| < 1. Then
{Φ1, . . . ,ΦN} is a self-affine iterated function system.

Definition 1.2. A self-similar system is a self-affine system for which
each mapping is a similitude, i.e.,
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(1.1) Φj(x) := rjAjx+ aj ,

where for j = 1, . . . , N , we have 0 < rj < 1, aj ∈ Rd and Aj ∈ O(d),
the orthogonal group of d-dimensional Euclidean space Rd. The
numbers rj are referred to as the scaling ratios of {Φ1, . . . ,ΦN}.

Let F be the self-affine set generated by the mappings Φ1, . . . ,ΦN ,
i.e., the unique (nonempty and compact) set satisfying Φ(F ) = F where
Φ is the set mapping

(1.2) Φ :=

N⋃

j=1

Φj .

The existence and uniqueness of set F is ensured by the classic results
of Hutchinson in [6]. It is shown in [15] that, when a self-affine system
satisfies the tileset condition (TSC) and the nontriviality condition
(given here in Definitions 2.4 and 2.9, respectively), then there is a
natural tiling of the convex hull C = [F ]. That is, {Φ1, . . . ,ΦN}
generates a decomposition of C into open sets T = {Rn : n ∈ N},
in the sense that

⋃∞

n=1
Rn = C and Rn ∩Rm = ∅ for n �= m,

cf. Definition 3.1. One of our main objectives in this paper is to explore
the consequences of these two conditions and characterize some prop-
erties of the tilings. In particular, we clarify the relationship between
the tileset condition as defined in [15] and the open set condition; in
fact, the latter is implied by the former, cf. Proposition 2.5. The non-
triviality condition forbids self-similar sets with convex attractors, like
the square or interval. Additionally, we show in Proposition 2.10 that
the nontriviality condition ensures the existence of tiles in the tiling
construction. Under TSC, nontriviality is also equivalent to F having
empty interior, see Proposition 2.11. We discuss the boundary of the
tiling and its Hausdorff dimension in Proposition 3.5 and Remark 5.12.

In [15], it was noted that tiling T constitutes the bulk of the nontrivial
portion of the complement of F and, consequently, that one may be able
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to study the ε-parallel sets (or ε-neighborhoods) of F by considering
the inner ε-neighborhoods of the tiling. By the ε-parallel set Aε of a set
A ⊆ Rd, we mean all points not in the interior of A but with distance
at most ε to A. (Note that our usage of Aε differs from the usual one,
where the interior points of A are included, but it is more convenient
for our purposes.) Similarly, the inner ε-parallel set A−ε consists of
points of the closure of A within distance ε of bdA, see Definition 4.1
for the details. We determine the conditions under which the tiling
allows a (almost disjoint, cf. (4.3)) decomposition of Fε of the following
form:

(1.3) Fε = T−ε ∪ Cε.

Here T :=
⋃
Rn denotes the union of the tiles of T . In Theorems

4.4 and 4.9, we give eight equivalent conditions which characterize
this state of affairs; these results will be collectively referred to as the
Compatibility Theorem.

In Section 5 we generalize the tiling construction introduced in [15]
and discussed in earlier sections of the present paper. Specifically, we
replace the tileset condition with the less restrictive open set condition
(see Definition 2.1) and replace the convex hull with an arbitrary
feasible open set. Finally, in Section 6 we extend the Compatibility
Theorem to the generalized self-similar tilings developed in Section 5.
For instance, the tiling generated from a feasible set O is compatible if
and only if bdO ⊆ F .

Compatibility allows one to employ the tiling to obtain a tube formula
for F , and this is the driving motivation for the current paper. By a
tube formula of a set A ⊂ Rd, we mean an expression which gives the
Lebesgue volume V (Aε) of Aε as a function of ε. Such objects are
of considerable interest in spectral geometry; see [8 10], as well as the
more general references [5, 18, 20]. In convex geometry, tube formulas
are better known as Steiner formulas:

(1.4) V (Aε) =

d−1∑

k=0

εd−kκd−kCk(A)

For compact convex subsets A of Rd, V (Aε) is a polynomial in ε, and
the coefficients Ck(A) are called total curvatures or intrinsic volumes;
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these are important geometric invariants of set A and are related to the
integrals of mean curvature, provided the boundary of A is sufficiently
smooth. A polynomial expansion similar to (1.4) is known for sets of
positive reach [4]. Also for polyconvex sets (finite unions of convex sets)
and certain unions of sets with positive reach, polynomial expansions
are known. However, in these latter cases, the polynomial describes
a “weighted” parallel volume which counts points in the parallel sets
with different multiplicities given by an index function, cf. [17, 22].

For more singular sets like fractals one cannot expect such polynomial
behavior. Tube formulas for subsets A of R have been extensively
studied, see [11] and the references therein, and they have been related
to the theory of complex dimensions. Here the tube formulas typically
take the form of an infinite sum. In [8] a first attempt was made to
generalize this theory to higher dimensions, and tube formulas have
been obtained for so called fractal sprays. The theory is developed
further in [10].

A self-similar tiling T is a certain kind of fractal spray, and so
this theory applies. One can associate a geometric zeta function
ζT : C × (0,∞) → C which encodes all the geometric information
of T . The complex dimensions D of the tiling are the poles of ζT .
Then, for T =

⋃
Rn, a tube formula (describing the inner ε-parallel

volume of the union of the tiles) of the following form holds

V (T−ε) =
∑

w∈D
res (ζT (s, ε); s = w), ε > 0,

see [8 10] for details. Under mild additional assumptions, a factor
εd−w can be separated from each residue, and the formula takes a form
very similar to the Steiner formula:

(1.5) V (T−ε) =
∑

w∈D
εd−wCw(T ), ε > 0,

with coefficients Cw independent of ε. Just as in (1.4), it turns out
that D always contains {0, 1, 2, . . . , d− 1}.
In [21], the author develops a theory of fractal curvatures: a family

of geometric invariants Cf
k (F ), k = 0, 1, . . . , d. The fractal Euler

characteristic Cf
0 was introduced in [12], and Cf

d coincides with the
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Minkowski content. These curvatures are defined for certain self-
affine fractals and provide a fractal analogue of the coefficients Ck(A)
mentioned in (1.4). Indeed, they are even localizable as curvature
measures in the same way that the coefficients of the Steiner formula
are, cf. [18]. However, the fractal analogue of the Steiner formula is
absent from the context of [21], and it is a major impetus for this paper
to establish such a link. In particular, the methods of the present
paper and the theory of fractal curvatures are both applicable when
the envelope (introduced in Definition 4.5) is polyconvex. It remains
to be determined if the coefficients Cw(T ) appearing in (1.5) can thus
be interpreted as curvatures and, if so, if they are compatible with
the theory of [12, 21]. The Compatibility Theorems of the present
paper describe how parallel sets of the tilings are related to parallel
sets of F . For compatible sets F , a tube formula for F is obtained
from decomposition (1.3) as the sum of the (inner) tube formula of
an appropriate tiling T and a “trivial” part, describing the “outer”
parallel volume of the tiled set, i.e., the convex hull C of F :

(1.6) V (Fε) = V (T−ε) + V (Cε).

Here, V (T−ε) is as in (1.5) and V (Cε) is as in (1.4). A similar
formula holds for generalized tilings when a compatible feasible set
exists. The Compatibility Theorems characterize the situation in
which decomposition (1.6) holds; they also show the limitations of
this approach. We illustrate this with suitable counterexamples (see
Proposition 6.3).

2. Tileset condition and nontriviality condition. The open
set condition is a classical separation condition for the study of self-
similarity, cf. [3].

Definition 2.1. A self-affine system {Φ1, . . . ,ΦN} satisfies the open
set condition (OSC) if and only if there is a nonempty open set O ⊆ Rd

such that

Φj(O) ⊆ O, j = 1, 2, . . . , N,(2.1)

Φj(O) ∩ Φk(O) = ∅ for j �= k.(2.2)

In this case, O is called a feasible open set for F .
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We denote the convex hull of a set A ⊆ Rd (that is, the smallest
convex set containing A), by [A]. In particular, we denote the convex
hull of the attractor F of a system {Φ1, . . . ,ΦN} by C = [F ].

Remark 2.2. F is always assumed to be embedded in the smallest
possible ambient space, i.e., Rd = affF is the affine hull of F , and thus
C is of full dimension.

It was a crucial observation in [15] that the convex hull satisfies
Φj(C) ⊆ C, which implies the nestedness of C under iteration, cf.
[15, Theorem 5.1, page 3162]:

Proposition 2.3. Φk+1(C) ⊆ Φk(C) ⊆ C, for k = 1, 2, . . . .

The last proposition is reminiscent of [6, subsection 5.2 (3)]. We
recall the conditions introduced in [15] to ensure the existence of a
canonical tiling of the convex hull of F , namely, the tileset condition
and the nontriviality condition.

Definition 2.4. A self-affine system {Φ1, . . . ,ΦN} (or its attractor
F ) satisfies the tileset condition (TSC) if and only if it satisfies OSC
with intC as a feasible open set.

Proposition 2.5. F satisfies TSC if and only if

(2.3) intΦj(C) ∩ intΦk(C) = ∅ for j �= k.

Proof. The if-part is obvious; for the only-if-part, apply Proposi-
tion 2.3.

Common examples satisfying TSC (and NTC, defined just below in
Definition 2.9) include the Sierpinski gasket and carpet, the Cantor set,
the Koch snowflake curve and the Menger sponge. It is obvious from the
definition that TSC implies OSC. The following examples demonstrate
that the converse is not true.
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FIGURE 1. A self-similar system which satisfies the open set condition but not the
tileset condition; see Example 2.7. The attractor in this example tiles all of R2.

Example 2.6. Let F ⊆ R be the self-similar set generated by the
system {Φ1,Φ2,Φ3} where the mappings Φj : R → R are given by
Φ1(x) = (1/3)x, Φ2(x) = (1/3)x + (2/3) and Φ3(x) = (1/9)x+ (1/9),
respectively. Let O = (0, 1/3) ∪ (2/3, 1). Clearly, O is a feasible open
set for the OSC for F since the images Φ1O = (0, 1/9) ∪ 2/9, 1/3),
Φ2O = (2/3, 7/9) ∪ (8/9, 1) and Φ3O = (1/9, 4/27) ∪ (5/27, 2/9) are
subsets of O and pairwise disjoint. Thus F satisfies the OSC. On the
other hand, the TSC is not satisfied. The convex hull of F is C = [0, 1],
and the sets Φ1C = [0, 1/3] and Φ3C = [1/9, 2/9] strongly overlap.

Note that it is even possible for a self-affine set to satisfy the strong
separation condition (that is, that the images Φj(F ) are pairwise
disjoint) but not the tileset condition. An example of such a set
is obtained, for instance, by replacing the mapping Φ3 in the above
example with the mapping Φ′

3(x) = (1/27)x+(4/27). The images Φ1F
′,

Φ2F
′ and Φ′

3F
′ of the corresponding self-similar set F ′ are pairwise

disjoint, while the images of its convex hull have intersecting interiors.

Example 2.7. Consider a system of three similarity mappings, each
with scaling ratio 1/

√
3 and a clockwise rotation of π/2. The mappings

are illustrated in Figure 1. They form a system which satisfies the
open set condition (simply take the interior of the attractor) but not
the tileset condition. On the right, the attractor has been shaded for
clarity; the dark overlay indicates the intersection of the convex hulls
of two first level images of the attractor.

Remark 2.8. After a talk on the topic of the present paper at
the conference, Fractal Geometry and Stochastics IV, at Greifswald,
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Kenneth Falconer asked the following question: “Is there an easy way
to decide whether, for a given self-similar set F satisfying OSC, there
is a feasible open set that is convex?” The results in this paper provide
the following answer.

There is a convex feasible open set for F if and only if F satisfies the
tileset condition, i.e., if and only if the interior of the convex hull C
of F is feasible. To see this, assume that a feasible open set O exists
that is convex. Then its closure O is closed and convex and satisfies
F ⊆ O (cf. Proposition 5.1). It follows that C ⊆ O (since the convex
hull is the intersection of all closed convex sets containing F ) and thus
intC ⊆ O. But this implies Φi(intC) ∩ Φj(intC) ⊆ ΦiO ∩ ΦjO = ∅.
Hence, F satisfies the tileset condition by Proposition 2.5. Thus, it is
sufficient to check whether the interior of the convex hull is feasible to
decide the above question.

Definition 2.9. We say that {Φ1, . . . ,ΦN} satisfies the nontriviality
condition (NTC) if and only if its attractor F is not convex.

The nontriviality condition is, besides the TSC, the second necessary
condition to ensure the existence of a canonical self-affine tiling for
F . Proposition 2.10 shows that nontriviality is precisely the condition
that ensures the generators of the tiling exist, as will be apparent from
Definition 3.3. The following proposition shows that the present usage
of “nontriviality” agrees with that of [15].

Proposition 2.10. A self-affine system {Φ1, . . . ,ΦN} is nontrivial
if and only if the images Φj(C) of C do not cover int (C), i.e., the
convex hull C satisfies

(2.4) int (C) �⊆ Φ(C).

Proof. First observe that (2.4) is equivalent to

(2.5) C �⊆ Φ(C).

Indeed, the implication (2.4) ⇒ (2.5) is obvious. Conversely, if (2.5)
holds, then C ∩ Φ(C)� �= ∅. Hence, some point x ∈ C ∩ Φ(C)�
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exists and, since Φ(C)� is open, some δ > 0 such that the ball
B(x, δ) is contained in Φ(C)�. Now, since C is convex and thus the
closure of its interior (dimC = d, cf. Remark 2.2), there is a point
y ∈ B(x, δ) ∩ int (C). Hence, int (C) ∩ Φ(C)� is nonempty, implying
(2.4).

Recall that Φ(C) ⊆ C by nestedness (Proposition 2.3). Therefore, if
(2.4) fails, its equivalence with (2.5) immediately implies C = Φ(C).
By uniqueness of the invariant set (with respect to Φ), this means that
F is equal to its convex hull C. Obviously, if the nontriviality condition
is satisfied, then F is not equal to its convex hull.

For self-affine sets satisfying TSC, we give a different characterization
of nontriviality. F ⊂ Rd is trivial if and only if it has nonempty interior.

Proposition 2.11. Let F be a self-affine set satisfying TSC. Then
F is nontrivial if and only if intF = ∅.

Proof. If F is nontrivial, then the set T0 := int (C \ Φ(C)) is
nonempty, but T0 ∩ F = ∅, since F ⊆ Φ(C). Observe that TSC
implies Φi(intC) ∩ Φj(F ) = ∅ for i �= j. Therefore, Φi(T0) ∩ F ⊆
Φi(T0)∩Φi(F ) = Φi(T0∩F ) = ∅, and so Φ(T0)∩F = ∅. By induction,
we get Φk(T0) ∩ F = ∅ for k = 0, 1, 2, . . . . Now let x ∈ F . Since, by
the contraction principle, dH(F,Φk(T0)) = dH(Φk(F ),Φk(T0)) → 0 as

k → ∞, a sequence xk → x exists with xk ∈ Φk(T0) = Φk(T0). For
each xk there are points in Φk(T0) arbitrarily close to xk. Hence, x
cannot lie in the interior of F .

For the converse, if F is trivial, then it is convex by Proposition 2.10.
In view of Remark 2.2, intF �= ∅.

Remark 2.12. The fact that self-affine sets satisfying TSC and
NTC have empty interior was used implicitly in [15] without mention.
Proposition 2.11 clarifies that this was justified.

Combining Propositions 2.10 and 2.11, we infer that, for self-affine
sets satisfying TSC, nonempty interior means convexity. For the special
case of self-similar sets, convexity is also equivalent to having full
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dimension. This follows from a result of Schief [17, Corollary 2.3]
stating that, for self-similar sets F ⊆ Rd satisfying OSC, dimHF = d
implies that F has interior points.

Corollary 2.13. Let F ⊆ Rd be a self-affine set satisfying TSC. If
F has Hausdorff dimension strictly less than d, then F is nontrivial.
Moreover, if F is self-similar, then the converse also holds.

Proof. If F is trivial, then, by Proposition 2.11, F has a nonempty
interior which implies dimHF = d. Now let F be self-similar and
satisfy TSC. Assume dimHF = d. Since TSC implies OSC, by [18,
Theorem 2.2 and Corollary 2.3], F has nonempty interior. Therefore,
by Proposition 2.11, F is trivial.

See also Proposition 5.4 and Corollary 5.6 for analogues of Proposi-
tion 2.11 and Corollary 2.13 in the more general context of OSC.

3. Canonical self-affine tilings. Let {Φ1, . . . ,ΦN} be a self-affine
system with attractor F satisfying both TSC and NTC. In this section,
we recall the construction of the so-called canonical self-affine tiling
of the convex hull C of F introduced in [15, Section 3]. On the way,
we prove some foundational results concerning open tilings, thereby
clarifying a couple of technical points which were left vague in [15].

Definition 3.1. A sequence A = {Ai}i∈N of pairwise disjoint open
sets Ai ⊆ Rd is called an open tiling of a set B ⊆ Rd (or a tiling of B
by open sets) if and only if

B =

∞⋃

i=1

Ai.

Sets Ai are called the tiles.

Note that Definition 3.1 is weaker than the usual definition of a tiling:
no local finiteness is assumed. In other words, a given compact set may
be intersected by infinitely many of the tiles. The case that B is tiled
by a finite number m ∈ N of tiles A1, . . . , Am is included by setting
Ai := ∅ for i > m. Since here we are more interested in open tilings
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of B by an infinite number of sets, the tiles Ai are usually assumed
to be nonempty. Also note that each sequence {Ai} of disjoint open
sets is an open tiling of some set B ⊆ Rd but this set is not uniquely
determined. For instance, if {Ai} is an open tiling of B, then it is also
an open tiling of intB and of B. Sequence {Ai} only determines the
closure of B uniquely.

The following observation regarding the boundaries of tiles will be
useful in the sequel. In particular, it is used repeatedly in the proof of
Theorem 4.4, a central result of this paper. Let {Ai} be an open tiling
of a set B. Denote by A =

⋃∞
i=1 A

i the union of the tiles. Since the
sets Ai are open, A is open as well. The boundary of A (defined in

the usual way as bdA = A ∩ A� or, since A is open, equivalently by
bdA = A \A) is characterized by the tiles as follows:

Lemma 3.2.

bdA =
⋃

i

bdAi.

Proof. (⊆). Let x ∈ bdA. Then a sequence {xk}∞k=1 exists in
A =

⋃
i A

i converging to x as k → ∞. Using {xk}, we construct a
sequence {x′

k} in
⋃

i bdA
i in the following way. For each xk there is

a (unique) index n(k) ∈ N such that xk ∈ An(k). Since An(k) is open,
x /∈ An(k). Now let x′

k be any point of the set [x, xk] ∩ bdAn(k), where
[x, xk] is the (closed) line segment between x and xk. Such a point
exists, since x ∈ (An(k))� (but it may not be unique). Then, clearly,
{x′

k} is a sequence in
⋃

i bdA
i. Moreover, x′

k → x as k → ∞, since

xk → x and |x − x′
k| < |x − xk|. But this implies that x ∈

⋃
i bdA

i,
proving the inclusion from left to right.

(⊇). For a proof of the reversed inclusion, let x ∈
⋃

i bdA
i. Then

a sequence {yk} ⊆
⋃

i bdA
i exists such that yk → x as k → ∞.

The existence of this sequence (and disjointness of the tiles Ai) imply
immediately that x /∈ A, since an interior point of A cannot be an
accumulation point of a sequence in A�. Furthermore, each yk is an
element of at least one of the sets bdAi. Let n(k) be an index such
that yk ∈ bdAn(k). For each yk, we find points in An(k) arbitrarily
close to yk. Choose y′k ∈ An(k) such that |yk − y′k| < 1/k. Then
|x− y′k| ≤ |x− yk|+ |yk − y′k| < |x− yk|+ (1/k) → 0 as k → ∞. Thus,
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y′k → x. Recalling that y′k ∈ An(k) and thus {y′k} ⊆
⋃

iA
i = A, we

conclude that x ∈ A. Together with x /∈ A, this yields x ∈ A\A = bdA,
completing the proof.

Let

(3.1) W :=
∞⋃

k=0

{1, . . . , N}k

denote the set of all finite words formed by the alphabet {1, . . . , N}.
For any word w = w1w2 . . . wn ∈ W , let Φw = Φw1 ◦ Φw2 ◦ · · · ◦ Φwn .
In particular, if w ∈ W is the empty word, then Φw = Id.

Denote by G1, G2, . . . the connected components of the open set
T0 := int (C \ Φ(C)); T0 =

⋃
q∈Q Gq. The index set Q ⊆ N may be

infinite, but, since T0 is open, the number of its connected components
is certainly at most countable.

Definition 3.3. The canonical self-affine tiling associated with
{Φ1, . . . ,ΦN} (or with F ) is

(3.2) T = {Φw(Gq)
...w ∈ W, q ∈ Q}.

The open subsets Gq of C are called the generators of T . It is shown
in [15, Theorem 5.16, page 3167] that T is an open tiling of C = [F ]
in the sense of Definition 3.1, i.e., the sets Φw(Gq) are pairwise disjoint
and

C =
⋃

R∈T
R.

Write T =
⋃

R∈T R for the union of the tiles of T and bdT for the

boundary of this set. Clearly, T is open, T = C and so bdT = T \T =
C \ T . By Lemma 3.2, we have

(3.3) bdT =
⋃

R∈T
bdR.

Note that the closure in representation (3.3) cannot be omitted. One
has F ⊆ bdT (cf. Lemma 3.4), while F �⊆

⋃
R∈T bdR. If the Hausdorff
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dimension dimHF is strictly greater than d−1, then taking the closure
leads to a jump of dimension. More precisely, one has the equality
dimHbd T = max{dimHF, d − 1}, as is shown in Proposition 3.5. For
the proof, it is convenient to work with a slight variation of the tiling
described above: it is possible to consider the set T0 as the generator
of a tiling, instead of its connected components Gq. This point of
view leads to a different tiling T ′ := {Φw(T0)

...w ∈ W} of C whose
tiles are not necessarily connected. It is easily seen that T ′ is also
an open tiling of C in the sense of Definition 3.1. Moreover, for each
tile Φw(T0) ∈ T ′, {Φw(Gq)

... q ∈ Q} is an open tiling of Φw(T0). If
T ′ =

⋃
R∈T ′ R is the union of the tiles, then by two applications of

Lemma 3.2, the boundaries of both tilings coincide:

bdT ′ =
⋃

R′∈T ′
bdR′ =

⋃

w∈W

bdΦwT0 =
⋃

w∈W

⋃

q∈Q

bdΦwGq = bdT.

Lemma 3.4.
bdT = F ∪

⋃
R∈T ′ bdR.

Proof. (⊇). From Lemma 3.2, we have
⋃

R∈T ′ bdR ⊆ bdT ′ = bdT .
For the inclusion F ⊆ bdT , note that T is an open tiling of C, and
thus F ⊆ C =

⋃
R∈T R = T . But, by [15, Theorem 5.16, page 3167],

R ∩ F = ∅ for all R ∈ T , i.e., F ∩ T = ∅. Thus, F ⊆ T \ T = bdT .

(⊆). Let x ∈ bdT = bdT ′ = bd (
⋃

R∈T ′ R). A sequence (xi)
exists of points converging to x such that each xi is in some tile
Ri ∈ T ′. For each of these tiles Ri, there is a word w(i) ∈ W such that
Ri = Φw(i)(T0). Observe that

dH
(
Ri,Φw(i)(F )

)
= dH

(
Φw(i)(T0),Φw(i)(F )

)

= rw(i)dH(T0, F )

≤ rw(i)diamC,

since both F and T0 are subsets of C. For the sequence of tiles Ri,
there are two possibilities:

(i) There is a subsequence (ik) such that diam (Φw(ik)(T0))
k→∞−→ 0.

(ii) There is a constant c > 0 such that diam (Φw(i)(T0)) ≥ c for each
i ∈ N.
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Case (i) implies rw(ik) → 0, and hence d(xik , F ) → 0, so that x ∈ F .

Case (ii) is when x ∈ bdR for some R ∈ T ′. To see this, observe that
diam (Φw(T0)) ≥ c for only finitely many words w ∈ W . Hence, at least
one of these words occurs infinitely often in the sequence (w(i)), i.e.,
there is a w ∈ W and a subsequence (ik) such that w(ik) = w for all
k. But this implies xik ∈ Φw(T0) =: R for all k, and thus x ∈ R, since
xik → x. It follows that x ∈ bdR, since R is open and x ∈ bd T ′.

Proposition 3.5.

dimHbdT = max{dimHF, d− 1}.

Proof. For T0 = int (C \ Φ(C)), observe that bdT0 is a subset of
bdC ∪

⋃
j bdΦjC. Since C and {ΦjC}Nj=1 are convex, their boundary

has dimension d − 1. It follows that dimHbdT0 ≤ d − 1 by stability
and monotonicity of dimH . For the reverse inequality, note that bdT0

is the boundary of an open set in Rd. Hence, dimHbdT0 = d− 1, and
so dimHbdR = d− 1 for each R ∈ T ′. Now the assertion follows from
Lemma 3.4 by countable stability of the Hausdorff dimension.

4. Compatibility of the ε-parallel sets Fε and T−ε. In this
section, we clarify the relation between the (outer) parallel sets of F and
the inner parallel sets of the associated tiling T . We characterize the
situation in which these parallel sets essentially coincide, for this allows
one to use the tiling and the theory of complex dimensions developed
in [8] to obtain a tube formula for F .

Definition 4.1. For any nonempty, bounded set A ⊆ Rd, and ε ≥ 0,
define the (outer) ε-parallel set (or ε-neighborhood) of A by

(4.1) Aε := {x ∈ A� ... d(x,A) ≤ ε}.

Similarly, define the inner ε-parallel set (or inner ε-neighborhood) of A
by

(4.2) A−ε := {x ∈ A
... d(x,A�) ≤ ε},

or equivalently, by A−ε = (A�)ε.
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Note that we do not include interior points of A into the outer
parallel sets, as is often done. For each ε ≥ 0, both Aε and A−ε

are always closed, bounded and nonempty subsets of Rd. Moreover,
A0 = A−0 = bdA ⊆ Aδ for any δ ∈ R, and A−ε = A for ε ≥ ρ, where
ρ = ρ(A) denotes the inradius of A. In particular, if intA = ∅, then
A−ε = A for all ε ≥ 0.

For an open tiling A = {Ai} (cf. Definition 3.1), denote by A−ε the
inner ε-parallel set of A :=

⋃
iA

i.

Lemma 4.2.

A−ε =
⋃∞

i=1
Ai

−ε.

Proof. Let x ∈ A−ε. Then x ∈ bdA or there is some l ∈ N
such that x ∈ Al. In the first case, by Lemma 3.2, x ∈ bdA =⋃

i bdA
i ⊆

⋃
iA

i
−ε, since bdA

i ⊂ Ai
−ε. In the latter case d(x, (Al)�) =

d(x, (
⋃

i A
i)�) ≤ ε, and thus x ∈ Al

−ε ⊆
⋃∞

i=1 A
i
−ε. Hence, A−ε ⊆⋃∞

i=1 A
i
−ε.

For the reverse inclusion, let x ∈
⋃∞

i=1 A
i
−ε. Then there exists a

sequence yj ∈
⋃∞

i=1 A
i
−ε with yj → x as j → ∞. For each j,

there is an index i(j) ∈ N such that yj ∈ A
i(j)
−ε , i.e., yj ∈ Ai(j)

and d(x, (Ai(j))�) ≤ ε. Since Ai(j) ⊆ A, we infer yj ∈ A and

d(x,A�) ≤ d(x, (Ai(j))�) ≤ ε, i.e., yj ∈ A−ε. But this implies x ∈ A−ε,
since A−ε is closed.

Now let {Φ1, . . . ,ΦN} be a self-affine system satisfying TSC and
NTC, F its attractor and T = {Ri}i∈N the associated canonical tiling,
as introduced in the previous sections. Write T :=

⋃
iR

i for the union
of the tiles of T . For ε ≥ 0, the set T−ε will be regarded as the inner
ε-parallel set of the tiling.

Proposition 4.3. Let F be the self-affine set associated to the system
{Φ1, . . . ,ΦN} satisfying TSC and NTC, and let T be the associated
canonical self-affine tiling of its convex hull C. Then

(i) F ⊆ bdT .

(ii) Fε ∩ C ⊆ T−ε for ε ≥ 0.

(iii) Fε ∩ C� ⊆ Cε for ε ≥ 0.
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FIGURE 2. The exterior ε-neighborhood of the Sierpinski gasket F is the union
of the inner ε-neighborhood of the Sierpinski gasket tiling and the exterior ε-
neighborhood of C = [F ]. This union is disjoint except for the boundary of C.

Proof. (i) This is a corollary of Lemma 3.4.

(ii) Fix ε ≥ 0. Let x ∈ Fε ∩ C. Then, since x ∈ C = T , either
x ∈ bdT or x ∈ T . In the former case x ∈ T−ε is obvious, since
bdT ⊆ T−ε. In the latter case a point y ∈ F exists with d(x, y) ≤ ε.
By (i), y is in bdT and so d(x, bd T ) ≤ ε. Hence x ∈ T−ε, completing
the proof of (ii).

(iii) is an immediate consequence of the inclusion F ⊆ C.

In Theorems 4.4 and 4.9, we characterize the situation in which one
has the helpful disjoint decomposition

(4.3) Fε = T−ε ∪ (Cε \ C),

see Figure 2. Decomposition (4.3) is ensured by (v) and (vi), and the
other conditions (i) (iv) provide easy to check criteria for when this
holds. See also Theorem 4.9 for two more equivalent conditions.

Theorem 4.4 (Compatibility theorem). Let F be the self-affine set
associated to the system {Φ1, . . . ,ΦN} which satisfies TSC and NTC.
Then the following assertions are equivalent:

(i) bd T = F .

(ii) bdC ⊆ F .

(iii) bd (C \ Φ(C)) ⊆ F .

(iv) bdGq ⊆ F for all q ∈ Q.

(v) Fε ∩ C = T−ε for all ε ≥ 0.

(vi) Fε ∩ C� = Cε \ bdC for all ε ≥ 0.
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Proof. We show the inclusions (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i), then
(i) ⇒ (v) ⇒ (iv) and (ii) ⇔ (vi).

(i) ⇒ (ii). Observe that bdC ⊆ bdT .

(ii) ⇒ (iii). Assume that bdC ⊆ F . Then also bdΦ(C) ⊆
Φ(bdC) ⊆ Φ(F ) = F and so bd (C \ Φ(C)) ⊆ bdC ∪ bdΦ(C) ⊆ F .
(Here we used that, for A,B ⊆ Rd, bd (A ∪ B) ⊆ bdA ∪ bdB and
bd (A \B) ⊆ bdA ∪ bdB.)

(iii) ⇒ (iv). Assume that bd (C \ Φ(C)) ⊆ F . The generators Gq

(being the connected components of the open set int (C \Φ(C))) form
an open tiling of the set int (C \ Φ(C)). Therefore, by Lemma 3.2,
bdGq ⊆

⋃
q bdGq ⊆

⋃
q bdGq = bd (

⋃
q Gq) = bd (int (C \ Φ(C))) ⊆

bd (C \Φ(C)). Hence, bdGq ⊆ bd (C \Φ(C)) ⊆ F for each q, showing
(iv).

(iv) ⇒ (i). Let bdGq ⊆ F for all q ∈ {1, . . . , Q}. It suffices to show
that this implies bd T ⊆ F , the reversed inclusion always being true,
cf. Proposition 4.3 (i). By definition of the tiles, Ri = ΦwGq for some
w ∈ W and some q, and thus we have bdRi = bdΦwGq = ΦwbdGq ⊆
ΦwF ⊆ F for each i ∈ N. But this implies

⋃
i bdR

i ⊆ F , since F is

closed. Finally, since, by Lemma 3.2, bd T =
⋃

i bdR
i, assertion (i)

follows.

(i) ⇒ (v). By Proposition 4.3 (iv), it suffices to show the inclusion
T−ε ⊆ Fε ∩ C for each ε ≥ 0. So fix ε ≥ 0, and let x ∈ T−ε. Then,
clearly, x ∈ C. Moreover, either x ∈ bdT or x ∈ Ri for some i ∈ N
and d(x, bdRi) ≤ ε. Both cases imply x ∈ Fε, the former since, by (i),
bdT = F ⊆ Fε, and the latter since bdRi ⊆

⋃
j bdR

j ⊆ bd T = F ,

and so d(x, F ) ≤ d(x, bdRi) ≤ ε.

(v)⇒ (iv) (by contraposition). Assume that (iv) is false, i.e., assume
there exists some index q and some x ∈ bdGq such that x /∈ F . Then,
since F is closed, there is some number δ > 0 such that d(x, F ) > δ
and so x /∈ Fε for ε ≤ δ. On the other hand, x ∈ bdGq clearly implies
x ∈ T−ε. Hence, the equality in (v) does not hold.

(ii) ⇒ (vi). For ε = 0, there is nothing to prove. So let ε > 0 and
x ∈ Cε\bdC. Then there exists a point y ∈ bdC such that d(x, y) ≤ ε.
By (ii), y ∈ F , and thus d(x, F ) ≤ ε, i.e., x ∈ Fε. Hence, Cε ⊆ Fε∩C�.
The reversed inclusion is always true, cf. Proposition 4.3 (iii), and so
assertion (vi) follows.
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(vi) ⇒ (ii) (by contraposition). Assume (ii) is false, i.e., a point
x ∈ bdC exists such that x /∈ F . Let δ := d(x, F ) and fix some
ε < δ/2. Since x ∈ bdC, there are points in C� arbitrarily close to x.
Choose y ∈ Cε ∩ C�. Then d(y, F ) ≥ d(x, F ) − d(x, y) > ε, implying
y /∈ Fε. Hence, equality Fε ∩C� = Cε \ bdC cannot be true for this ε,
i.e., (vi) does not hold.

Note that assertions (ii), (iii) and (iv) are very simple and easy to
check. So, in particular, Theorem 4.4 states that if one of the assertions
(ii), (iii) or (iv) is true for a given self-affine set F , then each of its
parallel sets Fε is the disjoint union of the two sets T−ε and Cε \C, cf.
(4.3). Moreover, if for some F , it can be shown that one of assertions
(ii), (iii) or (iv) is false, then the inner parallel set T−ε of the tiling does
not describe set Fε∩C, and also the sets Fε∩C� and Cε\C are different.
Thus, for any set F not satisfying the assertions of Theorem 4.4, Fε

does not coincide with T−ε ∪Cε, and one cannot use the tiling directly
to study the parallel sets Fε.

The envelope. We consider another hull operation, the envelope
and show that the conditions of the compatibility theorem are met
for a self-affine set F precisely when its envelope coincides with its
convex hull. At the end of Section 6, we examine the feasibility of the
envelope as a replacement for the convex hull in the tiling construction,
cf. Proposition 6.3 and the ensuing discussion. There are many cases
where Theorem 4.4 does not apply for the tiling as constructed using
the convex hull, but the analogous result (Theorem 6.2) does apply
when the convex hull is replaced by the envelope.

Definition 4.5. Let K ⊂ Rd be a compact set. K� has a unique
unbounded component, which we call U . (For d = 1, there are actually
two unbounded components in K�, if +∞ and −∞ are not identified.
In this case let U be their union.) Then bdU is the exterior boundary of
K; it consists of that portion of (the boundary of) K which is accessible
when approaching K from infinity. The envelope E = E (K) of K is
the complement of U , E := U�.

Example 4.6. The envelope of the Sierpinski gasket is its convex
hull, as is the envelope of the Sierpinski carpet. The envelope of the
Koch curve is the Koch curve itself, as is the envelope of the attractor
depicted in Figure 1. Some more interesting (and nonconvex) envelopes
are shown in Figure 3; for a description of these sets, cf. [12].
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F1 F2 F3

FIGURE 3. Three self-similar sets and their envelopes (the union of the shaded

region and the attractor). F3 is the attractor of a system Φ(1) of seven mappings,
each with scaling ratio 1/3 and no rotation. To construct F2, we have given two
of the mappings a rotation of π (top left and top right). To make F1, we have
additionally given one of the mappings a rotation of π/2 (bottom center).

Lemma 4.7. Let K ⊂ Rd be a compact set. The envelope E of K is
compact and satisfies bdE ⊆ K ⊆ E. Moreover, E ⊆ [K], where [K]
is the convex hull of K.

The following results indicate that the conditions of Theorem 4.4 are
satisfied precisely when a self-affine set F appears convex when seen
“from outside.”

Proposition 4.8. Let K be a compact set in Rd with envelope E
and convex hull [K]. Then E is convex if and only if E = [K].

Proof. If E = [K], then E is obviously convex. For the other
implication, assume E is convex. By Lemma 4.7, we have E ⊆ [K] and,
moreover, K ⊆ E. The latter implies [K] ⊂ [E] and, since E = [E],
the reversed inclusion [K] ⊆ E is also proved.

Now we have two more “compatibility conditions” to accompany
those already established in Theorem 4.4. Let E denote the envelope
of F , and let C be its convex hull, as before.

Theorem 4.9. Each of the following two conditions is equivalent to
any of conditions (i) (vi) of Theorem 4.4:
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(a) E = C.

(b) E is convex.

Proof. We prove (ii) ⇒ (b) and (a) ⇒ (ii), where (iv) and (ii) are
the conditions from Theorem 4.4. Note that (a) is equivalent to (b) by
Proposition 4.8.

(ii) ⇒ (b) (by contraposition). If E is not convex, then intC \ E
is nonempty and so a point x ∈ intC ∩ U must exist, i.e., x is in the
unbounded connected component U of F �. Hence, there must be a
path in U connecting x to infinity. Since x ∈ intC, this path crosses
bdC, implying the existence of a point y ∈ bdC which is not in F .
Hence, condition (ii) of Theorem 4.4 does not hold.

(a) ⇒ (ii). Note that E = C is true if and only if bdU = bdC. Since
bdU ⊆ F , we have bdC ⊆ F , which is condition (ii).

5. Generalization of the tiling construction. While the non-
triviality condition is not very restrictive, the tileset condition puts a
serious constraint on the class of sets for which the canonical tiling
exists. For the purpose of obtaining tube formulas for F , the compati-
bility conditions need to be satisfied; this limits the applicability of the
tiling construction even further. It is natural to ask whether the tiling
construction can be modified to work for more general sets. The NTC
and TSC are both necessary restrictions, and each is given in terms of
the convex hull C of F . While neither condition can be omitted, they
can be applied to a different initial set for the tiling construction, in
place of C. Provided F satisfies OSC, it turns out that any feasible
open set O of F can be used as the initial set. In this section, we
show that the tiling construction can still be carried out in this gen-
eralized setting. In the next section, we examine the analogue of the
compatibility theorem for this generalization.

The main result of this section is Theorem 5.7, which can be para-
phrased as follows: if F is a self-affine set with empty interior and
which satisfies the OSC with feasible set O, then there exists a self-
affine tiling of O. In other words, we generalize the tiling construction
by replacing the convex hull with the set K = O, where O is an arbi-
trary feasible open set for F . The open set condition takes the role of
the tileset condition, and we obtain an open tiling of K. The canonical
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self-affine tiling of the convex hull of F appears as the special case of
this construction in case intC is a feasible open set. We will need the
following well-known fact.

Proposition 5.1 (cf. [6, 5.1 (3) (ii)]). If F satisfies OSC with feasible
open set O, then F ⊆ O.

Let {Φ1, . . . ,ΦN} be a self-affine system satisfying OSC, and let F
be its attractor. Let O be any feasible open set for F , i.e., O satisfies
(2.1) and (2.2. Set K := O from now on. Since O ⊆ int (K), it is clear
that K is the closure of its interior, K = int (K), and that F ⊆ K, by
Proposition 5.1. It is easily seen that (2.2) implies

(5.1) Φw(O) ∩ Φv(O) = ∅ for all w, v ∈ W j , v �= w, j ∈ N.

Write Ok := Φk(O) and Kk := Φk(K) for k = 0, 1, 2, . . . .

Proposition 5.2 (Nestedness). For k = 0, 1, 2, . . . , one has Kk+1 ⊆
Kk ⊆ K.

Proof. Note that (2.1) implies Ok+1 ⊆ Ok.

Proposition 5.2 extends [15, Theorem 5.1] and shows that K ⊇ K1 ⊇
K2 ⊇ · · · is a decreasing sequence of sets which converges to F ; note
that F =

⋂∞
k=0 K

k, by the contraction principle. In analogy with
the tiling construction for the convex hull, the following nontriviality
condition is required for a tiling of O to exist:

Definition 5.3. A self-affine set F satisfying OSC is said to be
nontrivial if there exists a feasible open set O for F such that

(5.2) O �⊆ Φ(O);

F is called trivial otherwise.

In fact, nontriviality implies that (5.2) holds for all feasible sets
O of F . This is a consequence of the following proposition which
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characterizes the trivial case: a set F is trivial if and only if it has
interior points. Hence, triviality and non triviality are independent of
the particular choice of set O.

Proposition 5.4 (Characterization of triviality). Let F be a self-
affine set satisfying OSC. Then the following assertions are equivalent:

(i) F is trivial.

(ii) intF �= ∅.

(iii) O = F for some feasible open set O of F .

(iv) O = F for each feasible open set O of F .

Proof. (i) ⇒ (iv). Let O be an arbitrary feasible set for F ; we already
have one containment from Proposition 5.1. Assume F is trivial, which
means O ⊆ Φ(O). Taking the closure, we get K ⊆ Φ(K). The OSC
implies Φ(O) ⊆ O which, by taking closures again, implies Φ(K) ⊆ K.
Hence, K = Φ(K). By the uniqueness of the invariant set, we infer
F = K.

(iv) ⇒ (iii) and (iii) ⇒ (ii) are trivial. For the latter, note that a
feasible set O is nonempty.

(ii) ⇒ (i) (by contraposition). If F is nontrivial, then there is a
feasible set O such that O �⊆ Φ(K). Hence, the set T0 := O \ Φ(K)
is nonempty, but T0 ∩ F = ∅, since F ⊆ Φ(K). Observe that OSC
implies Φi(O) ∩ Φj(F ) = ∅ for i �= j. Therefore, Φj(T0) ∩ F ⊆
Φj(T0)∩Φj(F ) = Φj(T0∩F ) = ∅, and so Φ(T0)∩F = ∅. By induction,
we get Φk(T0) ∩ F = ∅ for k = 0, 1, 2, . . . . Now let x ∈ F . Since, by
the contraction principle, dH(F,Φk(T0)) = dH(Φk(F ),Φk(T0)) → 0 as

k → ∞, a sequence xk → x exists with xk ∈ Φk(T0) = Φk(T0). For
each xk there are points in Φk(T0) arbitrarily close to xk. Hence, x is
not an interior point of F .

Remark 5.5. Note that Proposition 5.4 provides an easy criterion to
decide whether a self-affine set has interior points. Take an arbitrary
feasible open set O of F and check whether O contains a point with
positive distance to F . If not, then F has interior points, otherwise
intF is empty. Conversely, if it is known for some F that it has
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a nonempty interior, then the search for a feasible open set can be
restricted to subsets of F .

For completeness, we note that Corollary 2.13 also generalizes to this
more general notion of nontriviality used here. The argument in the
proof carries over, when taking Proposition 5.4 into account.

Corollary 5.6. Let F ⊆ Rd be a self-affine set satisfying OSC. If
F has Hausdorff dimension strictly less than d, then F is nontrivial.
Moreover, if F is self-similar, then also the converse holds.

Now we can state the main result of this section.

Theorem 5.7 (Generalized tiling). Let F be a self-affine set satis-
fying intF = ∅ and OSC. Let O be an arbitrary feasible open set for
F and K = O. Let G1, G2, . . . denote the connected components of the
open set O \ Φ(K). Then

T (O) := {Φw(Gq)
...w ∈ W, q ∈ Q}

is an open tiling of K, i.e., the tiles Φw(Gq) are pairwise disjoint and

K =
⋃

R∈T (O)

R.

To prepare the proof, we note the following facts.

Lemma 5.8. Let A = A0 ⊇ A1 ⊇ A2 ⊇ · · · be a decreasing sequence
of sets, and define B :=

⋂∞
k=0 A

k. Then we can decompose A as the
disjoint union

A = B ∪
∞⋃

k=0

(
Ak \Ak+1

)
.

Denote T0 :=
⋃

q∈Q Gq = int (O \ Φ(O)), and more generally, set

Tk := Ok \ Kk+1 = int (Kk \ Kk+1) for k = 1, 2, . . . . We now adapt
[15, Theorem 5.14, page 3165] to the present more general setting.
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Lemma 5.9 (Propagation of tilesets). Φ(Tk) = Tk+1, for each
k = 0, 1, 2, . . . .

Proof (⊆). Let x ∈ Φ(Tk). Choose j so that x ∈ Φj(Tk) =
Φj(O

k) \ Φj(K
k+1). Then x ∈ Φj(O

k) ⊆ Ok+1. To see x /∈ Kk+2,
suppose it is. Then x ∈ Φ�(K

k+1) for some 	. Note that 	 �= j,
since, by the choice of j, x /∈ Φj(K

k+1). Now Kk+1 ⊆ Kk by
Proposition 5.1, which implies x ∈ Φ�(K

k+1) ⊆ Φ�(K
k), and hence

x ∈ Φ�(K
k)∩Φj(O

k). Since Φj(O
k) is open and Φ�(K

k) the closure of
its interior, there must be points of Φj(O

k) in the interior of Φ�(K
k),

i.e., in Φ�(O
k), contradicting OSC.

(⊇). Pick x ∈ Tk+1 = Ok+1 \Kk+2. Then, x ∈ Ok+1 = Φ(Ok), and
so x ∈ Φj(O

k) for some j. Hence, x = Φj(y) for y ∈ Ok. If y ∈ Kk+1,
then x = Φj(y) ∈ Kk+2, a contradiction to x ∈ Tk+1. So y /∈ Kk+1,
and hence y ∈ Ok \Kk+1. We conclude x = Φj(y) ∈ Φj(O

k \Kk+1) ⊆
Φ(Ok \Kk+1), which completes the proof.

Proof of Theorem 5.7. Since F has no interior points, by Propo-
sition 5.4, F is nontrivial, i.e., the set T0 is nonempty. Since T0 =⋃

q∈Q Gq, Lemma 5.9 immediately implies

(5.3) Tk =
⋃

w∈Wk

q∈Q

Φw(Gq).

In the following, T :=
⋃

R∈T (O) R denotes the union of all the tiles

in T (O). Since Φw(Gq) ⊆ O ⊂ K, we have T ⊆ K, and since K is
closed the inclusion T ⊆ K is obvious. It remains to show the reversed
inclusion. Let x ∈ K. By Lemma 5.8, either x ∈

⋂
k K

k = F or there
is some k ∈ N0 such that x ∈ Kk \ Kk+1 ⊆ Tk. If x ∈ Tk, then
equation (5.3) implies x ∈

⋃
Φw(Gq), where the union is taken over all

w ∈ W k and q ∈ Q, and therefore x ∈ T . If x ∈ F , then there exists a
sequence (xi) ∈ K \F converging to x (since F has no interior points).
The previous argument shows xi ∈ T , and hence the same holds for
x = limxi. This shows K ⊆ T , and hence K = T .

By Lemma 5.8, the sets Kk \Kk+1 are pairwise disjoint, and hence
so are the sets Tk. Moreover, the union in (5.3) is disjoint, which
follows immediately from (5.1) and the fact that the setsGq are pairwise
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disjoint and subsets of O. Hence, the sets Φw(Gq) ∈ T (O) are pairwise
disjoint.

As a corollary to the proof we note the following for later use.

Corollary 5.10. R∩F= ∅ for each R ∈ T (O).

Proof. Recall that F ⊆ Kk for each k. Hence, Tk = Ok \Kk+1 has
empty intersection with F . By (5.3), each tile R ∈ T (O) is contained
in one of the sets Tk.

Remark 5.11 (Different open sets may yield the same tiling). Note
that two feasible open setsO andO′ do not necessarily produce different
tilings. If O = O′, then the tilings T (O) and T (O′) coincide. In both

cases one obtains an open tiling of the set K = O = O
′
. Therefore,

for most questions it suffices to restrict considerations to feasible sets
O satisfying intO = O.

Remark 5.12 (The dimension of the boundary of the tiling in the gen-
eral case). Proposition 3.5 states that dimHbd T = max{dimHF, d−1}
for the T (C) of the convex hull, but this does not extend to the gener-
alized tilings T (O). In general, bdO will not be of dimension d−1 and
the tiles of T (O) may still have a fractal boundary. So the statement
is slightly different. For the boundary bd T of a tiling T (O), one has

dimHbdT = max{dimHF, dimHbdT0}, where dimHbd T0 ≥ d− 1.

6. Generalizing the compatibility theorem. In the previous
section we constructed a tiling for each feasible open set of a self-
affine set F , provided F is nontrivial in the sense of Definition 5.3.
The motivation was to find a tiling which can be used to decompose
the parallel sets of F . The theme of this section is the search for
feasible open sets that are suitable for this purpose. We revisit the
Compatibility Theorem of Section 4 and find conditions on a feasible
open set that allow for an analogue of Theorem 4.4.

We start by discussing an appropriate generalization of Proposi-
tion 4.3. Throughout, we use the notation of the previous section.
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In particular, for a self-affine set F and a feasible open set O, T (O) is
the associated self-affine tiling, Gq are the generators, T =

⋃
R∈T (O) R

is the union of the tiles and T−ε the inner parallel set of T .

Proposition 6.1. Let F be the self-affine set associated to the system
{Φ1, . . . ,ΦN}. Assume that F has empty interior and satisfies the OSC
with a feasible set O. Let T (O) be the associated tiling and K = O.
Then:

(i) F ⊆ bdT .

(ii) Fε ∩K ⊆ T−ε for ε ≥ 0.

(iii) Fε ∩K� ⊆ Kε for ε ≥ 0.

Proof. (i) On the one hand, T (O) is an open tiling of K, and thus
F ⊆ K = T . On the other hand, by Corollary 5.10, R ∩ F = ∅ for all
R ∈ T (O), i.e., F ∩ T = ∅. Thus, F ⊆ T \ T = bdT .

(ii) Fix ε ≥ 0. Let x ∈ Fε ∩ K. Then, since x ∈ K = T , either
x ∈ bdT or x ∈ T .

In the former case x ∈ T−ε is obvious, since bdT ⊆ T−ε. In the latter
case there exists a point y ∈ F with d(x, y) ≤ ε. By (i), y is in bdT
and so d(x, bd T ) ≤ ε, whence x ∈ T−ε.

(iii) is an immediate consequence of the inclusion F ⊆ K.

Theorem 6.2 (Generalized Compatibility theorem). Let F be the
self-affine set associated to the system {Φ1, . . . ,ΦN}. Assume that F
has empty interior and satisfies the OSC with a feasible set O. Let
T (O) be the associated tiling of O. Then the following assertions are
equivalent:

(i) bd T = F .

(ii) bdK ⊆ F .

(iii) bd (K \ Φ(K)) ⊆ F .

(iv) bdGq ⊆ F for all q ∈ Q.

(v) Fε ∩K = T−ε for all ε ≥ 0.

(vi) Fε ∩K� = Kε ∩K� for all ε ≥ 0.

Proof. Observe that in the proof of Theorem 4.4 the convexity of set
C is not used (just the inclusion F ⊆ C, which is also satisfied here by
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Proposition 5.1: F ⊆ O = K). Thus, the proof can be carried over to
the new situation by replacing C with K and applying Proposition 6.1
instead of Proposition 4.3 where necessary.

Theorem 6.2 does not indicate whether or not one can always find
a set O such that the associated tiling can be used to decompose Fε.
That is, one might ask if for any self-affine set F (satisfying OSC and
intF = ∅) there is always a feasible set O such that the equivalent
conditions (i) (vi) are satisfied. Unfortunately, this is not the case in
general. There are sets for which no such O exists, for instance the Koch
curve. In fact, for fractals with connected complement, Proposition 6.3
shows that the Compatibility Theorem is never satisfied. The class of
sets characterized by the connectedness of F � includes all simple fractal
curves (curves with no self-intersection) like the Koch curve, all tree-
like sets (dendrites) and all totally disconnected sets in Rd with d ≥ 2.
For d ≥ 3, it even includes topologically nontrivial sets like the Menger
sponge.

Proposition 6.3. Let F be a self-affine set satisfying OSC and
intF = ∅. If the complement of F is connected, then there is no
feasible open set O such that bdK ⊆ F .

Proof. It suffices to consider feasible open sets O satisfying intO = O
(cf. Remark 5.11), which implies bdK = bdO. Since F has no interior
points, we have O ∩ F � �= ∅. Let x ∈ O ∩ F �. Since O is not the
whole set F �, there is also a point y ∈ F � \ O. Since F � is connected
by assumption, it is also path connected. Hence, there is a path from
x to y in F �, and it must cross the boundary bdO = bdK somewhere.
Hence, bdK is not completely contained in F .

From the proof of Proposition 6.3, it is clear that any feasible set
O satisfying compatibility must be a subset of envelope E of F , the
complement of the unbounded component of F � (cf. Definition 4.5).
For many self-affine sets F the (interior of the) envelope itself is
compatible; note that envelope E always satisfies the compatibility
condition bdE ⊂ F , by definition. If E is feasible, then a tiling exists
that can be used to describe the parallel sets of F .

Corollary 6.4. Let F be a self-affine set with intF = ∅ and
satisfying OSC. If intE is a feasible open set for F , then the self-affine
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, , , ...

FIGURE 4. A self-similar set which satisfies OSC but for which the envelope is not
feasible, see Example 6.5.

tiling T = T (intE) allows a decomposition of Fε,

(6.1) Fε = T−ε ∪ Eε,

which is disjoint but for the null set bdE.

However, one should not be overoptimistic; the set F ⊂ R in
Example 2.6 shows that intE is not always a feasible open set (in
this case, envelope E coincides with the convex hull). We also provide
the following example.

Example 6.5. Let F be the attractor of system {Φ1, . . . ,Φ4} of
four similarities, where Φ1,Φ2,Φ3 are the usual mappings used for the
Sierpinski gasket and Φ4 scales the initial triangle by a factor 1/4,
rotates it by π and translates it by [(1/4,

√
3/8] such that it fits in the

largest hole in Φ1F (cf. Figure 4). This set satisfies OSC, for instance,

the set O :=
⋃4

j=1 ΦjC is feasible. The envelope of F coincides with
the convex hull of F , E = C, but E is not feasible since Φ1E ∩Φ4E is
not empty.

We believe that, if F � is not connected, i.e., if envelope E of F has
nonempty interior, then there always exists a subset O of E which is
both compatible and feasible. So far we have not been able to prove
this.

Note added in proof. In a recent joint work by the second author with
Dušan Pokorný, cf. [16], the following statement was obtained as a side
result: Let F ⊂ Rd be a self-similar set satisfying OSC and intF = ∅.
If the complement of F has a bounded connected component, then a
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feasible open set exists such that bdK ⊆ F . For self-similar sets, this
allows one to strengthen Proposition 6.3 to an if-and-only-if statement.
The proof requires the existence of a feasible open set O which satisfies
the additional requirement O ∩ F �= ∅, known as the strong open set
condition (SOSC).1 In conclusion, we have the following result:

Theorem 6.3. Let F ⊂ Rd be a self-affine set satisfying SOSC and
intF = ∅. Then a feasible open set O exists such that bdK ⊆ F if
and only if the complement of F is not connected.

7. Concluding comments and remarks.

Remark 7.1. Corollary 5.6 says that the trivial self-similar sets in
Rd are precisely those which have full Hausdorff dimension. Hence, all
self-similar sets for which self-similar tilings can be constructed have
Hausdorff dimension (and thus Minkowski dimension) strictly less than
d. In [10], tube formulas are obtained for a class of fractal sprays in
Rd, provided these sprays satisfy the same condition on the Minkowski
dimension of their boundary. So Corollary 5.6 ensures that the latter
condition does not impose any restrictions on the applicability of the
tube formula results to the self-similar case.

In the self-affine case, however, it remains open whether there exists a
nontrivial F ⊂ Rd (i.e., one with empty interior) satisfying OSC which
has full Hausdorff dimension. On the other hand, tube formulas are
not available yet in this more general setting. The results obtained for
fractal sprays do not apply in this case.

Remark 7.2 (Relation to tilings of Rd). There is another notion of
self-similar (self-affine) tilings which has been studied at length, namely
tilings of the plane or, more generally, of Rd. In this approach copies
of self-similar (or self-affine) sets F ⊆ Rd are used as tiles to tile the
whole ofRd, which is very different from our approach, where a feasible
set of F is tiled and where the tiles are not copies of F but subsets of
F �. See [1, 7, 13, 19], for example.

However, there are interesting relations between both concepts.
Firstly, the open set condition is a natural requirement in both ap-
proaches. Secondly, the concepts are in a way complementary to each
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other. Tilings of Rd require self-similar sets F to have full dimension,
while the tilings of feasible sets require F to have dimension strictly
less than d.

Proposition 7.3. Let F be a self-similar set satisfying OSC. Then
there is a dichotomy:

(i) intF = ∅, in which case there is a self-similar tiling of any
feasible open set O of F , or

(ii) intF �= ∅, in which case F gives a self-similar tiling of Rd.

Proof. (i) is a corollary of Theorem 5.7; (ii) is [1, Theorem 9.1] with
unit tile F .

The dichotomy of Proposition 7.3 extends to the self-affine case, see
[7, Theorem 1.2] and [13, Lemma 2.3] for case (ii). The latter result is
formulated for subsets of R2 (and more general contractions) but the
same argument works in Rd.
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Kenneth Falconer, John Hutchinson, Michel Lapidus, Mathias Mesing,
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ENDNOTES

1. While, in the self-similar case, SOSC is known to be equivalent to
OSC, cf. [17], this condition has to be imposed in the self-affine setting
in order to carry over the proof.
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