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THE SET OF SOLUTIONS OF
VOLTERRA AND URYSOHN INTEGRAL
EQUATIONS IN BANACH SPACES

ANETA SIKORSKA-NOWAK

ABSTRACT. We prove two existence theorems of solu-
tions of nonlinear integral equations of Urysohn type z(t) =
p(t) + )\foaf(t, s,z(s)) ds and Volterra type z(t) = ¢(t) +
fot f(t,s,z(s))ds, t € Io = [0,a], a,A € R4, with the
Henstock-Kurzweil-Pettis integral. Moreover, we show that
the set S of all solutions of the Volterra integral equation is
compact and connected. The assumptions about the function
f are really weak: scalar measurability and weak sequential
continuity with respect to the third variable. Moreover, we
suppose that the function f satisfies some conditions expressed
in terms of the measure of weak noncompactness.

1. Introduction. There is a large number of papers treating
differential or integral problems via classical Bochner or Pettis integrals
in Banach spaces. In the last two decades, when studying such
problems, integrals of highly oscillating functions were taken into
account. Thus, on the real line, significant results were obtained using
the Henstock-Kurzweil integral ([6, 7, 14, 15, 27]) and then, in the
general case of Banach spaces, similar problems were investigated under
Henstock integrability assumptions ([26, 35, 36, 37]) or imposing
some Henstock-Kurzweil-Pettis integrability conditions ([10, 11]).

Let (E, || - ||) be a real Banach space, E* its dual space and
I, = [0,a], « € Ry. Moreover, let (C(I,, F),w) denote the space
of all continuous functions from I, to E endowed with the topology
o(C(In, E),C(14, E)*).
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In the present work we will prove an existence theorem for the
Urysohn integral equation:

(1) z(t) = p(t) + )\/ f(t,s,z(s))ds, tel,, a, A€ Ry,
0
and for the Volterra integral equation:

(2) z(t) = o(t) +/0 f(t,s,z(s))ds, tel,, acRy,

where f: I, X I, X E — FE, ¢:1, — FE and x : I, — E are functions
with values in F and integrals are taken in the sense of Henstock-
Kurzweil-Pettis ([10]).

Moreover, we prove, that the set S of all solutions of the Volterra
integral equation on Ig, 0 < 8 < «, is connected and compact in
(C(Ig, E),w). This problem was investigated by Cichoni and Kubiaczyk
[9], Kubiaczyk [25], Schwabik [37], Szufla [38] and others.

We should mention that extensive work has been done in the study
of the solutions of particular cases of (1) (see, for example, [1, 2, 3,
12, 22, 23, 30, 31, 32)).

A Kubiaczyk fixed point theorem [24] and the techniques of the
theory of measure of weak noncompactness are used to prove the
existence of solution of problems (1) and (2). Assumptions about the
function f are really weak: scalar measurability and weak sequential
continuity with respect to the third variable. By using these conditions,
we define a completely continuous operator F' over the Banach space
(C(Iy, E),w), whose fixed points are solutions of (1). The fixed point
theorem of Kubiaczyk [24] is used to prove the existence of a fixed
point of the operator F'.

Let us recall that a function f : I, — F is said to be weakly
continuous if it is continuous from I, to E endowed with its weak
topology. A function g : ¥ — Ej, where F and E; are Banach
spaces, is said to be weakly-weakly sequentially continuous if for each
weakly convergent sequence (z,,) in E, the sequence (g(z,)) is weakly
convergent in F;,. When the sequence z,, tends weakly to zy in E, we
will write z,, — xo.
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Our fundamental tool is the measure of weak noncompactness devel-
oped by DeBlasi [13].

Let A be a bounded nonempty subset of E. The measure of weak
noncompactness 1(A) is defined by

w(A) =inf{t > 0: there exists C € K* such that A C C +tBy},
where K* is the set of weakly compact subsets of F and B is the norm
unit ball in F.

We will use the following properties of the measure of weak noncom-
pactness u (for bounded nonempty subsets A and B of E):

(i) if A C B, then p(A) < u(B);

(vi) u(A+ B) < u(A) + u(B);
(vii) p(conv (A)) = p(conv A) = p(A), where conv (A) denotes the

convex extension of A.

It is necessary to remark that if p has these properties, then the
following lemma is true.

Lemma 1.1 [29]. Let H C C(I, E) be a family of strongly
equicontinuous functions. Let, fort € I, H(t) = {h(t) € E, h € H}.
Then p(H(Iy)) = supse; p(H(t)) and the function t — u(H(t)) is
continuous.

Moreover, the following holds:

Lemma 1.2 ([9]). Let (X,d) be a metric space, and let f : X —
(E,w) be sequentially continuous. If A C X is a connected subset in
X, then f(A) is the connected subset in (E,w).

In the proof of the main result we will apply the following fixed point
theorem.
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Theorem 1.3 ([24]). Let X be a metrizable locally convex topological
vector space. Let D be a closed convex subset of X, and let F' be a weakly
sequentially continuous map from D into itself. If for some x € D the
implication

(3) V =rconv ({z}UF(V)) =V is relatively weakly compact,

holds for every subset V of D, then F has a fized point.
Let us introduce the following definitions:

Definition 1.4 [33]. Let G : [a,b] — E, and let A C [a,b]. The
function g : A — FE is a pseudoderivative of G on A if for each z* in E*
the real-valued function z*G is differentiable almost everywhere on A
and (z*G)" = z*g almost everywhere on A.

Definition 1.5 [18, 28]. A family F of functions F is said to be
uniformly absolutely continuous in the restricted sense on X or, in short,
uniformly AC,(X) if, for every € > 0, there is an n > 0 such that for
every F' in F' and for every finite or infinite sequence of nonoverlapping
intervals {[a;, b;]} with a;,b; € X and satisfying >, |b; — a;| < 1, we
have >, w(F, [a;, b;]) < €, where w(F,[a;, b;]) denotes the oscillation of
F over [a;, b;] (i-e., w(F,[a;,b;]) = sup{|F(r) — F(s)| : 7, s € [ai, bi]})-

A family F' of functions F' is said to be uniformly generalized abso-
lutely continuous in the restricted sense on [a, b] or uniformly ACG, on
[a,b] if [a,b] is the union of a sequence of closed sets A; such that on
each A;, the family F is uniformly AC,(4;).

2. Henstock-Kurzweil-Pettis integral in Banach spaces. In
this part we present the Henstock-Kurzweil-Pettis integral and we give
properties of this integral.

Definition 2.1 [18,28]. Let § be a positive function defined on
the interval [a,b]. A tagged interval (z,[c,d]) consists of an interval
[e,d] C [a,b] and a point = € [c,d].

The tagged interval (z,[c,d]) is subordinate to ¢ if [¢,d] C (z —
d(z),z+ 6(x)).
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Let P = {(ss,[ci,di]) : 1 < i <m, n € N} be such a collection in
[a,b]. Then

(i) The points {s; : 1 < i < n} are called the tags of P.
(ii) The intervals {[c;,d;] : 1 < i < n} are called the intervals of P.

(iii) If {(ss,[ci,di]) :+ 1 < i < n} is subordinate to § for each 4, then
we write P is sub 4.

(iv) If [a,b] = UP_4[ci, d;], then P is called a tagged partition of [a, b].

(v) If P is a tagged partition of [a, b] and if P is sub ¢, then we write
P is sub ¢ on [a,b].

(vi) If f : [a, b] = E then f(P) =Y, f(s:)(di — ).
(vii) If F is defined on the subintervals of [a, b], then

F(P)=) F(lei,di]) =Y [F(di) = F(co)].
i=1 i=1
If F: [a,b] — E, then F can be treated as a function of intervals
by defining F([c,d]) = F(d) — F(c). For such a function, F(P) =
F(b) — F(a) if P is a tagged partition of [a, b].

Definition 2.2 [18, 28]. A function f : [a,b] — R is Henstock-
Kurzweil integrable on [a,b] if there exists a real number L with the
following property: for each € > 0, there exists a positive function ¢ on
[a, b] such that |f(P) — L| < e whenever P is a tagged partition of [a, b]
that is subordinate to d.

The function f is Henstock-Kurzweil integrable on a measurable set
A C [a,b] if fx 4 is Henstock-Kurzweil integrable on [a, b]. The number
L is called the Henstock-Kurzweil integral of f. We will denote this

integral by (HK) [° f(t) dt.

Definition 2.3 [5]. A function f : [a,b] — E is Henstock-Kurzweil
integrable on [a,b] (f € HK([a,b], E)) if there exists a vector z € F
with the following property: for every € > 0 there exists a positive
function ¢ on [a, b] such that ||f(P) — z|| < £ whenever P is a tagged
partition of [a, b] sub §. The function f is Henstock-Kurzweil integrable
on a measurable set A C [a,b] if fX4 is Henstock-Kurzweil integrable
on [a,b]. The vector z is the Henstock-Kurzweil integral of f.
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We remark that this definition includes the generalized Riemann
integral defined by Gordon [19].

Definition 2.4 [5]. A function f : [a,b] — E is HL integrable on
[a,b] (f € HL([a,b], E)) if there exists a function F : [a,b] — E,
defined on the subintervals of [a, b], satisfying the following property:
given ¢ > 0, there exists a positive function § on [a,b] such that if
P ={(si,ci,di] : 1 <i<n}is atagged partition of [a,b] sub 4, then

Dl (i) (di = i) = Fllewdi))| <e.

Remark 1. We note that by triangle inequality:

f € HL([a,b], E) implies f € HK([a,b], E).

In general, the converse is not true. For real-valued functions, the
two integrals are equivalent.

Definition 2.5 [33]. The function f : I, — E is Pettis integrable (P
integrable for short) if

(i) VE x* f is Lebesgue integrable on I,
o e B

@) Y3, = () [y s

A-measurable

Now we present a definition of the integral which is a generalization
for both: Pettis and Henstock-Kurzweil integrals.

Definition 2.6 [11]. The function f : I, — E is Henstock-Kurzweil-
Pettis integrable (HKP integrable for short) if there exists a function
g : I, — E with the following properties:

(i) VE x*f is Henstock-Kurzweil integrable on I, and
o e B

() v v, @g(t) = (HK) [y 2" [(5) ds.
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This function g will be called a primitive of f and by g(a) = foa ft)dt
we will denote the Henstock-Kurzweil-Pettis integral of f on the
interval I,.

Remark 2. Each function which is HL integrable is integrable in the
sense of Henstock-Kurzweil-Pettis. Our notion of integral is essentially
more general than the previous ones (in Banach spaces):

(i) Pettis integral: by the definition of the Pettis integral and since
each Lebesgue integrable function is HK integrable, a P integrable
function is clearly HKP integrable.

(ii) Bochner, Riemann, and Riemann-Pettis integrals [19].
(iii) MsShane integral [17, 20].
(iv) Henstock-Kurzweil (HL) integral [5].

We present below an example of function which is HKP integrable
but neither HL integrable nor P integrable.

Example. Let f :[0,1] — (L>[0,1],]||l«), and let f(t) = X0, +
A(t) - F'(t), where
F(t)=t*sint 2, tc(0,1],
F(0) =0,
1 7e€]o,¢,
Xjo,4(T) = {0 0.4, t,7 €[0,1],
A)(r)=1 for 7,t € [0,1].

Put fi(t) = X[o,¢, f2(t) = A(t) - F'(t).
We will show that a function f(¢) = f1(¢) + f2(t) is integrable in the
sense of Henstock-Kurzweil-Pettis.

Observe that

2" (f(t) = =" (f1(t) + f2(1)) = 2" (f1 (1)) + =" (f2(1))-

Moreover, the function z*(f;(t)) is Lebesgue integrable (in fact f; is
Pettis integrable [16]), so is Henstock-Kurzweil integrable, and the
function z*(f2(t)) is Henstock-Kurzweil integrable by Definition 2.2.
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For each z* € E* the function z*f is not Lebesgue integrable
because z* f2 is not Lebesgue integrable. So f is not Pettis integrable.
Moreover, the function f; is not strongly measurable [16] and the
function fy is strongly measurable. So their sum f is not strongly
measurable. Then by [5, Theorem 9] f is not HL integrable.

In the sequel we will investigate some properties of the HKP integral
which are important in the next part of our paper.

Theorem 2.7 [11]. Let f : [a,b] — E be HKP integrable on [a,b],
and let F(z) = [T f(s)ds, x € [a,b]. Then

(i) for each z* in E*, the function z* f is HK integrable on [a,b] and

) [ "2t (f(s) ds = 2" (F(x)).

(ii) the function F is weakly continuous on [a,b] and f is a pseudo-
derivative of F' on [a,b].

Theorem 2.8 [11]. Let f : [a,b] — E. If f = 0 almost everywhere
on [a,b], then f is HKP integrable on [a,b] and f: f(t)dt=0.

Theorem 2.9 [11] (Mean value theorem for the HKP integral). If
the function f : I, — E is HKP integrable, then

/f(t) dt € |1] - wonv (1),
I
where I is an arbitrary subinterval of I, and |I| is the length of I.

Theorem 2.10 [8]. Let f : I, — E, and assume that f, : [, — E,
n € N, are HKP integrable on I,. Let F, be a primitive of f,. If we
assume that:

(i) for all z* € E*, *(f,(t)) = x*(f(t)) almost everywhere on I,

(ii) for each z* € E*, the family G = {«*F, : n = 1,2,...) 1is
uniformly ACG, on I, (i.e., weakly uniformly ACG, on I,),

(iii) for each x* € E* the set G is equicontinuous on I,
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then f is HKP integrable on I, and fot fn(s)ds tends weakly in E to
fot f(s)ds for each t € 1.

3. Existence of a solution.

I. The Urysohn integral equation. Now we prove the existence
theorem for problem (1) under the weakest assumptions on f, as it is
known.

For z € C(I,, E); we denote the norm of z by ||z||c = sup{||z(¢)||, t €
L}
Put

Clp,a) = {z € C(la, E) : 2(0) = ¢(0), [zl < llgllc + Ao},

where ¢ € C(I,, E), p,a are some positive numbers and A € R is
from (1). This set is closed and convex.

We define the operator F : C(Iy, E) — C(I,, E) by

F(z)(t) = o(t) + A / " f(t, 5 2(s)) ds,
AER;, tel,, ze€l(p ),

where the integral is taken in the sense of Henstock-Kurzweil-Pettis.
Moreover, let I' = {F(z) € C(Iy,E) : x € C(p,a)}.

Theorem 3.1. Assume that for each ACG, function z : I, — E,
f(t,-,z(-)) is HKP integrable, for each t € I,, f(t,s,-) is weakly-
weakly sequentially continuous and there exists a measurable function
k:I,xI,— Ry such that k(t,-) is continuous and
(4)
p(f(t,I,X)) <supk(t,s)u(X), for each bounded X C E and I C I,.

sel

Moreover, let A\r(K) < 1, where A\ € Ry and r7(K) is a spectral radius
of the integral operator K defined by

K(u)(t) = /Oa k(t,s)u(s)ds, weC(p,a), tel,.
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Suppose that T' is equicontinuous and uniformly ACG, on I,. Then
there exists at least one solution of problem (1) on Ig, for some
0 < B8 < a with continuous initial function ¢.

Proof. By equicontinuity of I', there exists a number 3, 0 < 8 < q,
such that || foﬂ f(t,s,z(s))ds|| < p for fixed p > 0, t € Ig and
z € C(p,®). Recall, that a continuous function F(z) € I' defined
on [0,a] is equicontinuous on [0,«] if for each ¢ > 0 there exists a
0 > 0 such that |F(z)(t) — F(z)(7)|| < € for all x € C(p, o) whenever
|t —7| < ¢ and t,7 € [0,a]. Thus, for each ¢ > 0 there exists a
§ > 0 such that || f: Iy k(z,s,2(s)) ds) dz|| < e for all z € B whenever
[t —7| < 0 and t,7 € [0,a]. As a result, there exists a number d,
0 < d < a, such that

H /ot f<z’ z(2), /Oz k(z,s,2(s)) d8> dz

By our assumptions, the operator F' is well defined and maps C(yp, )
into C(¢p, B).

<b, teljandz€c B.

1F() ()] = Hw) =y " (b x(s)) ds

< lotollo+A| | "ty 2(s)) ds

< lle@lle + Ap.

Now we will show that the operator F'is weakly sequentially continuous.

By [29, Lemma 9] a sequence z,,(+) is weakly convergent in (C(Ig, E),w)
to z(-) if and only if z,(t) tends weakly to x(t) for each ¢ € Iz. Be-
cause f(t,s,-) is weakly-weakly sequentially continuous so if z,, <> z in
(C(Ig, E),w), then f(t,s,x,(s)) == f(t,s,2(s)) in E for t € Iz and
by Theorem 2.10, we have

B B
tim [ (tsan(s) ds = [ (t.s,a(9)ds
weakly in E, for each t € Ig. We see that F(z,)(t) — F(z)(t) weakly
in E for each t € Ig so [29, Lemma 9] guarantees that F(z,) — F(z)
in (C(Ig, E),w).
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Suppose that V C C(g,3) satisfies the condition V = conv ({z} U
F(V)) for some z € C(p, ). We will prove that V is relatively weakly
compact in C(¢p,3) and so (3) is satisfied.

For t € Ig, let V(t) = {v(t) € E, v € V}. Since V C
C(¢,8), F(V) CT. Then V C V = conv ({z} U F(V)) is equicon-
tinuous. By Lemma 1.1, ¢ — v(t) = p(V'(t)) is continuous on Ig.

We divide the interval [0, ] into m parts: 0 =ty < t; < -+ <ty = 0,
where t; = (i8/m), i = 0,1,... ,m — 1. Let V([t;,ti+1]) = {u(s) € E:
ueV,t;<s<ty1} CE,i=0,..., m—1. By Lemma 1.1 and the
continuity of v there exists an s; € T; = [t;, t;1+1], such that

(5) u(V(13)) = sup{u(V (s)) : s € Ti} =: v(s:).

Let f(¢,T;, V(T;)) = {f(t,s,u(s)) e E:ueV,se T}
By the definition of the operator F and Theorem 2.9, we obtain:

i+1

PO =p0) 473 [ fsu(s) ds € (0

m—1
+ A (tivr — ti)eony (f(t, T;, V(Th))),
i=0
for each u € V.
Therefore,
m—1
FV)(t) Co(t)+ A D (tipr — ti) Tonv f (t,T;, V(Ty)).

i=0

Using (4), (5) and the properties of the measure of weak noncompact-
ness i, we obtain

[u

m—

WE(V)(0) < A3 (b — ) sup bt o)V (T)
S (tia — ) (t pi)o(s:),

«
Il
o
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where s;, p; € T;; hence,

HEV0) €AY (i — 1K p(p)
PNt — ) k(L) (0(50) — ()

=) Z (tit1 — t)k(t, pi) v(pi)
nl 2 (tpi) (v(53) = v(p)-

Fix € > 0. From the continuity of v we may choose m large enough so
that v(s;) — v(p;) < € and so

B
W(E(V)(®) < A /0 k(t, 8)v(s) ds + AB sup k(t, p)e.

pelg

Since ¢ — 0 and ABsup,¢, k(t,p) is bounded, we have ABsup,¢, k(t,
p)e — 0.

Therefore,

B
(6) p(F(V)(t)) < /\/0 k(t,s)v(s)ds for t € I5.

Since V = conv ({z} UF(V )) we have ,u(V(t)) < u(F(V)(t)) and so, in
view of (6), it follows that v(t) < )‘fo Jvu(s)ds for t € I.

Because this inequality holds for every t € Iz and Ar(K) < 1, so
applying Gronwall’s inequality, we get that p(V(t)) = 0 for t € Ig.
Hence, Arzela-Ascoli’s theorem proves that the set V is relatively
weakly compact. Consequently, by Theorem 1.3, F' has a fixed point
which is a solution of the problem (1).

II. The Volterra integral equation. Now, we consider the
integral equation (2).
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Put
Ci(p,a) ={z € C(Ia, E) : [lz[lc < llollc + o}
where ¢ € C(I,, E) and o, are some positive numbers. This set is

closed and convex.
Let G : C(I,, E) = C(I4, E) be defined by

G(z)(t) = o(t) +/0 f(t,s,z(s))ds, tel,, z¢€Ci(p,a),

where the integral is taken in the sense of Henstock-Kurzweil-Pettis.
Moreover, let A = {G(z) € C(I,, E) : z € C1(p,a)}.

Theorem 3.2. Assume that for each ACG, function x : I, — F,
f(t,-,z(-)) is HKP integrable for each t € I,. Let f(t,s,-) be weakly-
weakly sequentially continuous, and there exists a measurable function
ky: I, x I, — Ry such that kq(t,-) is continuous and
(7)
p(f(t,I,X)) < supky(t,s)u(X) for each bounded X C E and I C I,.

sel
Moreover, let r(K) < 1, where r(K) is a spectral radius of the integral
operator K defined by

K(u)(t) = /(; ki(t,s)u(s)ds, tel,, ue€Ci(p,a).

Suppose that A is equicontinuous and uniformly ACG, on I,. Then
there exists a solution of problem (2) for some 3,0 < 8 < a with the
initial continuous function .

Proof. By equicontinuity of A there exists some number 3,0 < 8 < «a,
such that

/Otf(t,s,x(s))ds

<o for fixedo >0, telg, z¢cCi(ypP).

Let V C Cy(p,B) satisfy the condition V = conv ({z} U G(V)) for
some z € C1(p,B). Analogously to the proof of Theorem 3.1, we divide
the interval [0, ¢], for fixed ¢ € I3 into m parts:

it
0=ty <ty <-- <t =t wheret; = % i=0,1,...,m,
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and we prove that

v(t)g/otkl(t,s)v(s)ds, te .

Because this inequality holds for every t € Ig and 7(K) < 1, so applying
Gronwall’s inequality, we get p(V(t)) = 0 for t € Ig. Hence, Arzela-
Ascoli’s theorem proves that the set V is relatively weakly compact.
Consequently, by Theorem 1.3, G has a fixed point which is a solution
of the problem (2).

4. Compactness and connectedness. In this part we show that
the set S of all solutions of the Volterra integral equation on Iz is
compact and connected in (C(Ig, E),w).

Theorem 4.1. Under the assumptions of Theorem 3.2 the set S
of all solutions of the Volterra integral equation (2) is compact and

connected in (C(Ig, E),w).

Proof. Let S be a set of all solutions of the problem (2) on Iz. As
S = G(SY), by repeating the above argument, with V' = S we can
show that S is relatively compact in (C'(Is, F),w). Since G is weakly

continuous on S(Ig)¥, S is weakly closed and consequently weakly
compact.

Now we prove that S is connected.

For any n > 0, denote by S, the set of all functions u : Ig — E
satisfying the following conditions:

(8) u(0) = ¢(0),u € Ci(p, @),

(9) sup Hu(t) —o(t) — /Ot f(t,s,u(s)) dsH <.

tely

The set S, is nonempty as S C S,

By equicontinuity of A we can choose p such that
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<n"<n,

(10) H [ sts,teas

for any = € (C(Ig, E),w), J C Ig, |J| < p.

For any € € (0,5), 0 < 8 < a, let v(-,¢€) : Is — E be defined by the
formula:
for0<t<e

so(t)
v(t,e) =
+f f(t,s,v(s,¢))ds fore<t<p.
Clearly v(-,€) satlsﬁes (8).
Furthermore, for 0 < ¢ < min(p, ) = d, we have

Hv(t,e) —p(t) — /t f(t, s,v(s,s))dsH

‘fo (t,s,v(s,€))ds for0<t<e
= <<
ftE (t,s,v(s,¢))ds|| fore <t <p.

thus, v(-,€) satisfies (9).
Now, we will prove that S, is connected. Define

t 0<t<e
o(t) = { 70 sts<
Gue)(t—¢e) e<t<p,
where v. = v(-,¢). We will show that the mapping ¢ — v.(:) is
sequentially continuous from (0, 8) into (C(Ig, E),w).

Let 0 < e <0 < B (when § < € the argument is similar).
By the definition of v.(t), for ¢t € [0,¢], we have
(11) |z* (v=(t) — vs(t))| = 0.

Next, if t € (g, 4], we have

a” {/Otsf(t, s, ve(s)) ds —/Otsf(t,s,v(s(S))dS]

z* f(t,s,ve(s)) ds
=5

27 (ve(t) —vs(8))] =

s))ds
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Consequently,

/tE f(t,8,ve(8)) ds|| := As.
t—5

(12) ﬂww—mmm\

Because A is equicontinuous, so if 6 — €, then A5 — 0.

Now, for t € (4, 24], we have

|27 (ve (2) — vs(8))]
z* [ ; f(t,8,ve(s))ds — |

= [27(G(ve)(t — ) — G(vs) (¢ — 9))

= & [G(ve)(t —€) = G(ve)(t = 9) -
+G(ve)(t = 6) — G(vs)(t = 9)]|

< 2 (G(ve)(t =€) = G(uve) (¢ = 6))]
+ |2 (G (ve) (¢ — 6) — Gws)(t — 9))].-

t—4

Flt5,05(6) ]

So

(13) |27 (ve () — vs(8))] < ll2* || |G (ve) (¢ — €) = G(ve) (t = )|
+ 2" G (ve) (8 — 6) — G(ws)(E — 9|

Let (d,,) be a sequence such that 6, — € (§, > €).

By (11) and (12), it follows that wvs_(t) converges weakly to ve(t),
uniformly for ¢ € [0, d]. So G(vs, )(t) — G(ve)(t) weakly on [0,4]. Now,
by (13), vs, (t) tends to v.(¢) weakly for each t € [0, 24].

By repeating the above argument and using induction, we obtain
that the map ¢ — v(-) from (0, 3) into (C(Ig, E),w) is sequentially
continuous [29, Lemma 1.9]. Therefore, by Lemma 1.2 the set V =
{v(-) : 0 < e < B} is connected in (C(Ig, E),w).

Let z € S;,. Choose € > 0 such that 0 < ¢ < 8 and

sup
tEIE

<n.

W%w@—ﬂﬂww@ﬂs

+\

Lﬂwwmw
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For any p, 0 <p < 3, let y(-,p) : Is — E be defined by the formula:

z(t) for 0 <t < p,
Stp) = EOFEEEE D) for p < ¢ < min(8,p+e),
’ o(t)+ [, f(t,s,y(s,p)) ds  for min(B,p+e) <t < B,
v(t, €) for p=0.

By repeating the above considerations, with y(-, p) in the place of v(-, £),
one can show that y(-,p) € S, for each p € [0, 3] and that the mapping
p — y(-,p) from Iz into (C(Ig, E),w) is sequentially continuous (for
more details, see [25, 38]).

Consequently, by Lemma 1.2, the set T,, = {y(-,p) : 0 < p < B} is
connected in (C(Ig, E),w).

Asy(-,0) = v(-, &) € VNT,, the set VUT, is connected and therefore
the set
w=|JT,uv
z€Sy,

is connected in (C(Ig, E),w).

Moreover, S, C W because = = y(-,p) € Ty, for each z € S,,. On the
other hand, W C §,, since T, C S, and V' C S,,. Finally S, = W is a
connected subset of (C(Ig, E),w).

Suppose that the set S is not connected. As S is weakly compact,
there exist nonempty weakly compact sets W; and W, such that
S =W, UWs and S = W1 UWs;. Consequently, there exist two disjoint
weakly open sets Uy, Us such that Wy N Wy = @, Wy C Us. Suppose
that, for every n € N, there exists a u,, € V,,\U, where V,, = F/n and
U=U; UUs,.

Put H = {u,:n € N}*. Since u, — G(u,) = 0 in (C(Ig, E),w)
as n — oo and H(t) C {un(t) — G(un)(t) : u, € H} + G(H)(t). By
repeating the argument from the proof of Theorem 3.1, one can show
that there exists a ug € H such that ug = G(ug), i.e., ug € S.

Furthermore, S C (C(Ig, E),w)\U, since U is weakly open and hence
ug € S\U, a contradiction.

Therefore, there is an m € N such that V,,, C U. Since U;NV,, # & #
Us NV, Vi is not connected, a contradiction with the connectedness
of each V,,. Consequently, S is connected in (C'(Is, E),w).
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