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HOMOGENEITY PROPERTIES WITH
ISOMETRIES AND LIPSCHITZ FUNCTIONS

JAN J. DIJKSTRA

ABSTRACT. We consider metric variants of homogene-
ity, countable dense homogeneity (CDH) and strong local
homogeneity (SLH) by requiring that the homeomorphisms
that witness the homogeneity be isometries, respectively bi-
Lipschitz maps that are almost isometries: iso-homogeneity,
iso-CDH, iso-SLH, L-homogeneity, LCDH, and LSLH. We
prove metric versions of Bennett’s theorem that SLH implies
CDH for complete spaces, and we show that every separable
Banach space is LCDH. As applications, we investigate how a
number of standard examples of CDH spaces fare with respect
to metric homogeneity.

1. Introduction. Every topological space in this paper is assumed
to be separable metric. A space X is countable dense homogeneous
(CDH) if, given any two countable dense subsets A, B C X, there is a
homeomorphism h of X such that h(A) = B. Well-known examples of
CDH spaces are R, the Cantor set, the Hilbert cube and Hilbert space.
The standard method for proving that a space is CDH uses a theorem
of Bennett [1] which states that complete spaces are CDH whenever
they are strongly locally homogeneous (SLH), that is, the space has a
basis such that for every basis element B and z,y € B there exists
an autohomeomorphism of the space that is supported on B and that
maps x onto y.

In the context of separable metric spaces the notions of topological ho-
mogeneity allow a natural strengthening, by requiring that the homeo-
morphism h be of a particularly nice form. When the homeomorphisms
are required to be isometries we obtain the notions iso-homogeneous,
iso-CDH and iso-SLH. When the homeomorphims are required to be
bi-Lipschitz maps that are close to isometric we obtain L-homogeneous,
LCDH and LSLH. Precise definitions can be found in Section 2.
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In Section 3 we show that Bennett’s theorem has metric extensions
and that Banach spaces are LCDH. Of particular interest is that it
turns out that our metric extension of Bennett’s theorem can also be
used to prove countable dense homogeneity in certain cases where the
space in question is not strongly locally homogeneous; see Remark 10
and Proposition 31. In Section 4 we consider a number of examples to
which our theorems are applied.

Related research was carried out by Véisdld [12], Hohti [4] and
Hohti and Junnila [5] who investigated homogeneity with bi-Lipschitz
maps. Kojman and Shelah [7] investigated almost isometric imbedding
between metric spaces. Among other results they showed that the
Urysohn space is LCDH.

2. Definitions and preliminaries.

Definition 1. Let (X,d) and (Y,p) be metric spaces, and let
f: X — Y be a one-to-one function. Then the norm of f is defined by

||f|| = Sup{ log W

:m,yeXWithw;«éy} € [0, 00].

Remark 2. Note that if ||f|| < oo, then f is, in particular, an
imbedding of X in Y. We have ||f|| = 0 if and only if f is an isometric
imbedding. If g : Y — Z is also one-to-one, then [|go f|| < | f]l + |lg]|-
If f is a bijection, then ||f~1|| = || f]|.

The following lemma is standard.

Lemma 3. Let (X,d) and (Y,p) be metric spaces such that p is
complete. Let D be a dense subset of X, and let f : D — 'Y be such that
| £]| < co. Then there exists a unique continuous extension f : X — Y.
The map f has the same norm as f, and f is closed if and only if d is
complete.

Recall that a topological space X is called homogeneous if for any
two points x,y € X there exists a homeomorphism ~ : X — X such
that h(z) = y.
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Definition 4. Let (X, d) be a separable metric space. We say that
(X, d) is iso-homogeneous if for any two points x,y € X there exists an
isometric bijection h : X — X such that h(z) = y.

The space is L-homogeneous if for any two points z,y € X and any
€ > 0 there is a bijection h : X — X such that h(z) =y and ||h]| <e.

Hohti and Junnila [5] have shown that for every homogeneous com-
pact space X and £ > 0 there is a compatible metric d on X such that
for any two points z,y € (X,d) there is a bijection h : X — X such
that h(z) = y and ||h|| <e.

Definition 5. Let (X,d) be a separable metric space. We say that
(X,d) is iso-CDH if for any two countable dense subsets A, B there
exists an isometric bijection h : X — X such that h(A) = B.

The space is LCDH if for any two countable dense subsets A, B and
any € > 0 there is a bijection h : X — X such that h(A) = B and
Al < e.

While the usual notion of countable dense homogeneity is topological,
the newly introduced notions depend on the geometry of the metric
space.

A space X is called strongly locally homogeneous (SLH) if there is a
basis B for the topology such that for every B € B and z,y € B there
exists a homeomorphism h : X — X that is supported on B and that
maps z to y. (A function f : X — X is said to be supported on a
subset A of X if the restriction f[(X \ A) is the identity.) Bennett [1]
has shown that for complete spaces SLH implies CDH.

Definition 6. A metric space (X,d) is called iso-SLH if for every
x € X and every neighborhood U of x there is a neighborhood V of z
such that for each y € V there exists an isometric bijection h : X — X
that h is supported on U and that maps = to y.

A metric space (X, d) is called LSLH if for every z € X, every € > 0
and every neighborhood U of z, there is a neighborhood V of z such
that for each y € V there exists a homeomorphism h : X — X such
that h is supported on U, h(z) = y and ||h]| < e.
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Example 7. It is easily seen that the real line R with the Euclidean
metric is LSLH, LCDH and iso-homogeneous but not iso-SLH or iso-
CDH.

If z € X, then 7(z) = {h(z) : h is an autohomeomorphism of X}
is the topological type of z. The collection {r(z) : z € X} forms a
partition of X. If X is SLH or CDH, then every 7(z) is clopen, see
[1]. So, for connected spaces, both SLH and CDH imply homogeneity.
Similarly, if a connected space is iso-SLH or iso-CDH, then it is iso-
homogeneous. The interval (0,1) with the regular metric and ellipses
in the plane (that are not circles) are easily seen to be connected spaces
that are LSLH. These spaces are LCDH by Theorem 9 and Remark 12
but not L-homogeneous by Proposition 21.

Proposition 8. A space X is SLH if and only if for every x € X
and every neighborhood U of = there is a neighborhood V' of x such
that for each y € V there exists a homeomorphism h : X — X that is
supported on U and that maps © to y. Thus, LSLH implies SLH.

Proof. The ‘only if’ part is trivial so consider a space that satisfies
the second condition. Let z € X, and let U be an open neighborhood
of z. Consider the following equivalence relation on U, a ~ b if there is
a homeomorphism A : X — X that is supported on U and that maps
a to b. Clearly, every equivalence class of ~ is open and hence clopen
in U. Let B be the class that contains z, and let y € B. Then there
exists a homeomorphism h : X — X that is supported on U and that
maps z to y. Note that h(B) = B. Since B is clopen in U, it is clear
that the map that restricts to h[B on B and that is supported on B is
a homeomorphism of X that maps x to y. Thus, X is SLH. ]

3. Theorems. We have the following metric analogues to Bennett’s
theorem:

Theorem 9. Let (X,d) be complete. If the space is LSLH, then it is
LCDH. If the space ts iso-SLH, then it is iso-CDH.
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Proof. Let (X,d) be complete and LSLH, let ¢ > 0, and let
A ={a; :i € w}and B = {b; : i € w} be dense subsets of X.
We construct by induction a sequence hg, h1, ... of permutations of X
such that for each n € w,

(1) hn(a;) € B for 0 <i<n,
(2) if n > 1 then hy(a;) = hp_1(a;) for 0 < i <n—1,
(3) h,t(b;) € Afor 0 <i < n,

(4) if n > 1 then h, ' (b;) = h ' (b;) for 0 <i <n —1, and
(5) [[hnll < (1 —27").

Assume that the construction has been performed. Define h: A — B
by h(a;) = hit1(a;) for i € w and note that the hypotheses imply that
h is well defined, that h(A) = B, and that ||h|| < e. By Lemma 3 there
exists an extension h : X — X with ||h|| < e and h(X) = X because B
is dense.

It remains to perform the construction of the h,. Let hy be the
identity. Assume that h, has been found. Consider the point a,. If
hn(an) € F = {hn(ao),...,hn(an—1),b0,...,bn_1}, then let a be the
identity map. If h,(a,) ¢ F, then we select with the LSLH property a
permutation « of X such that ||a|| < 2772, a(a,) € B, and « fixes
all points of h,(F). In the same way we can find a permutation S of
X such that ||3]| <e27""2, B(b,) € aoh,(A), and S fixes all points of
a(F U{hn(ay)}). We put hypi1 =B L oaoh, and note that it clearly
satisfies the induction hypotheses (1)—(4). For hypothesis (5) note that
by Remark 2 we have

hngall < UBTHE+ lleell + IBnll = 18I+ llel] + lIFn
<e2™ i 427 L g(1-277)
=¢g(1—-27"7h),

For the isometry part of the theorem, just substitute ¢ = 0 in the
above proof. a

Remark 10. Inspection of the proof gives that the LSLH and iso-SLH
premises of Theorem 9 can be weakened somewhat. We may replace
LSLH by the property LSLH~ which means that, for any x € X, any
e > 0 and any finite subset F' of X \ {z}, there is a neighborhood V'
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of = such that for each y € V there is a permutation f of X such that
points of F' are fixed, ||f|| < ¢ and f(z) = y. The property iso-SLH
can be weakened to iso-SLH—, that is, for any z € X and any finite
subset F' of X \ {z}, there is a neighborhood V' of z such that for each
y € V there is an isometry of X that fixes F' and that maps = to y.
See Proposition 31 for an application that shows that this version of
Theorem 9 may be used to prove the CDH property for spaces that are
not SLH.

Remark 11. There is a slightly stronger version of Bennett’s theorem:
if X is complete and SLH, O is open in X and A, B are countable
dense subsets of O, then there is a homeomorphism h : X — X
that is supported on O and that maps A onto B. Theorem 9 can
be strengthened in the same way.

Remark 12. The advantage in using Lemma 3 in the proof of
Theorem 9 is that we do not have to be concerned with the question
whether the sequence of homeomorphisms converges which leads to
Remark 10. However, if we use the inductive convergence criterion,
cf. [10, Exercises 1.6.1 and 1.6.2], instead of Lemma 3, then we can
weaken the premise that d is complete to the requirement that X is
merely topologically complete, that is, the theorem remains valid if d
is incomplete as long as there is some other admissible metric that is
complete. For instance, R\ Q is LSLH in the standard metric; see
Proposition 19. Thus, this space is also LCDH.

Theorem 13. Every normed vector space is LSLH and every Banach
space is LCDH.

Proof. Let (X,|-|) be a normed vector space. Let z € X, and let
e > 0. Since the metric | — y| is invariant, it suffices to consider
the case z = 0. Let § = ¢(1 — e™¢) and note that 0 < § < . Put
U={zeX: :|z|<elandV={z e X :|z|] <d}. Let a €V, and
define the function f: X — X by

fz) = {:E+ (e —|z|/e)a if 2| <¢;

x if |z| > e.
Note that f is supported on U and that f(0) = a. If |z| < &, then
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|f(z)| < |z| + (g — |z|])|al/e < € so f(U) C U. If z,y € U with
f(z) = f(y), then |z —y| = ||z - lylllal/e < |z — ylla|/e. Since
la] < § < e we have that x = y so f is one-to-one. Now let y € U \ {a}
be arbitrary, and put oy = a + t(y — a) for t > 1. Note that |a;| < €
and lim;_, o |ag| = 00 so there is an r > 1 with |a,.| = €. Observe that
f((1/r)a,) = y; thus, f is a bijection.

We now obtain an estimate for || f||. Let z,y € X be such that z # y.
Since the case z,y ¢ U is of no interest, we may assume that z € U. If
y € U, then

ol )

< 150) — 1) = (e~ ) + (1l — )2
Slm—y|<1+|;i|>'
If y ¢ U, then
I:v—y(l—';i')
< |f(x) - fly)| = (iv—y)“f_'x')';il

a
o1+ ).
£

Since —log(1—r) > log(1+r), we have that || f|] < —log(1—(|al/e)) <
—log(l — (6/e)) = e. We may conclude that X is LSLH and that
Banach spaces are LCDH by Theorem 9.

Note that |logt| < —log(1l — r) whenever |t — 1| < 7 < 1, a fact that
we will use several times. O

Remark 14. Zamora Aviles [13] proved that R™ is LCDH by a
different method. (We always assume that R"™ is equipped with the
standard Euclidean metric.)

Any topological group admits a (left-)invariant metric; thus, it is
iso-homogeneous with respect to that metric (see [3, Theorem 8.3]).
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Proposition 15. If (X,d) is iso-CDH, then d(X x X) is countable
and hence X is zero-dimensional. If (X, d) is iso-SLH~, then d({z} x
X) is countable for each x € X and hence X is zero-dimensional.

Proof. If (X,d) is iso-CDH and D is a countable dense subset, then
d(D x D) = d(X x X). Let (X,d) be iso-SLH™, and let z € X. If
y # x, then there is a neighborhood V,, of y such that for every z € V'
there is an isometry h of X with h(z) = z and h(y) = z. Note that
d(z,y) = d(z,z) for every z € V,. Since X is separable metric we
can cover X \ {z} by countably many V,s and hence d({z} x X) is
countable. O

Remark 16. Unlike CDH the concept SLH is also meaningful for
nonseparable spaces. The proof of Proposition 15 uses separability. For
nonseparable iso-SLH™ spaces the set d({z} x X) may be uncountable
but we still have that the set {y € X : d(z,y) = r} is clopen for each
r >0 and xz € X. Thus, iso-SLH™ implies ind < 0 also for general, not
necessarily separable, metric spaces.

Theorem 17. For a subspace A of R"™, the following statements are
equivalent:

(1) A is iso-CDH.
(2) A is iso-SLH.

(3) A is iso-SLH .

(4) A is discrete.

Proof. The implications (4) = (1), (4) = (2), and (2) = (3) are
trivial.

(1) = (4). Let A be an iso-CDH subspace of R™. Select a finite subset
F of A such that F and A have the same affine hull V. Let R be the
countable set d(A x A). Define f : A — RF by (f(a))(b) = d(a,b) for
a € Aand b € F. We show that f is one-to-one. Let z,y € A be such
that  # y and f(z) = f(y). Then for each b € F, d(z,b) = d(y,b);
thus, F' is a subset of the hyperplane H that is equidistant from x and

y. Then A C V C H which contradicts the fact z,y ¢ H. Since R
is countable, we may conclude that A is countable. Every countable
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(iso-)CDH space is obviously discrete because if a € A is not isolated;
then A\ {a} is a countable dense subset of A that cannot be mapped
onto A with a permutation of A.

(3) = (4). Let A be iso-SLH™, and let a« € A. If a is not in the
affine hull of A\ {a}, then a is isolated in A. So we may choose a finite
subset F' of A\ {a} such that F and A have the same affine hull. Let
U be a neighborhood of a in A such that for each € U there exists
an isometry of A that fixes the points in F' and that maps a to x. Let
x € U\{a} and consider an isometry f of A that fixes F' and that maps
a to . As in the argument given above F', and hence A, are contained
in the hyperplane H that is equidistant from a and z. Since a,z ¢ H,
we may conclude that U = {a} and thus a is isolated in A. o

Proposition 18. A compact metric space is iso-homogeneous if and
only if it is L-homogeneous.

Proof. Let (X,d) be a compact L-homogeneous space. Let a,b € X
and select for each n € w a permutation f,, of X such that || f,|| < 27"
and f,(a) = b. Thus, we have lim, o, d(fn(2), fn(y))/d(z,y) = 1
for z # y. Select a countable dense subset A = {ar : k¥ € w} in
X such that ay = a. By compactness we find using recursion a se-
quence w = Iy D I; D - of infinite sets such that for each £k € w
there is a by € X with lim,cy, fn(ag) = bx. We define f : A — X
by f(ar) = by for each k € w. Note that f(a) = b. If ap # am
and k < m, then d(f(ar), f(am)) = limguer, d(fn(ak), fnlam)) =
d(ag, am) limper,, d(fn(ak), fa(am))/d(ar,am) = d(ag,an). Thus,

|f]l = 0 and by Lemma 3 there is an extension f : X — X such
that ||f]] = 0. By [11, page 181] and compactness we have that f is
also surjective and hence X is iso-homogeneous. |

4. Examples. We consider several examples. Let P = R\ Q be the
space of irrational numbers with the Euclidean metric.

Proposition 19. The space P is LSLH, LCDH and L-homogeneous
but not iso-SLH~, iso-CDH, or iso-homogeneous.
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Proof. The set T of isometric permutations of P consists of all linear
functions of the form +x + g where ¢ € Q. Obviously, every function
like that generates an isometric permutation of P. If f is an isometric
bijection of P, then by Lemma 3 it extends to an isometry f of R.
Clearly, we have f(z) = +x + ¢ with ¢ = f(0) € Q. Since Z is
countable, we have that P is neither iso-SLH™, nor iso-CDH, nor iso-
homogeneous.

We now verify that P is LSLH. Let a € PN (p, q) where p,q € Q, and
let € > 0 be such that ¢ < min{g —a,a —p}. Put § =1—¢e° € (0,1),
and select sequences of rational points p = pg < p1 < p2 < --- and
q = qo > q1 > g2 > --- such that lim; ,.op; = lim;, ¢ = a.
Pick an arbitrary point b € P such that |b — a] < €d. The slope
m of the secant line through the points (p,p) and (a,b) in the plane
satisfies |m — 1| = |(b—p)/(a—p) = 1] = [(b—a)/(a —p)| < . We
can then choose a rational point p) close enough to p; such that both
the slope from (p,p) to (p1,p}) and the slope from (py,p}) to (a,b)
have distance less than § towards 1. Continuing this process, we
find a sequence p = p; < pj < py < --- such that lim; ;oo p;, = b
and the slope m; = (p},; — p;)/(pit1 — p:i) from (p;, p;) to (pit1,Pi 1)
has distance less than § towards 1 for every i € w. We can find a
similar sequence ¢ = ¢ > q; > ¢4 > --- on the other side of b with
slopes n; = (¢;4, — ¢;)/(gi+1 — ;) such that |n; — 1| < 6. Now define
h:R — R by

x ifx <porxz>gq;
b if z = a;
h(z) = ifx=a

i+ mi(x —p;) if x € [ps,piy1] for i € w;
g +ni(x—q) ifze€lg1,q]foricw.

Thus, h is supported on (p,q) and h(a) = b. The derivative A’ of
the continuous function h exists in all but countably many points and
assumes only the values 1, m; or ny; thus, for all z,y € R with z < y,

we have
Jo (W) —1)dt

h(y) = h(z)
y—a

1 =
y—x

<o

Hence, we have ||| < —log(l —§) = e. Apart from h(a) = b
the function h is piecewise linear with rational coefficients and thus
h(Q) = Q and h(P) = P. We have shown that P is LSLH.
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Since P is LSLH and topologically complete, we have that the space
is LCDH by Remark 12. Let a,b € P and ¢ > 0. Since P is LSLH,
there is a neighborhood U of b such that for every z € U there is a
permutation f of P with ||f|| < € and f(b) = z. Select a ¢ € Q such
that a + ¢ € U, and let g be a permutation of P such that ||g|| < € and
g(b) = a+ q. Then h(z) = g '(z + q) is a permutation of P such that
2|l = llg]| and h(a) = b, proving that P is L-homogeneous. O

Thus, there exist topologically complete spaces that are L-homogeneous
but not iso-homogeneous. In view of Proposition 18 this suggests

Question 20. Is there a complete metric space (X,d) that is L-
homogeneous but not iso-homogeneous?

Let @ = [0,1]“ be the Hilbert cube, and let the Cantor set C be
represented by the subset {0,1}* of Q. It is well known that @ and C
are homogeneous, SLH and CDH; see [9, subsection 6.1]. We consider
the following standard product metrics on Q. Let s = (sg, s1,---) be
a monotone sequence of positive real numbers that converges to zero.
The metric ps on @ is defined by

ps(x,y) = max{s;|z; —y;| : i € w} for z,y € Q.

According to Vaisala [12] and Hohti [4] we have that for every pair
z,y € Q there is a permutation f of (Q, p,) with f(z) =y and || f|| < o0
if and only if sup{s;/s;11:7 € w} < oco.

If (X,d) is bounded, then a point x € X is called extremal if
sup{d(z,y) : y € X} = diam X.

Proposition 21. If a space (X,d) is bounded and L-homogeneous,
then every point of X is extremal. Consequently, the space (Q, ps) is
not L-homogeneous.

Proof. Let © € X be such that ¢ = diam X — sup{d(z,y)
y € X} > 0. Select y,z € X such that d(y,z) > diamX —
€/2. Let f be a permutation of X such that f(y) = z. Then
d(f(y), f(2)) = d(z,f(z)) < diamX — e. Consequently, ||f|| >
log((diam X — ¢/2)/(diam X — ¢)). O
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Question 22. Is (Q,ps) LCDH or LSLH? Is there a compatible
metric on Q that makes the space LCDH, LSLH, or iso-homogeneous?

The following result was communicated to the author by Michael
Hrusdk [6].

Theorem 23. The Cantor set C = {0,1}*, seen as a subspace of
(Q, ps), is iso-homogeneous, iso-SLH and iso-CDH.

Proof. Consider the standard boolean group structure on C: (zAy); =
z; +y; mod 2. Clearly, for a € C, the function z — x/Aa is an isometry
so C is iso-homogeneous. Let z € C, and let n € w. Consider the
clopen neighborhood

U,={yeC:y; =z for every i with 5; > 27"}
of . Let y € U, and define the function

h(z) = 2NxNy if 2 € Uy;
R if z € C\ U,

It is easily verified that h is an isometry that maps = to y. Since the
U,s form a neighborhood basis at  we have that C is iso-SLH (and
iso-CDH by Theorem 9). O

Note that we have shown that C is iso-SLH': there exists a basis B
for the topology such that for each B € B and z,y € B there exists an
isometry of the space that is supported on B and that maps z to y.
We can of course add iso-SLH™ to the list in Theorem 17.

Question 24. Are iso-SLH—, iso-SLH, and iso-SLH' equivalent?

Analogously, we can call a space (X, d) LSLH" if there exists for every
z € X and € > 0 a neighborhood U of x with diam U < ¢ such that for
each y € U there exists a permutation h of X such that A is supported
on U, h(z) = y, and ||h|| < e. This concept is very different from
LSLH in that it applies only to zero-dimensional spaces (note that the
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neighborhoods U must be clopen). Also note that the zero-dimensional
space P is LSLH by Proposition 19 but clearly not LSLH*. LSLH™ is
also not equivalent to LSLH; see Proposition 31.

Remark 25. Similarly to the Cantor set we can equip P with an
admissible metric that makes the space iso-homogeneous, iso-SLH™
and iso-CDH. Represent P by N“ and use the metric

ps(x,y) = max{s; min{1, |z; — y;|} : i € w} for x,y € N¥.

Proposition 26. Some (C,ps) admits an isometric imbedding in
Hilbert space and hence in Theorem 17 we cannot substitute Hilbert
space for R™.

Proof. Let the Hilbert space be represented by ¢2, the vector space
of square summable sequences x = (zg,z1,...) of real numbers. We
have the usual inner product z-y = Y.~ #;y;, norm ||z|| = /- z, and
metric d(z,y) = ||z — y|| for z,y € £2. We identify R™ for n € w with
the subspace {x € ¢ : x; = 0 for i > n} of ¢?, and we put R™! = &.
Let e’ ¢!, ... be the standard orthonormal basis for ¢2, that is, e? = 1
if i =n and e = 0 if i # n. The affine hull of a subset A of ¢2 is
denoted as aff A.

If n € wweput C, = {z € C:z; =0 for i > n} and if positive real
numbers sg, . .. , S,—1 have been chosen, then we let p,, be the metric on
C), that is determined by d,(z,y) = max?z_o1 si|lz; — yil- Let po,p1, ...
enumerate D = |J,~, C,, in the canonical way, that is, p; = z if and
only if k =5, x;2%

By recursion we will find for n € N a positive real number s,,_; and
a function a,, : C,, — ¢2 such that

1EW

(1) a, is an isometric imbedding of (Ch, p,,) in £2,
(2) an[Cr-1 =, for n > 2,

(3) an(pr) € R*\R*! for 0 < k < 2", and

(4) sp—1 < (1/2)sp_o for n > 2.

If this construction has been performed, then o = U;o:l a, is an
isometric imbedding of (D, p,) in 2, where s = (so,81,...). Since
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D is dense, we have by Lemma 3 that there is an isometric imbedding
@ of (C, ps) in £2.

As the basis step we put sg = 1, a1(po) = 0 and a;(p;) = €°. Assume
now that sg,...,s,_1 and aq,...,qa, have been found. Define

r = min{d(a,(z), aff a,(Cp \ {z})) : z € C, }.

By hypothesis (3) we have that the elements of a,,(C,,) are geomet-
rically independent; thus, we have r > 0. Choose s, > 0 such that
$n < (1/2)s,_1 and s, < 2r2="/2.

We will define apni1(pan),... ,ant1(pon+i_q) recursively such that
an+1 extends «a,, and, for each k£ with 0 < k£ < 2", we have

(@) ant1(pi) e R\ R for 0 <i < k + 27,

(b) a1 M{pi : © < k + 2"} is an isometric imbedding, and

(c) for each j with k < j < 2™,

d(an(pj)a aﬂ{anJrl(pi) ) 7& jai <k + 2n}) Z V ,,.2 - ks%/4

Clearly, the hypotheses are satisfied for K = 0. Let 0 < k < 2" —1, and
consider the point p;. Note that pgon is obtained from py by changing
the coordinate with index n from 0 to 1 and hence p,, 1 (Pk, Pr+2n) = Sn-
We put

V=aff{apt1(pi) :i #k,i<k+2"}

and t = d(an(pr),V). Let N be the unit normal vector to the
hyperplane V in R*+2"~! such that t = N - (a,(px) — z) for each
z € V. By hypothesis (c) and the property s, < 2r2="/2, we have

t> /12 —ks2/4>/r2 — (20 —1)r22n =272 > 5, /2.

Thus, a = (s,,/2t) < 1 and we may define the vector

2= sp(—aN + /1 — a2 2",

We put ani1(prt2n) = an(pr) + 2. For hypothesis (a), it is clear
that ay,.1(pryon) € RFFZ"\ R¥+2"~1 Note that ||z| = s, and
hence d(ant1(Prt2n); @n(Pk)) = Pn+1(Prs2n,pr). Now let ¢ be such
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that ¢ # k and ¢ < k + 2". Then we have a,t+1(p;) € V; thus,
2 (n(pr) — ant1(pi)) = —spat = —s2 /2, and hence

lon 41 (Pr2n) = ana (po) I
= [l2]1* + 22 - (o (pk) = ans1(p2)) + llom (Pk) — ngr (p2)I|*
= prt1(Dks Pi)* = prt1(Drsan, 0i)%.

So we have that a1 [{p; : ¢ < k + 2"} is an isometric imbedding.
For hypothesis (c), let k+1 < j < 2", and let

W =aff{a,r1(p;) 11 # 7, i <k+2"}
and
W' =aff{an+1(p;):i#j, i <k+2"} =W + Ra.

Let M be the unit normal vector to W in R¥*2"~1 such that
d(an(pj), W) = (an(p;) — ) - M for each z € W. Consider the vector

y=+1—a2M +a(M-N)e+?",

Since M and eF+2" are both perpendicular to W and since y - z = 0,
we have that y is perpendicular to the hyperplane W’ in R¥*2". Since,

by hypothesis (c), d(an(p;), W) > \/r? — ks2 /4 we have

d(an(pj), W') = |(an (p;) ﬂjr(pk)) -y

= d(an(pj)7 W)\/l —a? j‘;;zjw ’ N)2

> \/rz—ks%/4\/1—a2

> \/(r2 — ks3/4) (1 - %)

= VP =+ D32/,
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where we used a = s,/(2t) and (x). Thus, hypothesis (c) has been
verified for £ + 1. We note that for £ = 2" the map a1 is defined on
C+1 and that it satisfies hypotheses (1)—(3), so the proof is complete. O

Cantor sets in the real line are not as well behaved as (C, ps):

Proposition 27. Let T be the middle third Cantor set in R. If
f:T — T is a surjection such that |f(z) — f(y)| < (5/3)|x — y| for
z,y € T with x # y, then f(z) = or f(z) =1 — z. Consequently, T
is neither LSLH, nor LCDH, nor L-homogeneous.

Proof. We use the standard construction of T. Let Ty = [0,1],
and let every T,,1 be a union of 2"T! disjoint closed intervals that
is obtained from 7;, by removing the open middle third interval from
each component of T;,. Let f : T — T be a surjection such that
If(z) — fy)| < (5/3)|x — y| for z,y € T with z # y. By possibly
replacing f(z) by 1 — f(z) we can arrange that f(0) < 1/3.

Let n € N and consider a component A of T,,. If f(ANT)
intersects more than one component of T,,, then we select two points
a,b € ANT of minimal distance such that f(a) and f(b) are in different
components of T},. Since the largest gap in A N7 has length 3~ 7!
we have |a — b < 37"~!. The smallest gap in T}, has length 37" so
|f(a) — f(b)|/la —b] > 37"/37"~1 = 3, contradicting the assumption
about f. Thus, f(A) is contained in some component of 7, which
means that f generates a permutation P, of the components of T,
because f is onto.

Note that since f(0) < 1/3 we have that P; is the identity. If f is not
the identity, then there is a Py, that is not the identity, and we let n > 1
be the highest index such that P, is the identity permutation. Let A
and Ay be two distinct components of T}, such that P,11(A41) = As.
Then there exist components By, and By of T),, and a component D of
T, 1 such that AyUAs = BiNT,+1 and By UBy = DNT,. Let a and
b be the endpoints of By and By, respectively, such that |a — b] = 37"
Since P,(B1) = By, we have P,11(A2) = A; and we may assume by
symmetry that a € Ay and f(a) € As. Since a is an endpoint of By
this means that |f(a) —a| > 2-3 " 1. Since P,(B2) = By we have
la—f(b)] = la—b] = 37" thus |f(a) — f(b)| = 5-37""" = (5/3)]a — b,
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a contradiction. We may conclude that f is the identity which proves
the proposition. ]

Definition 28. A metric space (X, d) is called L-rigid if the identity
is the only permutation of X with finite norm.

Proposition 29. There ezist L-rigid Cantor sets in the real line.

Proof. We use a standard construction for our example: K as an
intersection (), K. Let Ky = [0,1], and let every K, for n > 1 be
a union of 2™ disjoint closed intervals that are obtained from K, ; by
replacing every component of K,,_; by two subintervals such that

(a) the boundary of K,,_1 (in R) is contained in the boundary of K,

(b) for each component A of K,, we have log(g,/diam A) > n, where
gn is the length of the smallest gap in K, and

(c) for each pair of distinct components A and B of K, we have
| log(diam B/diam A)| > n.

By property (a) we have that for each component A of K,,, diam (K N
A) = diam A.

Let F be a permutation of K such that || f|| < co. Consider K,, with
n > ||f|l. Let A be a component of K, such that f(A N K) meets
more than one component of K,,. Then |f|| > log(gn/diam A) > n,
a contradiction. Since f is onto we now have that f generates a

permutation P, of the components of K,,. Let A be a component
of K,, such that P, (A) # A. Since f is surjective we have

diam (P,(A)NK)| diam P,(A)
diam (ANK) | diam A

Thus, we have that P, is the identity permutation for each n > ||f||

and hence f is the identity. O

IfIl > |log

Clearly, a bounded subset of R is L-homogeneous if and only if it
contains at most two points, see Proposition 21.

Proposition 30. There exist Cantor sets in R that are LSLHT and
LCDH.
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Proof. Consider the Cantor set C' with metric p, for s; = 3”'2, 1€ w.
We define the map o : C'— R by

a(z) = i 2,37
n=0

Since 377,44 37" < Yo7, 37 2 = (1/2)37 72 < (1/2)37,
we have that o is an imbedding and (1/2)ps(x,y) < d(z,y) <
(3/2)ps(z,y) for all z,y € C. So d(z,y) = |a(z) — a(y)| is a com-
patible metric on C' that makes (C,d) isometrically imbeddable in
R. Let z and y be distinct points in C so ps(z,y) = 37" for
some n € w with |z, —y,] = 1 and z; = y; for ¢ < n. Thus,

d(z,y) = [(Tn — yn)3™™ + 200, 41 (@i — 5:)37% |, and hence

1
_37n272n < ps (.’13, y)372n‘

[es) ) )
d(z,y) — ps(z,y)| <D 37" 2= 5

i=1

Consequently, we have

d(.’l?, y) —2
log < —log(1l—-37""
ps(z,y) ( )

whenever 0 < p;(z,y) < 3-7" with n > 1.

Let a € X, let n > 22and consider the clopen neighborhood U,, =
{zx € C: ps(z,a) < 3™} of a. Let b be an arbitrary element of U,
and define (just as in the proof of Theorem 23) the ps-isometry

h(z) = xNalb if ¢z € Uy;
R ifeeC\Upy;

that maps a to b.

It remains to find an estimate for || f||, the norm with respect to d. We
can ignore the case z,y € C'\ U, so let z € U,,. First, let y € U, \ {z}
and note that p,(z,y) = ps(h(z), h(y)) < 37™°. Then we have

A ()| [, dh@).h) . d(y)
8 i, ) “1 pa(h(@) h(y) % pa(ay)

—2log(1 —372").

IN
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If y € C'\ Uy, then ps(z,y) > 3-(=1’  Since h(y) = y we have that

%ps(h(x),w) < 3= _ 3242
Lo(ay) — 300

Combining these estimates we find ||f|] < —2log(1 — 372"*2) which
proves that (C,d) is LSLH' and hence LCDH by Theorem 9. O

The following proposition shows that Theorem 9 with Remark 10 can
also be used in certain cases where Bennett’s theorem does not apply.

Proposition 31. Complete Erdds space €. is not SLH but it admits
a complete metric that makes the space iso-homogeneous, LSLH~ and

LCDH.

Proof. We begin by presenting a particularly elegant model of &, that
is featured in Dijkstra [2] and called harmonic Erdds space. Consider
the Cantor set C with its boolean group structure A. We define the
following ‘norm’ from C' to [0, co]:

Note that p(zAy) < ¢(x) + ¢(y) for all z,y € C and hence &, =
{z € C: p(x) < oo} is a subgroup of C. Moreover, it follows that
d(z,y) = p(xAy) defines an invariant metric on &, that makes €. into
a topological group and an iso-homogeneous space. It is shown in [2]
that that (&, d) is homeomorphic to complete Erdés space, that d is
complete, and that the empty set is the only bounded clopen subset of
&..

It is known that &, is not SLH and this fact is easily shown as follows.
Let f : €& — €. be a continuous function such that f(a) # a for
some a € &. Let n be such that f(a), # an. Then O = {z € C :
Zn = apn and f(x), = f(a)n} is a clopen set that contains a and hence
diam O = oo. Note that no point of O is fixed because f(O)NO = @.
So we have that the identity is the only map from €. to itself with
bounded support.
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To show that (&, d) is LSLH™ and hence LCDH by Remark 10 let
a € €, let F C &\ {a} be finite, and let € > 0. Select an n € N such
that for each b € F thereis an i < n with b; # a;. Put § = (1—e~¢)/n
and define the clopen neighborhood U = {z € &, : z; = a; for i < n}
of a. Let b € U be such that d(a,b) < § and define the function
h:¢&. — €. by

h(z) = {anAb if z € U;

x ifxeeE \U.

Note that A is supported on U; thus, h fixes the points of F. Also
h(a) = b and h|U is an isometry of U. So to estimate ||h|| we only
have to consider points z € U and y € €.\ U. Since h(y) = y and
d(z,y) > 1/n, we have that

d(h(z), h(y))
d(z,y)

Thus, ||| < —log(l —nd) =e. u]

d(h(z), ) < p(xlhalbAz)
d(z,y) — 1/n

IN

- 1‘ = np(alb) < nd.

In particular, we have that €. is CDH, a fact that is already contained
in Kawamura, Oversteegen, and Tymchatyn [7]. Of course, €. is
neither iso-CDH nor iso-SLH™ because dim €. = 1, see Proposition 15.
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