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CONVEX POLYNOMIAL AND RIDGE APPROXIMATION
OF LIPSCHITZ FUNCTIONS IN R¢

V.N. KONOVALOVT, K.A. KOPOTUN AND V.E. MAIOROV

ABSTRACT. We consider classes of uniformly bounded
convex Lipschitz functions defined on convex bodies in R,
d > 1, and obtain exact orders of approximation of these
classes by convex polynomials in Ly, 1 < p < oc0. If d > 1,
we also find exact orders of approximation by convex ridge
functions in La.

1. Introduction and main results. Shape Preserving Approxi-
mation (SPA) is a branch of approximation theory dealing with approx-
imation of classes of functions having certain shape by elements from
some (simpler) manifold (e.g., polynomials, splines, etc.) having the
same shape. The word “shape” usually means positivity, monotonicity,
convexity, k-monotonicity, etc., but SPA also deals with more general
shape constraints (one-sided, intertwining, co-monotone, co-convex ap-
proximation and so on). We refer interested readers to [9, Chapter 2]
for discussions of some of the earlier results on SPA. At present, most
of the known results in this area deal with approximation of univariate
functions. Very little is known about SPA in the multivariate settings.
Perhaps, the most important result in this area up to date is due to
Shvedov [14] who managed to estimate the rate of convex polynomial
approximation (in the uniform norm) of convex functions defined on a
convex body in R%, d > 1, in terms of the first modulus of continuity.
It is still an open problem if the first modulus of continuity can be
replaced by the second or third modulus, and if similar estimates are
valid for convex approximation in the L, norm.

Additionally, ridge approximation of convex functions is a rather
effective tool as far as the degree of approximation is concerned. This
can be seen from recent results on approximation of convex bodies by
simpler sets (see [1, 2], for example).
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Our main goal in this paper is to obtain exact orders of approximation
of classes of convex Lipschitz functions defined on arbitrary convex
bodies in R% by convex polynomials and ridge functions in the L,
metrics for 1 < p < co. Recall that a “convex body” in R is a closed
bounded convex set with nonempty interior, and let X% denote the set
of all convex bodies in R?.

As usual, we use |z| to denote the Euclidean norm of z € R?. By
Lipx(%B), A > 0, we denote the class of all functions on B satisfying
the Lipschitz condition

(1) [f (@) = f(y)] < Alw —y], for all z,y € B.

Function f: B — R, B € K4, is convex if and only if its epigraph is a
convex set in R4, By £, (%), A > 0, we denote the class of all convex
functions f on 9B such that f € Lip(®8B) and |f(z)| < X\, z € B. If
A =1, then Z(B) := L1 (B).

We note that the condition f € Lipy (EB) is not very restrictive if f is
assumed to be convex. In fact, if f is convex on an open set S containing
B then f is Lipschitz on 9B (see [13, Theorem 41D]). Also, boundedness
of f is added in the definition of the class £ (°B) for convenience only
since, if f satisfies (1) on 9B, then |f(z)| < |f(zo)| + Adiam (B), = € B,
for any fixed xg € ‘B.

As usual, if Q is a measurable subset of R%, we denote by Ly,(Q2),

1 < p < oo, the linear space of all Lebesgue measurable functions
f: Q2 — R equipped with the finite norm

f(z)|P dz)/? 1< p< oo,
15 e = {(f9| (z)|P dz) <
esssupgea|f(z)] p= oco.
By P.(R%), n € N, we denote the linear space of all algebraic
polynomials P,(z), z = (z1,... ,24) € RY, of total degree < n, i.e.,
P,(z) := Z apzk,
0<|k|<n
where k& = (ki,...,kq) € Z‘i, k| := ki + - + ka, ap € R,

aF = 2 g% and 0° := 1. Also, P,(S) is the restriction of the
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space P,(R%) to the set S C R?, and ’ﬁn(%) denotes the subset of
polynomials from P, (8) which are convex on B.

Besides algebraic polynomials we also consider ridge functions. Let
LY°(R) denote the space of all locally 2nd-power summable univariate
functions, i.e., Borel measurable functions such that || f||L,x) < oo for
every compact subset K of R. If {f,}7_, is a collection of univariate
functions f, from LY¢(R) and {e,}"_, is a collection of unit vectors
from R?, then a function of type

n

R,(z):= Zfl,(e,, -z), =eRY

v=1

is called a ridge function. Here, a - b := a1b; + - -- + agbg is the dot
product of vectors a = (a1,...,aq) and b = (by,... ,bq). The set of all
ridges is denoted by R, (R%), and by R, (S) we denote the restriction
of R,,(R%) to S C R For B € K¢, 7/?\,”(%) denotes the subset of all
ridges from R, (%B) which are convex on B.

B C R is fixed, then in order to simplify the notation denote L=
L(B), Pd:= Pp(B), P := Pn(B), RE := R, (B), RE := R, (B) and
Lg = L,(B).

Now, the error of approximation of f € Lg by elements from W C Lg
is

E(f,W)La = plgva If = pllLe,
and the quantity

B(L!, W)y == sup E(f, W)y
ferce
is called the deviation of £¢ from W. In particular, E(Ed,ﬁg)Lz
and E(E‘i,ﬁg)Lg are the rates of best convex approximation of the

class L4 by algebraic polynomials and ridges in the Lg and L¢ norms,
respectively.

For two sequences {a,, }52; and {b,, }5; of positive numbers, we write
an X b,, n > 1, if and only if there exist positive constants ¢ and C'
which are independent of n and such that ¢ < a, /b, < C, n > 1.

We are now ready to state our main results.
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Theorem 1. Let B € K%, d €N, and 1 < p < co. Then
(2) E(Ed,Pg)Ld = E(Ed,ﬁff)m =n 17V pn>1.
Theorem 2. Ifd > 1, then
3)  E(LYRI) . =< B(LYRE), =< n 3D 5 >,
2

a =X
L3

Note that, in the case p = oo, the upper estimate in (2) immediately
follows from [14, Theorem 1].

Everywhere below, ¢ = ¢(a,...,3) denote positive constants that
depend only upon parameters «,...,3 which may be different even
if they occur in the same line, and ¢; = ¢;(«,...,3), i > 0, denote

constants which remain fixed throughout the paper.

Also, if 0 = (0,...,0) € R? and S is a set in RY, we denote by uS
the dilation of S with the center 0 and dilation factor p. Thus, for
example, if B¢ denotes the Euclidean unit ball in R?, then uB? is the
ball of radius p and center at 0. Finally, we denote by

w(3;£,8) = sup |f(z) — f(y)l, §>0,

z,yeS
lz—y|<é

the (usual) modulus of continuity of f on S C R9, and note that
f € Lip»(B) if and only if w(d; f,B) < A, for all § > 0.

2. Proof of upper estimates in Theorem 1. The following
lemma on convex extension of Lipschitz functions can be found in [10,
Lemma 3].

Lemma 3. Let B € K and f € Lipy(B). Then, f can be extended
to a function f (i.e., f(z) = f(z) for all x € B) which is convex on
RY and satisfies the Lipschitz condition on R® with the constant /2,

i.e., f € Lip 5(RY).

We note that it was shown in [10] that f can be defined as follows:
f(x) := inf {yeR:(z,y) € CO{(z,9(z)) e R x R:z € R*}},
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where g(z) := f(P(z))+|z—P(z)|, P(z) := arg minyes [y—z|, z € RY,
and CO(S) denotes the convex hull of S.

2.1. The case d = 1. In the univariate case, the set K! consists of
all closed intervals. Given B = [a,b] and f € L][a,b], we note that the
function f(x) := f((b—a)z/2+ (a+b)/2) belongs to the class £,[—1,1]
with X := max{1, (b — a)/2} (or we could assume that B C [-1,1] and
use Lemma 3 to extend f to [—1, 1] preserving its convexity). Hence,
without loss of generality, we can assume that %6 =7 :=[-1,1].

Recall now that the second Ditzian-Totik modulus of f € L,(J) is
defined by

wg (f,t)p = JSup 1A% () (f, ) lps

where p(x) = V1 -2, |||, := ||-HLP(3), and Ai(f,a:) = flz —p) —
2f(z) + f(z + p), if & p €T and A2(f,z) := 0, otherwise. Denote
w(fy8) oo := w(d; f,T) and note that wy (f,t)eo < cw(f,0)co-

It is known (see, e.g., [8, 15]) that, for a convex function f € L,(J),
1<p<oo,

E(f,Pu(3)L,() < cw§ (f,1/n)p, n>1.

-1 1
®ligll;

Now, the inequality |||, < ||g]|5 /P 1 < p < oo, implies

WE(f,8)p < WE(f,8) 5 Pwf (f,0)VF < cwl(f, 6)h VPwE (f,8)17,

and therefore

E(f7 ﬁn (j))Lp(j) S cn_1+1/pw2¢(f7 1/”)1/1)7
for every f € L(J) since, for all functions from this class, w(f, §)ss < 6.

It was shown in [7, Theorem 1.1] that if 1 < p < ¢ < co and f € L4(J)
is convex, then

wi (f,8)p < 6P| flg, ),

and, in particular, the inequality w§ (f,0); < ¢6?||f||lL..(3) is satisfied
for every convex function f € Lo, (J). Hence,

E(f,Pa(3))r, ) < cn VP £ o)
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and it remains to recall that [|f[lL_ () < 1 for f € L(3) in order to
conclude that

E(L(3), Pu(3))1, (3) < en™ 1717,

The proof of upper estimates in (2) in the case d = 1 is now complete
since

E(L(3), ()L, 3) < E(L(3), Pu(3)r, (3)-

2.2. The case d > 1. Without loss of generality, we can assume
that B C Q¢ := [-1,1]¢. Using Lemma 3 we extend f € L(B) to
the cube 4Q% so that the resulting function f will be from the class
L£(4Q%) for some A = A\(d,B) > 0. We now smooth f by considering
its second Steklov mean (see also construction in [14, page 520])

fg(ﬂ?) = (2&')72‘1/ _f(iv +t + tz) dty dtg, x € 3Qd,
eQ? JeQd
where 0 < ¢ < 1/2 will be chosen later. For any = € 3Q¢, we have

7 7 —2d
f@-fensea | [
< )\(25)72d LQd LQd |t1 =+ tg‘ dty dts < 2)\/&5,

Fla 4ty +to) — fz)| dty dts

(4)

and it is not difficult to show that

(5) Ha%f < (26)7'w(25 £,4Q7) <A, 1<i<d

L (3Q%)

Also, note that f; is convex on 3Q%, and fg € /3,\(3Qd).

Let T, (x) := cos(n arccost), n > 0, be the Chebyshev polynomial of
degree n. We recall that T},11(t) = 2tT},(t) —T,,—1(¢) and, in particular,
if we let 7,(t) := Tan41(t)/t, then 7,(t) = 2T5,(t) — Th-1(¢t), n € N,
and 79(t) = 1. Hence, 7, is an even polynomial of degree 2n. In order
to construct approximating polynomials we use the following Jackson-
type kernels

3

Tt = 3 e = [ e/ at

-3
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The kernels J,(t) have the following properties which can be easily
verified by straightforward computations (see also [4, 5]):
(i) Jy, is a polynomial of degree 16n which is non-negative and even
n [—3,3];
(ii) ff3 Jn(t)dt = 1;
(iii) j, xn", n > 1;

(iv) Jn(t) < cn(n\t| + )_8 te[-3,3];
v) f_ fl t)dt < en™7;

vi) ||Jn||Lco[—3,—1] = ||Jn||Lco[1,3] <en™h
5

(
(
(Vi) [Tl 5, 1) = [ Th i) < e
We now define

d

Jou(z) = H Jo(zi), z=(21,-..,24) € 3Q%,

i=1

and note that the properties of J, imply that

/ |z|*J,, (z)de < en™F, 0<k<S8.
3Q¢

We are now ready to define polynomials P,(-; f) which we use to
approximate functions from the class £¢(8). Let

(6)  Pu(x; f):= - Fo)In(z —y)dy + an2|z?, =z € QY

where ¢ := n™% and a = «a(d,B) > 0 is a parameter which will be
chosen below so that to make polynomials P, (+; f) convex on Q9.

2.2.1. Convexity of P,(f). Suppose that z € Q% and e =
(e1,...,eq) is an arbitrary fixed unit vector from R?. Differentiating
(6) twice in the direction e we get

2Pu(z; f) = fe)D2I,(z — y)dy + an~>D?|z|?.
2Qd
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Since

R A 9?
Pi=) <3_fﬂf>ez ! ; <5ﬂ?i5$1>eiej’

i=1

where Zi# is the summation over all 1 < i, j < d such that i # j, we
get

d d
Dg|x|2:pg<zmz> —2Y =2
=1

k=1

and

It now follows from the definition of J,, that

02 :
% k=1

k#i

and

82 ¢ ! !
aylayj Jn(x - y) = < H Jn(xky - yk)> Jn(l'z — yl)Jn(:cJ — yj)'
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Integrating by parts twice with respect to the ith variable we get
2 ~
[ R )T = i) d,
—2

2 82 N
:/ Tules =) g B )

— el 2 )@ = 2) + fe(en =2, )T (2 + 2)

0 -~
RE AR SRR
+ife("'7_2a )Jn(ml+2)

/ J yz 8 2f5( '7yia-")dyi
+oi(x; fe, Jn).

Similarly, integration by parts with respect to the ith and jth vari-
ables yields

2 2
/ / Felooo s Wineee sy ) (@ — yi) Iy (25 — ;) dys dy,
2/ 2

2 2 82 B
= n\Ti —Yi)In\Tj —Yj) 7——FJelo oo 5 Yiy oy ,d,d
/_2/_2J (@i — yi)In(@; ya)ayiayjf( y Yj, .- ) dyi dy;
+0i,j($;faa=]n)a

where

Ui,j(x; fsaJn)

:fg(...,2,...,2,...)Jn(a:i—2)Jn( i—2)

— ]is( 32,00, =2, 0 ) (s — 2) T (x5 + 2)
—feloeey—2,. .. ) In (s + 2)In(z; — 2)

+fln - c )z + 2)Tp (2 + 2)

— Jn(z; — 2) / Jn( 8 fE(...,Q,...,yj,...)dyj

8 -

—2 J



966 V.N. KONOVALOV, K.A. KOPOTUN AND V.E. MAIOROV

2
9 -
a(ey =) [ e el i 2 ) d

-2 Yi
2 8 N

+Jn($] +2)/ Jn(CEZ —yl)a—fe( s Yiy e ,—2,)dyz
-2 Yi

Estimate (5) and properties of the kernels .J,, imply that
|05(5 foy Ju)| < e(d A2
and
loi,j (5 fer In)| < e(d, N)n=2, for all z € Q%

Hence, we conclude that

szn(xE )= / Jn(z — y)szE(y) dy + o(a; fsv I, €) + 2an”?,
2Q4

where o(z; ferJns e) satisfies the inequality
|05 fer Tnse)| < co(d, )n™2, @ e Q%

We now choose o := cp/2, and note that this implies that o (; fe, T, e)
+2an~2 >0, for all z € Q. Hence, since f. is convex and the kernel
J,, is nonnegative, we conclude that the second derivative of P, (z; f) in
any direction e at any point = € Q? is nonnegative. Therefore, P, (-; f)
is convex on Q7.

2.2.2. Approximation properties of P,(f). Given a set S C R,
we denote by S(z) := z + S its shift by the vector z € R.

We now rewrite polynomials P,(f) in the form which will make it
more convenient to estimate their deviation from f. Changing variables
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we get

Ealeif) =~ an ?fel? = | (e ) dy

- / folw = )3(y) dy
2Q%(z)

= fs(m - y)Jn(y) dy
2Qd

4 / fola = 9)3n(y) dy
2Q%(z)\2Q¢

- / Fola — 4)3.(y) dy.
2Q4\2Q4(z)

Additionally, using property (ii) of kernels J,,, we have

Since f(z) = f(z) T f-(z), we have
(7)

967

f(x) = Pa(z; f) = */ (felz —y) — fe(@))Tn(y) dy + o(z; f, fo. Tn),

204

where

O'(Q?;f, fEaJn) = E(x) ~/3Qd\2Qd Jn(y) dy

_ / fol@ - y)Jn(y) dy
2Q%(x)\2Q4

+ / fol@ — y)n(y) dy
2Q4\2Q4(x)

+ f() = fe(2) — an 2|z,
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Recalling that f & E)\(4Qd) which, in particular, implies that
|f-(@)] < A 2z € 4Q%, we estimate the norm of o(z; f, fo,Jn) in
L,(B). Using property (vi) of the kernels J, and the fact that
Q7 C 2Q%(z) C 3Q%, z € Q?, we have for any = € Q¢,

|f;<w>|/ 3,(y)dy < A/ 3. (y) dy
3Q4\2Q4 3Q4\Q?

< c(d,B)n"7,
/ \fa<x—y>|.1n<y>dysx/ 3. (y) dy
2Q4(z)\2Q? 3Q4\Q?
< c(d,B)n"7,

and

/ fle- @< [ 3y
2Q4\2Q%(x) 3Q4\Q?

< c(d,B)n"".
Now, the fact that f = f on B and inequality (4) imply

max|f(z) - f-(x)] < max |f(2) = fe(@)| < c(d, B)n~2.

Finally, it is obvious that a|z|*n=2? < adn™2, z € Q%, and so
(8) o5 £, Fes In)|lg, () < €(d, B)n 72, 1 <p < co.
It remains to estimate the norm of
I(w; foy In) = /QQd(fE(fv —y) = fe(2))In(y) dy.
We need to show that, for 1 < p < oo,

<ecn 1TUp,

©) [z e, o <

Since
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(7T AR I (B AR 1 i 2OF A% 1 g
yJerydn L,(Q4) = yJerdn Lw(Qd)‘ Jerdn Llﬂgﬂ,
1<p<oo,

it is sufficient to verify (9) only in the cases p = co and p = 1.

The case p = co. Using the fact that f. € L\ (3Q%), we have

|65 £ev30)

< )\/ J.(y)dy < cent.
L () o y[Jn(y) dy

The case p = 1. Using the fact that the kernel J,(y)
Jn(y1,... ,y4) is even with respect to every variable we get

fola = 9)dn(y) dy = / Foe+ o)) dy, @eQ
2Q4 2Q4

and therefore

T fodn) = 5 | (Fle=9) = 20) + o+ ) 3ut0) dy

Y
. /sz 2fo(@)In(y) dy,
where AZF() o= fo(-+y) —2f() + (- — w)
Therefore,
75|, o < ‘ IS AULY
<o /Q d /2 o A @Tn(w) dy do

(10) sC/Qd/sz

= c/ AZf; (2)In(y) dy dx
Q4 J2Q4

< c/ ( Azfg(x) da:) J.(y) dy,
2Q4 Q4

A2 (2)| 3n(y) dy da

969
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since convexity of f. on 3Q¢ implies that AZf; (z) >0 for all y € 2Q¢
and z € Q. Now, recalling that S(z) := = + S denotes the shift of
the set S by the vector x and changing variables we have, for every

y € 2Q4,

AZfE(a:) dr = </ +/ —2/ >f5(ac) dz
Q4 Q4 (~y) Q4 (y) Q4
- </Qd<y)\czd /Qd\czd(y)

+/ 7/ )fs(x) dx
Q4(y)\Q4 QN\Q4(y)

< </ 7/ )fs(x) dx

Qi(—y)\Q1 QN\Q4(y)
+ </ —/ )fe(w)dm

Q4(y)\Q4 QN\Q(—y)

Now, using the fact that
QY (=\ Q%) (v) = "\ Q(y)
and

(Q\ QY -»)) (v) = Q%) \ Q*

and changing variables again we have

Ajfg(w) dzx < /
RQN\Q4(y)

" /Q"(y)\Qd (e) = el =) .

Hence, since f. € EA(3Qd), for every y € 2Q%, we have

. (fle-y - f@) da

/Qd A;fe(m) dz < Ay| (meas (Q*\ Q%(y)) + meas (Q4(y) \ Q%)) .

‘We now note that

QY y)\Q* c U?:lsja
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where

Si={zeR*: -1+y; <z;<l+4y, 1<i<d,
z; € (—oo,—1) U (1,00)}

and meas (S;) < 247 !y;|, 1 < j < d. This implies that

d
meas (Q(y) \ Q%) <247 |y;|

i=1

and, similarly,
d
meas (Q%\ Q%(y)) <2971 |y;l-

j=1

Therefore, using Jensen’s inequality we have
} d d

/Qd A2 (z) dz < 2%y 2} | < A2dﬂ2yf — A2V’

j= j=

and using this in (10) we have

|z £030)

<ec 23, (y)dy < en™?
P /Q y["Tn(y) dy <

as needed.
It now follows from (7), (8) and (9) that

1£() = Pu(f)lln,(m) < c(d, B)n 1172,

Since degrees of convex polynomials P,(f) are < 16n and since the
upper estimate in (2) is clearly true for n = 1 we conclude that

E(L',Py) e < (LY, Pi)ypy < od, B)n~ 717,
n>1 1<p<oo.
3. Proof of lower estimates in Theorem 1. For the proof of

lower estimates we need the following result from [6, Lemma 10] (in
the case p = 00, this lemma follows from [3, E21 (page 414)]).
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Lemma 4. Letn € N, 1 < p < oo, [ := [-1/2,1/2], and
I, :=1[-1/(8n),1/(8n)]. Then, there exists a constant ¢; = c1(p) such
that, for every polynomial P, of degree < n,

(11) 1 PullL, (1) < ellPallu, (n\r,.)-

Recall that B¢ denotes the Euclidean unit (closed) ball in R%, and
that 3B? is the ball of radius 3. Without loss of generality we assume
that 3B% C B. Define

gu(t) := a(t — 2)+ := amax{0,t — 2},

where t € R and « > 0 is a parameter. We now show that, for any
1 < p < oo, n € N and any polynomial P, of degree < n, the following
inequality holds

(12) Hga - Pn||Lp[1,3] > cQanilil/p’

where ¢y := 27°72/P(p + 1)"Y/P(c; +2)~! and ¢, is the constant from
(11).

Indeed, suppose that 1 < p < co and n € N are fixed, and that there
exists a polynomial P, which satisfies

(13) lga — Pn||Lp[173] < coan~11/P,
Then, the function

9a(t) := ga(t +2+1/(8n)) — 2ga(t + 2) + ga(t +2 — 1/(8n)),
and the polynomial

Pi(t) := Py(t+241/(8n)) — 2P, (t +2) + Po(t + 2 — 1/(8n)),

should satisfy the following inequality on I := [—1/2,1/2]:
(14) g = Prllu, 1) < 4caan ™' 71/P.
Since g7 is identically zero on I\ I,, where I, := [—1/(8n),1/(8n)], we

conclude that
1Pk, (11, < dcaan™t71/P,
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Lemma 4 now implies

||P;HLp(In) S 4010204n7171/p.

It is straightforward to show that
9a(t) = a(t +1/(8n)) — 2aty = a(1/(8n) = |t]), € In.

Hence
Hg;”Lp(In) = a2*3*2/1’(p + 1)71/Pn*1*1/p,
and so
gz~ Pillyn = gzl — 1Py )
> 02752/ (p +1)VP — deyer)n= VP

> 4cQom_1_1/p,

which contradicts inequality (14). Therefore, our assumption that (13)
holds is not true, and so (12) is proved.

Now, the radial function f,(z) := go(|z|) is clearly convex on R,
and we choose a so that f, € £(%). Also, because of our assumption
3B? C %, it is obvious that, for any polynomial P, € P, (R?), we have

[ fo = PullL,8) > lfa = PullL,3B2\B4)-

If d = 1, then together with (12), this immediately implies that

E(El,Pi)Ll > c(p,%)nil*l/p, n>1, 1<p<oco.

If d > 1, then using hyperspherical coordinates z = z(p, ) in R4,
where p € R, ¢ = (¢1,... ,04-1) € D := Hf;f[o,w] x [0,2n], and

i—1
x; :p<Hsingaj> cosyp;, 1<1i<d,

j=1
(with ¢4 := 0), we have

1/p

3
Ifa—Pnlle(ssd\B%—(L/lpd‘lﬁd(w)fa(p,so)—Pn(p,sa)lpdpdsa> :
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where Ja(p) = [1=(sing;)? 1~ (and so dV = p 1Ja(p) dpdyp is
the volume element in hyperspherical coordinates).

Now, (12) implies that, for every ¢ € ®,

3 1/p
</ |fa(pr0) = Pulps @) dp> > cyan”1TVP,
1
Hence, taking into account that 1 < p < 3, we have

15
(15) 3 y
1o — Palln, gmone) > ( [a4@) [ 1ratou) -~ ato ¢>|Pdpd¢)

P 1

1/p
> czomll/p([b{}d(go) d<p)

> c(d, p, B)n 11/,
Since polynomials P, are arbitrary we conclude that

E(L4,PY)p, > en VP, n>1,1<p< oo,
p

The proof of lower estimates in Theorem 1 is now complete since

B(L",PY) . > E(L",PY) ..

4. Proof of Theorem 2. Recall that B? denotes the Euclidean
unit ball in R¢, and that a function f : B¢ — R is called “radial” if
f(z) = g(|z|), z € B%, where g : [0,1] — R is some univariate function.

It is well known (see, e.g., [12, page 164]) that the space P¢ is
contained in the manifold R, where N = ("jf;l) = nd1 n>1,
and so the estimate

E(Zdaﬁgz)m < C(d,%)n73/(2(d71)), n>1,
2

immediately follows from Theorem 1 (with p = 2).

Without loss of generality we now assume that 3B? C B. It follows
from (15) that, for some radial function f, which is defined on 3B¢
and such that f, € £ = L(B), we have
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||fa - P7—,,||L2(3Bd) Z C(d, %)n_3/27

for any polynomial P, € P,(R%).
It was shown in [6, Theorem 4] (see also [11, Theorem 1] for the proof
in the case d = 2) that, for any radial function f € L,

E(f,Rpa-1(B%)) > ¢(d)E(f, Pmn(B?))

Lo (B4) L. (B4)

for some m € N. This implies that
B (fas Ry (3B, ey 2 e B,
and therefore,
E(Ed,R‘fl)Lg > ¢(d, B)n /A=) p >,
The proof of lower estimates in Theorem 2 is now complete since

E(L%R) 4 > E(L% Ry -
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