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NUMBER-THEORETIC CONDITIONS
WHICH YIELD ISOMORPHISMS AND EQUIVALENCES
BETWEEN MATRIX RINGS OVER LEAVITT ALGEBRAS

G. ABRAMS

ABSTRACT. For each integer n > 2 let L, denote the

Leavitt algebra of order n. We provide number-theoretic de-
scriptions of the relationships between the integers k, k', n,n’
for which there are isomorphisms and/or equivalences be-
tween the matrix rings My (Ly) and My (L,,/) possessing var-
ious properties. Such properties include: isomorphism (un-
restricted), induced isomorphism, graded isomorphism and
graded equivalence. These results extend the isomorphism
results achieved in [2].

Throughout this note K denotes a field. For n > 2 we denote by
Lk (1,n), or simply L,, when appropriate, the Leavitt algebra of order
n with coefficients in K. Ly (1,n) is the free associative K-algebra with
generators {z;,y; : 1 <i < n} and relations

n
x;y; = 0;5 for all 1 <4,5 <n, and Zyiwi =1.
i=1

(See [2] or [10] for additional information about L,.) R = L, also
may be viewed as the K-algebra universal with respect to the property
that gRR = RR™ as left R-modules. Indeed, an important explicit
isomorphism ¢ : pR — rR" is given by

n
o(r)=(ry1,7y2,...,7yn), with inverse qﬁ*l((rl, P9y et yTn)) ZZW%’
i=1

for all r € R and (ry,72,...,7) € R".

There has been recent sustained interest in Leavitt algebras, for two
important reasons. First, connections between the Leavitt algebras
and their C*-algebra counterparts, the so-called Cuntz algebras O,
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have resulted in advances in both fields of study. Second, the Leavitt
algebras provide the motivating examples for a more general class of
algebras, the Leavitt path algebras, which have received significant
attention in both the algebra and C*-algebra communities. (See the
remarks prior to Proposition 1.7 below, as well as [14] and [3], for
further details.)

1. Isomorphisms. The free left L,,-module isomorphism L, = L}
described above yields directly that for positive integers a,b, if a = b
(mod n —1) then L2 = L. (Leavitt shows in [10] that in fact the con-
verse is true as well, a fact we shall use later.) By taking endomorphism
rings, the free module isomorphism L% =2 L® for a = b(modn — 1) im-
mediately yields an isomorphism of matrix rings M, (L) = My(L,). In
particular, there are isomorphisms between different-sized matrix rings
over L,. With this as a motivating observation, the question then
arises:

Question 1. When are two matrix rings over Leavitt algebras
isomorphic?

Question 1 becomes quite natural, and perhaps even more compelling,
in light of the question posed in [13], which can be rephrased as

Question 1’. When are two matrix rings over Cuntz algebras
isomorphic?

While the answer to Question 1’ was established in [13], the answer
provided there did not yield an explicit description of the germane
isomorphisms. However, the following pair of results have been recently
established in [2].

Theorem ([2, Theorem 4.14]). Let k,n be positive integers, and K
any field. Then Lk (1,n) = My(Lk(1,n)) if and only if ged (k,n—1) =
1. In this case, isomorphisms Lk (1,n) — Mg(Lg(1,n)) are explicitly
described.
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Theorem ([2, Theorem 5.1]). Let k,n be positive integers. Then
O, = Mg(0,) if and only if ged(k,n — 1) = 1. In this case,
isomorphisms Op — My (O,,) are explicitly described.

Because all of the results presented in this article hold for all fields
K, we will use the L,, notation for Lk (1,n) throughout the sequel. For
each m € N let Z,, denote the ring Z/mZ, and let U(Z,,) denote the
group of units of Z,,. Using [2, Theorem 4.14] as the key ingredient, it
is demonstrated (although not explicitly so stated) in the proof of [2,
Theorem 5.2] that the following more general result indeed holds.

Theorem 1.1. (Answer to Question 1.) Let k,k',n,n’ be positive
integers with n,n’ > 2. Then

Mg (L) & My (Ly)
if and only if

n=n' and k = k'l(modn — 1) for some | € U(Z,_1).

For any group G and any G-graded ring S the matrix ring My(S) is
naturally G-graded by setting (My(S))y = (Mk(Sg)). For any rings S
and T graded by a group G, if there is a graded isomorphism 7: S — T
(notationally: S 2297 T'), then 7 extends componentwise to yield a
graded isomorphism 73 : M (S) — My (T), for any k € N. Clearly the
standard isomorphism My, (S) — My (M;(S)) preserves this grading for
any [ € N.

The Leavitt algebra L, is Z-graded, as follows. It is easily shown
that monomials of the form y;, v, - yi, - . %), - x;, span L, as a
K-space. We define

deg (yilyiz Y, lemjz . m]u) = u— t,

and extend K-linearly to all of L,,. This grading gives the same Z-
grading on L, as that induced by setting deg (X;) = 1, deg (Y;) = —1
in the free associative K-algebra T = K(Xy,...,X,,Y1,...,Y,), and
then grading the factor ring L, = T'/I in the natural way. (We note
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that the relations which define L,, are homogeneous in this grading of
T.) In particular, any matrix ring over L, inherits a Z-grading from
L, in this way. Furthermore, it was shown in [1] that, in this grading,

(Ln)O = lii)nueN(Mn“ (K))

Here the connecting homomorphisms are unital (so that the direct limit
is unital); the homomorphism from M, (K) to Myu+1(K) is given by
sending any matrix of the form (a; ;) to the matrix (a; ;I,,).

Let S be any ring, and let N, N’ be left S-modules. A ring iso-
morphism © : Endg(N) — Ends(N') is called induced in case there
exists a left-module isomorphism 6 : N — N’ such that, for every
f € Ends(N), ©(f) = 0o fof~. We write Endg(N) =24 Endg(N’)
to indicate the existence of an induced isomorphism © : Endg(N) —
Ends(N/).

The goal of this section is to give the number-theoretic solution to
each of the following four additional questions.

Question 2. When are two matrix rings over Leavitt algebras
isomorphic via a graded isomorphism?

Question 3. When are two matrix rings over Leavitt algebras
isomorphic via an induced isomorphism?

Question 4. When are two matrix rings over Leavitt algebras
isomorphic via a sequence of graded and/or induced isomorphisms?

Question 5. When are two matrix rings over Leavitt algebras iso-
morphic via both a graded isomorphism and an induced isomorphism?

As we shall see, the answers to Questions 1 through 5 are each
different from the other. Because by Theorem 1 we cannot have an
isomorphism between My(L,) and My/(L,/) with n # n', there is
no loss of generality in restricting our attention here to isomorphisms
between matrix rings of the form My (L,) and My (L,,).
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Definition 1.2. For positive integers k,n we write
k = td where d | n' for some positive integer i, and g.c.d.(t,n) = 1.

We will refer to such a factorization as the factorization of k along n.

Of course, this definition describes nothing more than the factoriza-
tion of k into prime powers, grouped in such a way that d is the product
of those prime powers for primes dividing n, and ¢ is the product of
those prime powers for primes coprime to n. To answer Question 2, we
first recall

Proposition [2, Proposition 6.3]. The algebras L,, and My(L,) are
isomorphic as Z-graded algebras if and only if there exists o € N such
that k | n®.

We extend this result to answer Question 2 as follows.

Proposition 1.3. (Answer to Question 2). Let k,k',n be positive
integers, n > 2. Let k = td, respectively k' = t'd’, be the factorization
of k, respectively k', along n. Then

My, (Ly,) =9" My (Ly,)

if and only if
t=t.

Proof. If t = t' then twice using [2, Proposition 6.3] together with an
observation made previously we have

Mk(Ln) = Mtd(Ln) = Mt(Md( )
07 M (M (L)) 297 My

) =" My(Ln)

(Ln) = My (Ln)-
Conversely, suppose My (L,) 9" Mg/ (L,). Then again using [2,

Proposition 6.3] we get My(L,) =" My (L,). But such a graded

isomorphism then restricts to an isomorphism of the respective zero-

components, so that we get (My(L,))o = (My(Ln))o, which by a

previous remark yields

lim e (M () 2 lim ey (M ().
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That t = t' now follows from [18, 2.1(b)] (utilizing the notion of
generalized integers, also known as Steinitz integers or supernatural
integers). (See also [7, Theorem 15.26] and [18, Section 2] for more
information about isomorphisms between these direct limit rings.) |

We note here that the existence of some graded isomorphism between
My (L,) and My (L,) does not imply that all isomorphisms between
My (L) and Mg/ (L,) are necessarily graded. For instance, we have
L¢ = Mj(Lg) 9" My(Lg) (since t = ¢’ = 1); but an example of a
non-graded isomorphism between Lg and My (Lg) is presented in [2,
Section 4].

To answer Question 3, we invoke the aforementioned property of L,
verified in [10].

Proposition 1.4. (Answer to Question 3). Let k,k',n be positive
integers, n > 2. Then

Mg (Ly) =4 My (Ly,)

if and only if
k = k'(modn — 1).

Proof. An induced isomorphism between My (L,) = Endp, (LF)
and My (L,) = Endy, (L*) implies the existence of an isomorphism
between the free left L,-modules LX and L%, which by [10, Theorem

1] occurs precisely when k = k'(modn — 1). u]

In order to answer Question 4, we develop some group theory.

Definition 1.5. Let m € N. We define G(Z,,) by setting

G(Z,,) ={a € Z,, | 3b € N for which a = b(modm) and
b divides (m 4 1)7 for some j € N}.

Noting that the condition “b divides (m+1)7 for some j € N” implies
that g.c.d.(b,m) = 1, the following is straightforward to prove.
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Lemma 1.6. For every m € N, G(Zy,) is a subgroup of U(Zy,).

The congruence condition given in the definition of G(Z,,) is non-
trivial. For instance, if @ = 7 and m = 9, then clearly a does not divide
any power of m + 1 = 10, but 7 = 16(mod m) and 16 divides (m + 1)*.
Thus 7 € G(Zy). Indeed, G(Zg) = U(Zy). In contrast, we observe for
instance that G(Z4) = {1}, since any divisor of (4 + 1)/ is a power of
5, and thus is congruent to 1(mod4). Thus G(Z4) # U(Z4) = {1, 3}.
The question “for which integers m do we have G(Z,,) = U(Z,,)?” is
one of interest in the number theory community, and has connections
to the Artin conjecture for primitive roots (see, e.g., [9]).

The existence of explicit isomorphisms between L,, and My (L,,) when
k | n? for some j € N was observed in [1, Proposition 2.1], although
it was not until the appearance of [2] that it was realized these yield
the graded isomorphisms between matrix rings over Leavitt algebras.
In turn, these isomorphisms arose as the counterparts of some analo-
gous isomorphisms between matrix rings over the previously-mentioned
Cuntz algebras O,, established in the mid-1970’s in [12, Proposition
2.5]. These graded isomorphisms, together with the induced isomor-
phisms, and compositions of such, provide a large collection of isomor-
phisms between matrix rings over Leavitt algebras. Indeed, for many
(but not all) values of n, the existence of an isomorphism between
My (L) and Mg/ (L,,) implies the existence of an isomorphism made
up of compositions of graded and induced isomorphisms. On the other
hand, for other values of n, it is possible to have My (L,) = My (L)
without the existence of such a composite isomorphism. We show now
that the subgroup G(Z,_1) of U(Z,,—1) determines exactly when this
happens.

Theorem 1.7. (Answer to Question 4). Let k,k',n be positive
integers, n > 2. Let k = td, respectively k' = t'd’, be the factorization
of k, respectively k', along n. Then

there exists an isomorphism between My (Ly) and My (Ly,) which is
the composition of graded and/or induced isomorphisms
if and only if
t =t'g(modn — 1) for some g € G(Z,,—1).
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Proof. Suppose t = t'g(modn — 1) for some g € G(Z,,—1). Then by
definition of G(Z,,_1) there exists ¢’ € N so that g = ¢'(modn—1) and
g' | n? for some j € N. In particular t = #'¢'(modn — 1). Now using
Propositions 2 and 3 appropriately, we get a sequence of isomorphisms

Mi(Ln) 27 Me(Ma(Ln)) =" My(Ln) =™ Mg (Ln)
=9" My (Mg (Ly))

29" My (Ly) 29" My (Mar (Ln)) =" My (Ln),

~

as desired.

Conversely, suppose such a sequence of isomorphisms exists. That is,
there exists a sequence of positive integers k = ko, ki,... k. = K
for which My, (Ln) = Mg, (L) for all 0 < i < r — 1, via an
isomorphism which is either graded or induced. We argue by induction
on 7. For r = 1 we have two cases. If My, (L,) 29" My, (L), then
to = t1 by Proposition 2, since obviously ty = ¢; - 1(modn — 1) and
1 € G(Zn_1), so the result holds. Now suppose My, (L) =" My, (L,).
Then ky = ky(modn — 1), so that tody = t1di(modn — 1). But
dp,dy € G(Z,,_1) by definition; and since each is invertible in Z,, _; this
gives tg = tldldal(modn — 1), so by defining ¢g; = dlda1 € G(Zy,—1)
the result again holds.

Now assume the result holds for ¢ < 7, and show the result follows for
i+ 1. By induction we assume that ty = t;g; for some g; € G(Z,,_1). As
above, we consider two cases. If My, (Ly,) =9" My, , (L) then t; = t; 4
by Proposition 2, so that tg = t;g; = t;+19:(modn — 1), so the result
holds. In the other case, suppose My, (L,) =% My,,,(L,). Then
ki = ki+1(m0dn — l), so that tldz = ti+1di+1(m0dn — ].) But, arguing
as before, this gives t; = ti+1di+1d;1(modn — 1), so that

t() = tigi = ti+1di+1di_lgi(m0dn — 1)

Defining g; 41 = di+1dflgi € G(Zy,_1) completes the argument. ]

As a consequence of Theorem 1.7, we conclude that the isomorphisms
constructed in [2] in order to answer Question 1 cannot in general be
made up of compositions of graded and induced isomorphisms. For
instance, Theorem 1.1 yields that Ly = Mj3(Ls), since g.c.d. (3,5—1) =
1. However, Theorem 1.7 shows that these two algebras cannot be
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isomorphic via a sequence of graded and/or induced isomorphisms,
since t = 1, ¢’ = 3, and G(Z4) = {1}. (See [2, Section 2] for further
details.)

With the answers to Questions 2 and 3 in hand, it is of course
easy to answer Question 5. We record that answer below, and then
provide some additional information about a special case. In order
to analyze the special case, we now explicitly describe isomorphisms
between specific matrix rings over Leavitt algebras. Let S, denote
the set {1,2,...,n}, and for j € N let SJ denote the direct product
of j copies of S,. For I = (i1,i2,...,i;) € SI, let z; denote
Ty Tig = Ty € L,,; analogously, let y; denote y;, i, “Yi; € L. We
order S} lexicographically.

There is an involution * on L,, defined by setting =} = y;, y; = x;, and
extending appropriately. The involution * then lifts to an involution
on any matrix ring over L,, where we set (r;;)* = (r;;)" for each
(’I"Lj) € Mk,(Ln)

Lemma 1.8. (1) (Special case of Answer to Question 2). Suppose
g | n. We define a graded isomorphism ¥, : L,, — My(L,,), as follows.
For each 1 < i < n write it = (n/q)v+r with 1 <r < (n/q). (Note
then that necessarily 0 < v < g —1.) We define ¥,(z;) = X;, where X;
is the g X q matriz whose (v + 1)*¢ column is

Z(r—1)q+1
Z(r—1)q+2

Trq

and whose remaining entries are zero. We then define ¥q(y;) = X .

In particular, if ¢ = n, then U, (z;) is the matriz whose ith column
18
T
T2

Tn

and whose remaining entries are zero.
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(2) (Special case of Answer to Question 3). Let R denote L,,, and let
j €N. Let ¢ : pRR — rR"™ denote the free module isomorphism given
above, and let ¢ : RR — grR"™ denote the isomorphism generated
by j iterations of the isomorphism ¢ in each component. Then the
isomorphism ®" : R — M,,; (R) which is induced from ¢™ is explicitly
given by:

"’ (r) = (rr.7), where r; y =arryy for all I,J € Si.
In particular,

Q" (r) = (r;;), where r; j = z;yry; for all1 <i,j <mn.

(3) ¥, = o™

Proof. (1) The proof is given (with slightly different notation, and
in the context of matrix rings over Cuntz algebras) in [12, Proposition
2.5]. It is not hard to verify directly that this map yields a surjective al-
gebra homomorphism. The injectivity follows from the fact established
in [11] that L,, is a simple ring for all n > 2.

(2) Tt is tedious to verify the case of interest (j = 1) by using the
explicit description of ¢ given in the introduction. The general case
follows by a straightforward induction argument.

(3) By (2), for each 1 < k < n we have ®"(z)) = (z;2,y;), which
in turn equals (z;0x,;) by the definition of multiplication in L,,, which
yields precisely ¥,,(z). A similar observation holds for each y, which
establishes the result. ]

For clarity, we provide an example of an isomorphism which arises in
Lemma 1.8 (1).

Example 1.9. Let n = 6, = 3. Then U3 : Lg — M3(Lg) is the
isomorphism defined by setting ¥3(z;) = X; for 1 <4 < 6, where

zz 0 O zey 0 O 0 21 O
X1 = T2 0 0 X2 = Is 0 0 X3 = 0 T2 0
zs 0 O ze 0 O 0 z3 O
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0 T4 0 0 0 Il 0 0 T4
X4 = 0 Is 0 X5 = 0 0 T2 X6 = 0 0 Is5
0 Te 0 0 0 I3 0 0 Te

By defining ¥3(y;) = (¥3(z;))* for 1 < i < 6 we then get ¥3 : Lg —
Mj3(Lg) by extending additively and multiplicatively.

Proposition 1.10. (1) (Answer to Question 5). Let k,k',n be
positive integers, n > 2. Let k = td, respectively k' = t'd', be the
factorization of k, respectively k', along n. Then

there exists both a graded isomorphism as well as an induced isomor-
phism between My (L,) and My (L,)

if and only if
t=t" and k = k'(modn —1).

(2) (Special case of Answer to Question 5). Moreover, in the par-
ticular case where k' = kn’ for some j € N, then there exists an
isomorphism between My (L,) and My (L,) which itself is both graded
and induced.

Proof. Statement (1) follows directly from Propositions 1.3 and 1.4.

For (2), we argue as follows. Let R denote L, and let ¢ : gRR — gpR"™
be the explicit isomorphism described above. Using the description
given in Lemma 1.8 (2) it is clear that the induced isomorphism
®" : R — M,;(R) is in fact graded as well. Thus, the result holds
for k = 1. But it is then easy to show that for any £k € N the
corresponding isomorphism ®** : M,(R) — Mg, (R) given by setting
®*"’ ((r; 0)) = (®" (ri4)) is both graded and induced, which gives the
result. O

Clearly if k' = kn’ for some j € N, then the pair {k,k'} satisfy
the conditions of Proposition 1.10 (1). However, there are in general
many other pairs of integers which satisfy the conditions of Proposition
1.10 (1), but for which no such j exists. Indeed, for any positive integer
n we define T,, C N by setting

T,={a €N |a=1(modn — 1) and a | n’ for some j € N}.
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Then for any a € T, and any k € N it is easy to show that the pair
{k, ka} satisfies these conditions. In general we may have elements of
T,, which are not powers of n; for instance, 16 € Tg. We do not know
whether Proposition 1.10 (2) can be extended to all pairs {k, %'} for
which k' = ka for some a € T,,.

2. Equivalences. In this second section we investigate Morita
equivalences between matrix rings over Leavitt algebras. It is shown in
[4] that Ko(L,) = Z,,_1, where Ky(R) denotes the Grothendieck group
of the ring R. Since K is a Morita invariant of a ring, and any ring R
is Morita equivalent to the matrix ring My (R) for each k € N, we get
immediately

Proposition 2.1. Let k,k',n,n’ be positive integers with n,n’ > 2.
Then
My (L) is Morita equivalent to My (Ly,)

if and only if

So on the surface the study of Morita equivalences between matrix
rings over Leavitt algebras seems uninteresting. However, as with
isomorphisms, one can ask about the graded relationship between such
matrix rings. For rings R and S graded by a group G, R and S are
graded equivalent in case the categories R—gr and S —gr are equivalent.
Additionally, R and S are graded Morita equivalent in case there is a
progenerator P of R—Mod for which P happens to also be graded, and
for which S 29" Endg(P). (See [15, 16, 17] for additional information
on graded equivalences and graded Morita equivalences, especially in
the context where G = Z.)

As done in Section 1, we assume that the grading on any matrix ring is
the one arising from the grading on the individual components. A ring
R graded by a group G is called strongly graded in case RyR,—1 = R,
for all g € G. (Here RyR,1 denotes sums of elements of the form
TgSg-1 With 7,8 € R, 7y € Ry,5,—1 € Ry-1, and e denotes the identity
element of G.) If R is strongly graded then it is easy to show that
My (R) is strongly graded as well.
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Lemma 2.2. For each n > 2, L, is strongly Z-graded.
Proof. Let R denote L,. By definition of the grading on R, Ry
consists of sums of monomials of the form
Yi Yy =~ - Yi; - Tiy Tay - - @, for which j = j'.

Pick an arbitrary monomial r € Ry of this form.
If z = j, then clearly r € R,R_,.

If z<j,thenu=735—2>0. Now 1 = 21y, gives 1 = z{y{, and we
write

T=YiYip o Yiy o L @iy Ty iy = YiyYin 0 Yy “TVYL  Tiy T T Ty
=Yi,Yi, " yijxllb : y1u$i1$i2 ot 'l'ij S Rj—uRu—j = RZR—Z'
If 2> j,thenv=2—3>0. Now 1 =>}_; ypxy, so that

"= Y Yip o Yiy L @iy Ty - T

n
= YiurYin - Yiy (Zykxk> *Xqy Tip * " T
k=1

n
= Z(yilyiz YUk TR Ty 0 Tiy) € R R (.
k=1

So the result holds for 2z = j + 1. An induction argument using
the same substitution 1 = Y, yrxyr as appropriate yields that
r € Rji,R_(j,) for all v > 1, and we are done. ]

Proposition 2.3. Let k,k',n,n’ be positive integers with n,n’ > 2.
Then
My (L,,) is graded equivalent to My (Ly,)

if and only if

n and n' have the same set of prime factors.

Proof. By Lemma 2.2 the two rings are strongly Z-graded, so that [6,
Corollary 2.13] applies. In particular, My(L,) is graded equivalent to
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My (Ly) if and only if there is an equivalence between the full module
categories (Mg (L))o — Mod and (Mg/(Ly,/))o — Mod. But as noted
in Section 1, we have an explicit description of each of these zero-
components, to wit, we get a Morita equivalence

My, (lim yen (M (K))) ~ M (lim yen (M)« (K)))-

Since matrix rings preserve Morita equivalence, this in turn happens if
and only if there is a Morita equivalence

These direct limit algebras are specific examples of ultramatricial
algebras; as such, by [7, Corollary 15.27] their Morita equivalence
classes are exactly determined by their Ky groups (together with the
partial order on these). In our situation these Ky groups turn out to
be the additive groups of the rings Z[1/n], respectively Z[1/n']. But
two such groups are isomorphic precisely when n and n’ have the same
set of prime factors. o

The condition relating n and n’ in the previous proposition in fact
arises in a number of contexts (see [18] for a substantial list of such
places). In particular, this condition arises in C*-algebras, in the
context of classifying UHF algebras (see [8, Theorem 1.12]).

We conclude this article by observing the following.

Proposition 2.4. Let k,k',n,n’ be positive integers with n,n’ > 2.
Then
My (L) is graded Morita equivalent to My (L)

if and only if

Proof. Because the rings My (L,) and M/ (L, ) are assumed to
be Morita equivalent we get n = n/ as above. Conversely, we have
that L, is graded Morita equivalent to any ring of the form My (L,,)
(with the standard grading), since there is a graded isomorphism
Endy, (LF) =2 My(L,). The result is now clear. o
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