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ON THE REACHABILITY AND CONTROLLABILITY
OF POSITIVE LINEAR TIME-INVARIANT
DYNAMIC SYSTEMS WITH INTERNAL AND
EXTERNAL INCOMMENSURATE POINT DELAYS

M. DE LA SEN

ABSTRACT. This paper is devoted to the characterization
of reachability and controllability properties of singular linear
time-delay, time-invariant dynamic positive systems subject
to constant known internal and external point delays. The re-
search is performed on two different levels, namely, based on
a general nonunique solution trajectory including discontinu-
ities at points of the initialization time-interval and based on
a particular solution with initial conditions in an appropriate
subspace of the whole potential admissible set which avoids
such discontinuities and guarantees uniqueness. In this second
case, the positivity, reachability and controllability character-
izations of the Weierstrass canonical state-space realization
are also investigated.

I. Introduction. This paper investigates the general state-trajectory
solution and the reachability and controllability properties of singular
linear time-delay, time-invariant dynamic positive systems subject to
a finite number of constant known internal and external point delays.
The general problem statement is concerned with the possible presence
of impulses at zero of the initial conditions in the regular impulsive case
which results in the loss of uniqueness of the state-trajectory solution,
[11]. A certain subset of initial conditions of the fast dynamics partial
state guarantees the state-trajectory solution in both the natural state
variables of the given problem and its counterpart in the Weierstrass
canonical form. The state-trajectory of the regular (referred to as well
as solvable [1, 13, 15, 19]) state impulse-free case where the nilpotent
matrix of the general singular system becomes zero is also obtained
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as a particular case, [1, 11, 16, 19]. The weak internal and external
positivity of the given general singular system are characterized as well
as the internal and external positivity of the impulse-free situation.
The reachability and controllability properties of the positive singular
system, [5, 10, 14|, with internal and external point delays are both
formulated and characterized analytically, [2, 5, 8, 10, 14, 17,
18]. The paper is organized as follows. Section II is devoted to the
general problem statement of the singular system and to obtaining
explicit formulas for state-space solution trajectories for the general
and impulse-free cases. Section III is devoted to the weak and standard
positivity characterizations of the singular system and its reachability
and controllability properties. Two illustrative examples are discussed
in Section IV and, finally, conclusions end the paper.

I.1. Notation. I, is the nth identity matrix; Z, R and C
are the sets of real numbers and the fields of the real and complex
numbers, respectively; R = {z = (z1,22,... yz) T € R ¢ oz >
0, for all ¢ € m} is the first orthant of R™; Z, = {2z € Z; : z > 0};
C,:={z€ C: Rez>0}; CY((=h,0),R") is the set of real n-vector
continuously differentiable ! times; PC (R, R™) is the set of real n-
vector piecewise continuous functions; §(t) is the Dirac distribution
such that f(¢)d(t — t1) = f(¢1) for any real well-posed testing function
whose definition domain contains ¢;; and (7, j) is the Kronecker delta
of value unity for all integers i, j with ¢ = j and zero for all integers i, j
with ¢ # j.

A real matrix M is said to be nonnegative M = (M;;) € R}*™ if
M;; > 0 for all i € m, for all j € m. This may be abbreviated as
M > 0. A nonnegative matrix M is said to be positive (abbreviated
as M > 0 if M;; > 0 for at least one (¢,j) € = x m and strictly
positive (M > 0) if M;; > 0 for all (¢,j) € = x . In the same way,
v = (vi,v2,...,0,)F € R’, i.e., is nonnegative, if v; > 0 which is
abbreviated as v > 0. v € R’} is positive (v > 0) if v; > 0 for some
i € m and strictly positive (v > 0) if v; > 0 for all ¢ € m. A matrix
M = (M;;) € R"*™ is said to be a Metzler matrix M = (M;;) € Mp*™
if M;; > 0 for all (i,j # i) € 7 x m, i.e., if all its off-diagonal entries
are nonnegative.
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II. Problem statement and the state-space trajectory. Con-
sider the singular linear time-delay system with time lags:

(2) y(t) = Cx(t)

where z € R", u € R™ and y € RP are the state, input and output
vector functions in the corresponding spaces, F (being rank defective),
A | B and C are complex matrices of compatible orders with the above
vectors and hg =0, h; > 0 for all j € §: {1,2,...,q} are internal, in
general, incommensurate delays (Ao being the delay-free matrix of dy-
namics); and hg = 0, h; > 0 for all j € § are internal incommensurate
delays (By being the delay-free control matrix). U(¢) is the unit (Heav-
iside) function. The function of initial conditions ¢ € IC ([—h,0],R™)
with h = 1\;12; (hj) is almost everywhere absolutely continuous and
q

can be impulsive at isolated points except for the impulse-free case,
namely, rank E = deg (det(sE — Ay)) < n. Extra conditions might be
established for the admissible set of initial conditions IC ([—h,0],R™)
to obtain some stronger results in several parts of the manuscript. As-
sume that [ = ind (E), the index of E, namely,

_[>1 ifrank(E)=r<n
1o ifrank (E) =r=mn

(note that | = 0 if the system is nonsingular) and ®;, € R"™*"™;
i € [-l,00) N Z are (in general nonunique) solutions of the algebraic
linear system:

(3.a)

@ZE - Qi—IAO = E(I)z - AO(I)i—l = 5(Z, O)In, xS [*l, OO) NZ
(3.b)

O E=FE®_;=®_;_ 1A =A49®_;_1 =0,

where §(4, 0) is the Kronecker delta defined by §(0,0) = 1 and 6(¢,0) = 0
for i # 0, v (t) = div(t)/dt® if the ith time derivative of the real
function, or real vector function, v(t) provided that it exists and
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6@ (t) is the ith order distributional derivative of the Dirac impulse
5(t) = 6 (t), §(t) being the Dirac delta. If v()(t) = d'v(t)/dt* exists
but it is not differentiable, then v()(t) = §¢=0(¢) for i > I. The
general solution of (1) can be expressed in closed form as addressed in
the subsequent result:

Theorem 1. The following properties hold:
(i) Assume that the function of initial conditions and the con-
trol input satisfy ¢ € CU=Y((=h,0),R"), i.e., IC((—h,0),R") =

CED((~h,0),R"?) and u € CUY(r,, R™), respectively, and rf €5,
the (so-called) admissible set of point initial conditions, defined by:

(4) S:= {:cl +ay: 2y € IMEP, 2y = —(I, — EEP)

: (tzlﬁi<iﬁj¢<i>(hj) + §0u<i>(0)>> }

Then, the general solution of (1) may be expressed as follows:

2(t) = Z(t) (EE%O +Y° /_ - 2(=n) B Ajp(r) dr

+Jz_:0/; Z(-7)E B]u(r—h])d7>
— (I, — EED)<lZlEi<iEJw>(hJ)

= B Aot <EED:20 +Z/ efAOEDTEDAjga(T— hj)dr
j=1"0

q
+ Z/ eiAOEPEDij(T —h;j) dT)
j=0"h
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. q o N
+ B Aot Z// e AoE TEDBju(T - h;) dr
j= i

(£ (S

for all Ty € C™, x(t) = ¢(t) for all t € [—h,0] and ¢(0) = xg, implying
that z(0%) = z(07) = 9 € ¥, where EP — EP = (E7',0) is the

Drazin inverse of E, and

is the evolution operator of differential system (1) where U(t) is a unit
step (Heaviside) function, and

(7.a) E=(\E+ A)"'E
Aj = (\E+ Ag) '4;, jegu{ok;
(7.b) Bj = (A\E+A0)™'B;, jequ{o}

for any complex constant A such that det(AE — Z‘;:O Aje hiN), If
EAO = AoE, then the replacements E — E, A; — A; (j € ¢U{0}),
B; — Bj (j € ¢ U{0}) are used in (7).

(ii) The (in general nonunique) solution of (2) for each given func-
tion of initial conditions ¢ € IC([—h,0],R™) and control input u €
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q hj_
z(t) = ¥(t) <<I>0Exg + Z/O U(—7)BAjp(T — hy)dr
j=1

q t
+ Z/ U(—7)®0Ajz(r — hj) dr
=17k

q .t
+ Z/ U(—7)®oBju(r — h;) dT>
i=o/n5t

-1 q
£ Y 0 (Bags9 0+ 3 4500 )
i=0 j=1

’

q
+ ) Bju®(t - h;)U(t)>
j=0
q h;
= €<I>0Aot <<I)0E£Ea + Z/ e*@vo‘rq)OAj(p(T . h]) dr
j=1"0

q t
+2 /h+ e PN Ry Aju(r — hy) dr
i=17h

Lt

) L)
I+

i=0"";

(8.b)
-1 ' q .
+ Y 0y (BosO0) + Y 40 ()
i=1 j=1
q’ 4
+ ) Bju®(t - h;)U(t)>
j=0

where the evolution operator satisfies

(9) T(t) = {e%’*“‘ <1n F Xy T A = U () dT>, >0

0, t<0
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where o (—h;) = W) (~h;)§0=I=V(t — h;), i.e., either a classical or
a distributional derivative of appropriate order provided that j < i is
the largest integer less than i such that w(j)(—hj) exists; and similarly
u®(t — h}) = w9 (t — h;)é(i_j_l)(t — k) for the control input provided
that w9 (t — h}) is the highest order input time-derivative at time t —h;.

Outline of proof. The proof of (i) equations (5)—(7) is given in [1] for
delay-free singular linear systems and a particular set of initial condi-
tions, which result in being continuous at the origin, which guarantees
uniqueness of the state-trajectory solution. Its extension to the case of
multiple internal and external discrete delays is direct by considering
the evolution operator (6) obtained in [5] and a set of particular ini-
tial conditions (4) which still guarantees the uniqueness of the solution.
The proof of (ii) equations (8)—(9) is given in [10] for the delay-free case
and extended in [5] for the case of multiple discrete constant internal
and external delays. ]

Remark 1. The Drazin inverse has the properties Ker EP =
Ker EEP, InEP = Im EEP so that EEP is the projection of C”
on Im EP and I, — EEP is the projection of C™ on Ker EP so that:

C"” = Im EP @ Ker EP = Im EEP @ Ker EEP
=Im EPE @ Ker EPE

[1, 9] which is used in establishing the set & of initial conditions at
t = 07 for the proof of Theorem 1 (i). For such a set of vector functions
of initial conditions, the uniqueness of the state-trajectory solution is
guaranteed.

Remark 2. Theorem 1 (ii) applies for very general sets of initial
conditions and piecewise continuous inputs which implies that the
sate-trajectory solution is not unique, in general. However, linear
time-invariant dynamic systems (1)—(2) in standard form, i.e., being
nonsingular with E, &, = EP = E~!, with E being nonsingular,
and singular regular impulse-free systems, i.e., n; = rank(E) =
deg (det (sE — Ap)) < n (implying ®¢ # I,, ®_; = 0; for all ¢ > 1)
exhibit a unique state-trajectory solution for all ¢ € IC ([—h,0],R"),
for all w € PC(R4,R™) since the polynomial part of the solution is
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identically zero. These two cases might be referred to as those having
an index system of system (1), or simply as those having ind (E, Ay),
the index of the pair (E, Ap), being zero and unity, respectively, by
borrowing the concept from the delay-free case (see, for instance,
[13]). Note from inspection of (8)—(9) that, for any index of E, the
solution is still unique for the singular solvable impulsive case, i.e.,

n > ny = rank (E) > deg (det (sE — Ap)) for all ¢ € IC([-h,0],R")
which satisfies ¢(07) = z, € Ker (Zézl(qLiE)) (in particular, if
zr; € NierKer (®_;E)) and all control functions v € PC(R4,R™),

provided that

® ;A;=0, ®_ ;B,=0, foralliel, forall je€q,
for all k € 7 U {0}

and also for any sufficiently regular functions of initial conditions and
input so that the distributional Dirac time-derivatives are standard
time-derivatives which coincide with the uniqueness result of Theorem
1 (i). O

It is well known for the delay-free case and the case with one
single point input delay [15, 16] that, if system (1) is solvable, i.e.,
det (sE — Ap) is not identically zero, then it can be transformed to the
Weierstrass canonical form by premultiplying and postmultiplying the
state vector z(t) in (1) by two nonsingular complex n-matrices G and
H, respectively. A generalization for the case of multiple internal and
external delays of the Weierstrass canonical form with the transformed
state

w(t) = (21 (t), 23 (1))" = Ha(t) = H(7y (t), 75 (1))"

results in

(10) Ez(t) = iZﬁ(t —hj)+ iﬁju(t — R;)U(t)
(11) y(t) = Cz(t)

where

E = GEH = Block Diag (I,,, N);
ZO = GA()H = Block Dlag (2011, Ing)
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A — I A Ajio .
A; =GA;H = [ij ijz , for all j € G
(12) B;=GB; = [gﬂ , for all j € ¢ U {0}
32
C=CH

with ny = rank (E) — rank (V), N nilpotent with ny =n —ny, and

l:=ind (F) =nind (N) <1
= Min (k € Z : rank (E¥) = rank (E**1))
<= 1=Min(k € Z, : Im (E*) = Im (EFT!))
<= 1=Min(k € Z, : Ker (E*) = ker (E¥T1))
<= 1=Min(k € Z; : N*F =0).

For | = 0, rank (E;) = rank(F) = n, N is removed in the block
matrix decomposition and system (1) is not singular. If rank (E;) =
rank (E) = deg(det (sE — Ag)) =n1 < n, then! =1 and N =0 is
square of order (n —nq) and trivially of nilpotency index unity. If n >
ny; = rank (Ey) < rank (E) = rank (E}) + rank (N) > deg (det (sE —
Ap)), then N # 0 and | = ind(F) = nind(N) > 2. See, for
instance, [9]. For the canonical Weierstrass form (10)—(12) of (1)—(2),
the subsequent result extends Theorem 1 (i):

Theorem 2. Assume that system (1)—(2) is solvable and assume
also that the function of initial conditions and the control input satisfy
P = H_I(P - (@fﬂ@g)T € C(l_l)((_hvo)’Rn)’ u € C(l_l)(R-i-va)’
respectively, and To = H 'zo € 1, the (so-called) admissible set of
point initial conditions of (10)—(12), defined by:

Then, the unique solution of the Weierstrass canonical form (10)—(12)
is:

(13.a)

Z1(t) = Zwn1(t) (501 + Zl /7;, Zw11 (=7)(Aj112, (1) + Aj129,(7)) dr

+ i} /ht Zun1 (—7)Bjru(r — 1) dT>
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— BZOHt <§01
q h; _ o _
+ Z/ 67A011T(Aj11¢1(7— — hj) + A]'12¢2(T - h])) dr
j=170

9 .t _ o _
+ Z/ 67A011T(Aj1151(7' — h]) + Aj1252(7— - h])) dr
j=0"hs
(13.b)

q_ ot
+ Z Bjiu(r — hf) d7'>
par ey

ey

with z(t) = ¢(¢) for all t € [—h,0] and ¢(0) = xy, where

_ Zwll(t) Zwlz (t) _ Zwl(t)
Zu(t) = [zwm(t) Zw22(t)] = [zwl(t)]
(14 = { ezm(In + Z?’Il fifj eizOTZij(T —h;)dr t>0
o t <0,

for all 7y = Z(0) € 7.

Outline of proof. It is a direct extension of a parallel result in [16]
for linear systems free of internal delays with only one single external
point delay by considering the initial condition function as a forcing
term and using directly Theorem 1 (i). u]

ITI. Positivity, reachability and controllability. The positivity
(usual abbreviation for internal positivity) and external positivity prop-
erties, [2, 4, 5, 10, 11] do not stand for the general class of systems
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(1)—(2) since the uniqueness of the solution becomes lost (Theorem
1 (ii)) and it suffices to take particular initial conditions or inputs to
find neither positive state nor output trajectory solutions. However, we
can refer to weak positivity /external positivity of the dynamic system
for corresponding properties after removal of the polynomial part of
the solution which coincide with classical related concepts for the two
cases below:

(1) ind (E, Ap) = 0, namely, nonsingular systems (1)—(2) in standard
form, being always solvable implying [ = 0, F nonsingular, ®; = E~!.
(2) ind (E, Ag) = 1, namely, (singular nonimpulsive systems (1)—(2)
provided they are solvable implying [ = 1, E singular with rank £ =

deg (det (sE — Ag)) < n, @y = EL (then ®E = E®; and N = 0).

More precise positivity definitions follow.

Definitions. 1. (Weak positivity). The system (1)—(2) is weakly
positive if for D = I, and D = C, the subsequent property holds:

-1 q
CICORDSUSSIEETRIURD SR
i=0 j=1

ql

+Y Bju®(t - h;)U(t)>> >0, ie., € R
=0

for all ¢ € Ry for all admissible ¢ : [-h,0] — R’} and all piecewise

continuous u : Ry — R% satisfying ¢ € CU~Y((-h,0),R") and

ue CED(R,,R™).

2. (Weak external positivity). The system (1)—(2) is weakly
externally positive if the subsequent property holds:

-1 q
0(alt) = X #-ima (Ba00(0) + Y- 460(-1)
i=0 j=1

q
+ Bju(t - h;)U(t)>> >0, ie., € RT

=0

forallt € Ry if for ¢ = 0 € R" of domain [~h,0] and all v : Ry — R
satisfying u € C¢~D(R,,R™).
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3. (Weak strong positivity). The system (1)—(2) is weakly
strongly positive if, for D = I,, and D = C, the subsequent property
holds:

< Z@,l 1<E:c0 +ZAJ¢

ql
+Y Bju®(t - h;)U(t)>> >0ie, € RY,

=0

for all t € Ry, for all admissible ¢ : [-h,0] — R, and all piecewise
continuous u : Ry — R% satisfying ¢ € C~1((—h,0),R") and all
u:Ry — R satisfying u € CE-D (R4, R™).

4. (Weak strong external positivity). The system (1)—(2) is
weakly strongly externally positive if the subsequent property holds:

( Z(ILZ 1<Ex0 +ZAJ¢

ql
+Y Bju®(t - h;)U(t)>> >0ie, € RY,

=0

for allt € Ry if for ¢ = 0 € R" of domain [—h,0] and all v : Ry — R}
satisfying u € C¢-D (R, R™).

5. (Positivity). The system (1)—(2) is positive if ind (E, Ag) = 0, 1;
x(t) > 0 and y(t) > 0 for all t € R for all admissible ¢ : [-h,0] — R}
and all u € PC (R4, R™).

6. (External positivity). The system (1)—(2) is externally positive
if ind (E, Ag) = 0,1 and y(¢) > 0 for all t € Ry if, for ¢ =0 € R"” of
domain [—h,0] and all w € PC (R4,R™). O

Note that Definitions 1, 2 of weak positivity /external weak positivity
are equivalent to positivity /external positivity if the polynomial parts
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of the state and output trajectory solutions are identically zero. Defini-
tions 3, 4 of weak strong/external weak strong positivity are equivalent
to positivity/external positivity for systems of index zero (i.e., nonsin-
gular systems reducible to the standard form) or unity (i.e., singular
regular, i.e., solvable and impulse-free systems). Note also that if the
system (1), (2) is characterized as weakly (weakly strongly) positive,
weakly (weakly strongly) externally positive, then properties like, for
instance,

-1 q
D <£B(t) — Z (1)—1'—1 (El’o_é(l) (t) + Z Ajé(l)(—h])
=0 j=1

ql
+Y B;o(t - h;)U(t)>> > 0,ie., € R

Jj=0

(Definition 1), or any “ad-hoc” modifications for Definitions 2—4, also
hold for distributional derivatives so for no differentiable functions up to
order (I — 1) of initial conditions/controls. The following result follows
directly from Theorems 1, 2.

Theorem 3. The following properties hold:

(i) The system (1)—(2) is weakly positive if and only if ®oAy €
M} ", ®gA; > 0 (i.e., € RY"), ®By > 0 (i.e., € RY™) for all
JjE€T, forallk € ¢ U{0} and C > 0. It is weakly externally positive if
and only if Ce%Aot@OAj > 0 and Ce®04t® By, > 0 for all j € G, for
all ke g’ U{0}, for allt € R,.

(il) The system (1)—(2) is weakly strongly positive if and only if
@(]Ao € ngn, q>0Aj >0 (i.e., S Rixn), PyBr > 0 (i.e., S Rixm)
forall j €7, for all k € g’ U{0}, i = 0,1 and C > 0. It is weakly
strongly externally positive if and only if and Ce%Aot(IL,-Aj > 0 and
Ce®o40t® By > 0 for all j € G, for all k € g’ U{0}, for allt € R,
i=0,1.

(iii) The system (1)—(2) is positive if and only if ®9Ay € MY ",
PoF > 0 (i.@., € Rixn), QoAJ’ >0, ®oBx > 0 (i.e., S Rixm),
for all j € G, for all k € gruU {0}, C > 0, and ®_;A; = 0,
® k=0, forall j € G, for all k € ¢ U {0}, for all t € Ry,
i € 1—1U{0}. It is externally positive if and only if C®¢E > 0,
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CePodotdy A > 0, Ce®oA0tdBe0, for all j € g, for all k € g’ U {0},
and Ce®oAotd_;A; = 0, CePoAl® B, = 0, for all j € g, for all
keq' u{0}, forallt € Ry, icl—1U{0} for allt € R,. The system
(1)—(2) is guaranteed to be positive (externally positive) if and only if
it is weakly strongly positive (weakly strongly externally) positive and,
furthermore, ind (E, Ag) =0, 1.

Proof. (i)—(ii). The “sufficiency parts” follow directly from the ex-
pressions of the state/output trajectory solutions in Theorem 1 (ii)
and Definitions 1-4 since the polynomial parts of the trajectory solu-
tions are removed from the characterizations and the evolution operator
¥ : [—h,00) = R*™ and the Cy-semigroup e4o®e? >0, forall t € R
since its infinitesimal generator is a Metzler matrix. The “necessity
parts” follow by contradiction since, if any of the given conditions is
violated, it is always possible to construct nonnegative functions of ini-
tial conditions or, respectively, controls of sufficiently large amplitudes
such that the corresponding state/output trajectory becomes negative
at some time instant. Property (iii) is a direct consequence of Prop-
erties (i)—(ii) and Definitions 56 for ind (E, Ag) > 2. For the case
ind (E, Ag) = 0,1, the proof is direct since ®_; = 0, for all ¢ > 2. O

Corollary 1. All the particular solutions of solvable singular systems
(1)-(2) with ind,(E, Ay) > 2 satisfying 7 € I are nonnegative for
all time and all nonnegative input and function of initial conditions
if and only if EPAy € My*", EEP > 0, EPA; > 0, EPB;, > 0,
(I, — EEPYE'A; = 0 and (I, — EEPYE'By, = 0 for all j € U {0},
for allk €q', for alli €l — 1. The last two conditions are removed if
ind (E, Ap) =0, 1.

Proof. Tt follows by direct inspection of the state/output-trajectory
solutions from Theorem 1 (i) and (2). O

On the other hand, for the Weierstrass canonical form (10)—(12) of
(1)—(2), all solutions satisfying are nonnegative under parallel condi-
tions to those of Corollary 1 from Theorem 2 and (2). In this case, the
positivity property is characterized as follows from Theorems 2—-3 and
Definitions 1-6:
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Theorem 4. Assume that the following hypotheses hold:

(H1) The system (1)—(2) is solvable.

(H2) The system (1)—(2) satisfies one of the subsequent constraints:

1. ind (B, Ag) = 0.

2. ind(E,Ag) = 1 and the nilpotent matriz of its Weierstrass
canonical form satisfies (—N) > 0 or NAjo1 = 0, NBgs = 0 for all
j€q, forallk e g’ U{0}.

3. l=1ind (E, Ay) > 2 and N'Ajo; =0, N'Byy =0 for all j €7, for
all k e g"U {0}, for alli €l —1U{0}.

Then, any solution of initial conditions satisfying @ : [~h,0] — R"”
satisfies Sr = {R}' X 0,,} as well and any state-trajectory and
output trajectories, subject to @ : [—h,0] — R and Ty € 1, are
both nonnegative for all time if and only if Zjn > 0, Zjlg >0
and Byy > 0, for all j € G, for all k € @' U {0}. As a result, if
ind (E, Ag) = 0, the system in Weierstrass canonical form is positive
for any @ : [=h,0] — R satisfying S; := {R7} x 0y,} is positive if
and only if Apy1 € M*™, Aj11 >0, Aji2 > 0 and By > 0, for all
Jj €T, for all k € g U{0}. The same result arises if ind (E, Ay) = 1,
(=N) > 0 for such initial conditions if and only if Ay1; € My ™,
A; >0 and B, >0 for all j €7, for all k € g' U {0}.

Proof. The “sufficiency parts” follow directly from Theorems 2-3
by inspecting (13.b). The “necessity parts” follow by establishing
contradiction arguments as indicated in Theorem 3. ]

The “so-called” weak reachability of a weakly positive singular sys-
tem (Theorems 1-2) is now discussed in the sense that both proper-
ties should jointly hold. Weak reachability is defined as the ability of
attaining any nonnegative state in some finite time from zero initial
conditions while keeping the weak positivity property. Then, a weakly
reachable, weakly positive system attains any finite nonnegative state in
some finite time, from an identically zero function of initial conditions,
with a control and through an intermediate state whose components
never take negative values in the time interval of interest. A weakly
reachable weakly positive system is reachable if it is positive (see The-
orems 3-4). A less strong property is that of partial weak reachability
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where the reachability property is only guaranteed for the slow dynam-
ics sub-state. In other words, the fast dynamics sub-state To(t) is only
guaranteed to be kept nonnegative but it is not guaranteed to be driven
to a prescribed value while the slow dynamics sub-state Z1(t) is driven
to any prescribed nonnegative value. A more restrictive property than
weak reachability is that of weak controllability implying similar char-
acterizations except that the initial conditions are arbitrary admissible
vector functions. For the nonsingular, delay-free case, reachability of
a positive system requires a monomial controllability-like Grammian
while controllability in finite time (asymptotically) requires, in addi-
tion, that the unforced dynamics evolution operator be nilpotent (a
convergent matrix) in the discrete case. In the continuous-time case,
the evolution operator cannot be nilpotent so that only asymptotic con-
trollability (often referred to as asymptotic stabilizability) is feasible.
Some related requirements, although more involved, are discussed in
the following in the context of singular systems with delayed dynamics.

Definition 7 (Weak reachability of a weakly positive system,
reachability of a positive system). A weakly positive system
(1)—(2) is weakly reachable in finite time T > 0 if any prefixed state
x* > 0 is attainable in time 7" with some control u : [0,T) — R’ from
zero initial conditions ¢ : [~h,0] — 0 € R provided that 7o =0 € R}
in Theorem 1, equation (5.a). If, furthermore, EZEJ =0and E'B, =0
foralli €l —1U{0}, for all j €7, for all k € g’ U {0} (which includes
the case ind (E, ﬁo) =0,1), then the weakly positive system is said to
be reachable in finite time.

Remark 3. Note that, since positivity (Definition 5) is an extension
of weak positivity for systems whose polynomial part of the state-
trajectory solution is zero, reachability is a natural extension of weak
reachability for such a class of weakly positive systems as addressed
in Definition 7. In this way, weakly reachable systems of index zero
or unity are reachable, and this also occurs for certain classes of
systems with indexes exceeding unity whose polynomial part of the
state-trajectory solution is zero. Note that both concepts are not
generically equivalent except when EiAj = 0 and E'B = 0 for all
i € 1—1U{0}, for all j € g, for all k € g’ U {0} (which includes
the cases of systems of indexes zero or unity) since, otherwise, the
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input may have nonzero time-derivatives or may be impulsive for time
instants ¢ > 0, see equation (5.a).

Remark 4. Output reachability, respectively, weak/output reacha-
bility are concepts directly extendable from reachability, respectively,
weak reachability, by substituting in Definition 7 positivity (standard
or weak) by output positivity and the attainability of an arbitrary pos-
itive state by that of an arbitrary prefixed output value y* > 0 at time
T'. In particular, above-mentioned constraints ElA =0and E”Bk =0
forallicl—1U {O} for all j € 7, for all k € ¢ U {0} should now be
replaced with CE*A; = 0 and CE'By, = 0 for all i € [ — 1U {0}, for all
jeg,forallk eq’ U{U} O

Definition 8 (Weak controllability of a weakly positive sys-
tem, controllability of a positive system). A weakly positive sys-
tem (1)—(2) is weakly controllable in finite time 7' > 0 if any prefixed
state * > 0 is attainable in time 7" with some control u : [0,T) — R
from zero initial conditions ¢ : [—h,0] — 0 € R’ provided that

To = 0 € R’} in Theorem 1, equation (5.a). If, furthermore, EiA\j =0
and E'Bj, =0, for all i € [ — 1 U {0}, for all j € g, for all k € ¢ U {0}
(which includes the case ind (F ,;4\0) = 0,1), then the weakly positive
system is said to be controllable in finite time.

Definition 9 (Weak asymptotic controllability of a weakly
positive system, asymptotic controllability of a positive sys-
tem). They are direct extensions of the corresponding Definition 8
when the attainability time for the prefixed states tends to infinity.

It has to be pointed out that controllability is a stronger concept
than reachability in the context of positive systems since the positivity
property has to be maintained, namely, the corresponding property
should be achievable under a nonnegative control (see, for instance,
[12] for the discrete delay-free case) starting with a right nonzero
initial condition at ¢ = 0. This implies that, at time 7', where the
prefixed objective state is reached, the amount is (z* — Z(T)zg) > 0
for the given arbitrary «* > 0. It is then shown that this requires that
the controllability property for continuous-time systems is necessarily
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asymptotic, in general, contrarily to the reachability one, and that the
unforced system is required to be asymptotically stable. In the delay-
free, discrete-time case, controllability of positive systems is feasible
in finite time if the matrix of dynamics is nilpotent, [12], which
is impossible in the continuous-time case since such a matrix is a
fundamental one of the differential system and then nonsingular for
all finite time.

Note from Theorem 1 (i) that

w)=Y" /h 2(t - 7)EP Byu(r — 1) dr,

(15) ,
z(t) = —7EPBu(r — b)) dr
m(t)—;/h;Z(t VEP Bju(r — 1) dr,
where
q 0
Z(t) == z(t) — Z() EEPZ, — Z/ﬁ}l Z(t — 7)EP Ajp(7) dr
-1 AJ_ q R
(16) = BE) (LB (S A1)
i=1 j=0

The situation of interest for characterization of the reachability of
positive singular systems is Z(0") = z(0") € INR} and Ty = z(07) =
@(t) =0, for all t € [~h,0). Under those conditions, z(t) = Z(t) can
be prefixed at some z* > 0 for any ¢ > h by some nonnegative control
u:[0,t) — R

Theorem 5. Assume that (1)—(2) is solvable and either positive
(then implying ind (E, Ag) = 0,1) or solvable weakly positive with
ind (E, Ao) > 2 and, furthermore, EP Ay € Mp*", EED > 0, EPA; >
0, EPBy, >0, (I, — EEP)E‘A; = 0 and (I, — EEP)E'B, = 0 for all
j € qU{0} for allk €, for alli € I — 1. Then, the following properties
hold:
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(i) The system (1)—(2) is positive if ind(E,A4y) = 0,1 or if
ind (E, Ag) > 2 and Theorem 1 (iii) holds.

(ii) Assume with no loss of generality that the sizes of the external
delays are strictly ordered according to 0 = hy < hj < --- < Ry, and
consider some time instant T' satisfying hi, +hy > T := h 1 h;. Then,
the system (1)—(2) is weakly reachable at any finite time t > T if and
only if the controllability-like Grammian:

T—h;, J R
an ([ (X200 -1 -nE7B)
0 i=0
J AT
<ZZ( ;+1—h;—r)EDB,-> dr>
=0

is monomial, i.e., positive nonsingular with only one nonzero entry per
row. Furthermore, the system is reachable under the constraints given
in Definition 7 for reachability, in particular, if ind (E, Ag) =0, 1.

Proof. Property (i) follows directly from Theorem 1 (i) for ind (E, Ag)
= 0,1 and Corollary 1 for ind (E,A4p) > 2 and z§ € $. In the
case that ind (E, Ag) > 2, the system is weakly positive, i.e., positive
provided that the polynomial part of the state and output trajectories
are zeroed. The proof of the “sufficiency part” of Property (ii) is direct
from (15)—(16) with

q’ R, R
#T) = Z/ " 2(T — ) EP Bju(r — b)) dr

Jj=0""%;
(18) LY U VR | N
:Z/ <ZZ( ;'+1_ 9+1_h;_T)EDBi>
j=0"0 i=0

x u(t + hy — hY) dr.

Now, z(T) = z(T) = «* > 0 from (18) if

T—h', h;,
¥ = / <2Z(h;+1 —h — T)EDBi> u(r)dr
0 i=0
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Gy hy ~
(19) = (/ (Z AR T)EDBi>
0 i=0

hg T
x (Z Z(Wypy — bl — T)EDE> d7'>g
=0

for some g(> 0) € R”} by applying the following control input on [0, T):
(20)

% \T
u(r) = [(Zﬂo Z(W, 4y — B, — T)EDB,-> df} g Vrel0,T—h —¢)

0; v1 € [e,T),

for some prefixed real constant ¢ € (0,7'—h;). Note that (19) equalizes
(18) for the control input (20) so that z(T') = z* > 0 provided that

iy hy R
g:</ <ZZ( ;.H—h;—T)EDBi)
0 i=0

ha AT -1
X <ZZ(h;.+1 — Rl — T)EDBZ'> dT> z* >0
=0

and v : [0,7) — R, since * > 0 and the above inverse matrix is also
weakly positive since it is the inverse of a monomial matrix and the
system is solvable (at least) weakly positive and there are no nonzero
either derivative or impulsive terms in the solution associated with the
input at time 7T, since it is identically zero in a neighborhood of T.
There are also neither impulsive nor derivative terms associated with
the initial conditions since the function of initial conditions is identically
zero on [—h,0]. For any finite time ¢ > T, the same result applies if
the input remains zero for all time 7 € [0,7]. The sufficiency part
has been proved. The necessity part of Property (ii) is now proved by
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contradiction. Note that, by construction,
T—h!, b
!
Im[/o (ZZ L1 —hi—T)E Bi>
N T
(ZZ L — b T)EDB,') dr]
J+1 h J ~
[z [ (Lot -n-nea)
T
(ZZ " hgr)EDBi> dT]
Tfhj J =R
le[/o <Zz(h;+1h;r)EDB,->
N T
(ZZ . hgr)EDBi> dT],

for all j € g’ U {0}. Then, weak reachability while keeping weak
positivity requlres that any u(t) € U C R}, (U being the input space)
be achievable at any t € (0,7') and, furthermore,

4k —h] ) ) b
=1Im [Z/O < Z(W;y — b, —T)E Bi>](u)
j=0 i=0

for such an input real vector function. Then, if u: [0,7) — R, and if

R} #Im [Z/ o <§Z(h;+1 Y T)EDE,) dT]U,

the weakly positive system is not weakly reachable. Note that both
properties are weak positivity, respectively, reachability also implies
positivity, respectively reachability, if ind (E, Ay) = 0,1 under identical
proofs. |
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Note that controllability of a weak positive system from any state
in the first orthant to any strictly positive state in the first orthant
is guaranteed under reachability provided that the unforced system is
asymptotically stable. It is also guaranteed asymptotic controllability,
i.e., asymptotic stabilizability, too. Thus, the subsequent result is
immediate.

Theorem 6. Assume that the weakly positive system is weakly
reachable under Theorem 5. Then, system (1)—(2) is also weakly
controllable from any state in R to any state z* € R, := {z(€
R7}) = (21,22, .. ,20)T 1 2; > 0, for alli € W, e(> 0) € Ry} in a finite
time, dependent on e, z§ and x* for any ¢ : [-h,0] = 0 € R,
and x} (> 0) € S, provided that it is asymptotically stable. It is
then also asymptotically weakly controllable to R, for any (> 0) €
R, i.e., asymptotically weakly controllable, or asymptotically weakly
stabilizable, as time tends to infinity under a nonnegative control input
when neglecting the polynomial part of the state trajectory solution. If
ind (E, Ag) = 0,1, the above result becomes one of controllability of a
positive system to R"+c. The same result holds if ind (E, Ag) > 2
Theorem 1 (iii) holds.

Outline of Proof. It follows directly from Theorem 5 by considering
any function of initial conditions ¢ : [-h,0) — 0 € R", 2§ (> 0) € &
and a finite time T' = T(z{, 2%, €) such that (z* — ¥(t)zs) > 0, for all
t>1T. 0

Remark 5. Note that (spectral) reachability conditions of (1)—(2) are
the following:

q q
rank (sE — Ag — ZAief’“S, By + ZBieh§S> =n,

i=1 i=1
for all s € C (Popov-Belevitch-Hautus test)

’

q q
rank (sE — Ay — ZAi,u,i,Bo + ZBiP’q+i) <n
i=1 i=1
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for (s,u) € CItI+l «— s £ —(Inp,;/h;) for some i € G or s #
—(lnp;/h;) for some i € §'. Reachability independent of the external
delays holds if and only if

q
(3) rank (sE —Ag— Z Age s, B) =n,
i=1

for all s € C where B := [By, Bi, ..., B,|. This follows by noting that

’

q

Z w(t — hl) ZB’UZ

under the definition

vi(t) = (t—hi) forallte[t—h,,,,t—hl)
v 0 for all t € [0, — hj, ;) U[t — hj,t),

for all ¢ € ¢ U {0} after size reordering of the external delays as
0 =hy < h' < -++ < hy,, if necessary, with no loss in generality.
As a result, the reachability independent of both internal and external
delays (including the delay-free case) holds if and only if

rank (sE Ay — ZA"U’“ > <n,

i=1

some (s, 1) € CIT! < In(u;/s) € R := R\Ry, for all i € g. However,
none of the above conditions guarantees weak reachability of a positive
system (1)—(2) under any of its forms (including weak /strong positivity)
since the control necessary to achieve reachability is not guaranteed to
be nonnegative for all time. Then, the system is also weakly output
reachable as a result. The same conclusion follows for controllability. In
the case of a nonsingular system, the above conditions only guarantee
reachability if, at the same time, the test for positivity for a system
(1)—(2) with ind (E, 4g) = 0,1 of Theorem 1 holds.

If the system (1)—(2) is represented in Weierstrass canonical form,
then the reachability property reduces to test the ranks of two matrices
related, respectively, to the slow and fast dynamics of the associate
decomposition in subsystems.
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Remark 6. Note from Remark 5 (3) that, since reachability is
independent of the choice of any reachable realization, reachability
independent of the external delays holds if and only if the Weierstrass
canonical form (10)—(12) of (1)—(2) satisfies:

— . = ¢ = . =

rank sIn1 — Ao11 0 > iy Amnehis Y4 Apgehis By —n
q —h. q —h. = -

0 SN—InZ E i—1 Aigle his i—1 Aigze his Bz ’

for all s € C where Ez = [Eio,ﬁil, - ,Biq], 1= ].,2 )

In [1-3], the partial reachability for substates of slow dynamics of
delay-free singular systems for admissible initial conditions and the
state-trajectory evolving on the manifold defined by the fast dynamics
sub-trajectory is referred to as reachability compared with the more
stringent property of complete controllability, i.e., of the whole state.
In the current approach in this manuscript, reachability is referred
to as controllability of any state from zero and controllability is a
related property from any initial state to any final state while keeping
positivity or weak positivity of the system. This characterization was
proposed in [10, 17] by having in mind the fact that the initial state
is zero or nonzero is crucial to characterize reachability /controllability
of positive systems (being understood as reachability/controllability
under a nonnegative control effort). The last part of the subsequent
result extends Theorem 5 concerning the Weierstrass canonical form
refers to the reachability of the slow sub-state (referred to as partial
reachability of such a substate) while keeping positivity:

Theorem 7. The following properties hold: (i) The Weierstrass
canonical state-space realization (10)—(12) of system (1)—(2) is reach-
able independent of external delays if and only if

q q
rank [sInl — A1, szefh,-s, ZZﬂze*hiS,EJ = nq,
i=1 =1
forallse C

q q
rank [sN — I, E Ajprehis, g Ajppehis, Bz] =ng=n-—n,
i=1 i=1

for all s € C.
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(ii) The Weierstrass canonical state-space realization is reachable
independent of external delays if and only if both conditions below hold
together:

—ni1—1

rank | Bey (1), Aor1Be1 (1), Agyy Bei(p)] < ma
rank LB82(/‘)7 NBE? (,u')v an*lBEZ(:u)J S naz,

with at least one of the two rank inequalities being strict for some
,uECq<:>1n— eR_=R\Ry, foralicg

where

q
= [ZZUINMZAU2/J'“ :| fOT'_] =12

i=1

(iii) Assume that the Weierstrass canonical state-space realization
satisfies the following parameterization constraints:
Zon S Rn1><n1, [Zjll Zjlg] RnIXn’ fOT all] €7q;
Bjy € RIP*™, for all j € 7" U{0};
Ce Rp ; ( ) j2t € anan (7N ) j2 € anxm;
foralli e l—1U{0}, forall j€q'U{0}, I =1,2.
Then, the Weierstrass state-space realization (10)—(12) is positive and
the slow-dynamics reachable (and then the whole Weierstrass form is
then weakly reachable) independent of external delays at any finite time
t > T, T satisfying the constraint hy + hy > T := hyy > hy for

any initial conditions, @ : [—h,0] — 0 € R"™ if the controllability-like
Grammian:

T—h;, J .
(/ <Z Zuwrr(Wjq — h} — T)B“)
0

=0
J _\T
X (Z Zuwi1 Wy — h} — T)Bﬂ> dT>
=0
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is monomaial with sizes of the external delays being strictly ordered
according to 0 = hy < hy < --- < hj with no loss in generality.

Proof. Property (i) follows from Remark 6 since any complex block
partitioned matrix with no less columns than rows

(s 0 L
Q'_[o S LJ

is full (row) rank if and only if the square matrix QQ7T is nonsingular.
By defining as @ any of the two matrices in Property (i) the result
follows directly. Property (ii) follows from Property (i) and the fact
that |sN — I,,,A(p)] is full (row) rank for any complex nonzero
s if and only if [A(u),...,N™71A(u)] and also for s = 0 since
rank | —I,,, A(u)| = no.

Property (iii) follows from (12)—(13) and Theorem 5 since the cur-
rent controllability-like Grammian is monomial. Thus, a control (20)
with the corresponding parameterization and evolution operator re-
definitions for the Weierstrass canonical form yield that all the relevant
input and state derivatives in the righthand sides of (13) are nonneg-
ative for all time from direct calculation with (20) together with the
equations below arising from (13) 3 : [-h,0] — 0 € R™,

g Lt
t) = Z/’ Zwll(t - T)Ejl’u,(T - h;) dr
j=0"";

q

-1 q )
ZNi<ZZj2lfY)(t - Z j22T5) (t — hy)
i=0 =0

3 Bt 10 )

7=0

and the evolution operator is positive. Under the remaining condi-
tions given that the Weierstrass canonical realization is positive (both
sub-states and output are nonnegative for all time under nonnegative
controls for the given initial conditions), the slow sub-state is reach-
able. O
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Note that Theorem 7 is not directly extendable to controllability un-
der extra conditions in the same way as Theorem 6 extends Theorem 5.
The reason is that the decoupling of slow and fast dynamics together
with the requirement that the relevant control time-derivatives have to
be all nonnegative for all time while the system is kept positive require
that the dynamics of the slow dynamics not only be a Metzler matrix
but also a positive one. Then, it is not a stability matrix and con-
trollability of the slow dynamics to any arbitrary sub-state of the slow
dynamics in open subsets of the first orthant that is not achievable in
finite time if reachability holds.

IV. Examples.

Example 1. Consider the Weierstrass canonical state-space realiza-
tion (10)—(12) of a singular solvable single-output system (1)—(2) with
two inputs of fourth order being free of internal delay and with one
single external delay h} > 0 whose parameterization is:

E = Block Diag (I, N); Ay = Block Diag (Ag11,5); C=(c; c3)"

where \ € R, C; Z 0, bij Z 0, Z,] S § w1th6 ;'é 0 and E()l 7é 0,
and g is a nonnegative real constant being typically zero (namely, two
Jordan blocks implying a diagonal matrix of dynamics associated with
the repeated real eigenvalue A) or unity (namely, one Jordan block as-
sociated with a repeated real eigenvalue )\). Note that rank E = 3
with the nilpotent matrix N being of unity rank and nilpotency in-
dex equal to 2. The algebraic multiplicity number of the impulsive
modes is | = rank E — deg(det (sE — Ap)) = 2. The fast dynam-
ics associated with the impulsive modes is positive for Zo(> 0) € Sy
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since then 7> : Ry — R/? from Theorem 2, equation (13.c), since
direct calculations yield: —(N®)Bjz > 0; i,j = 0,1. Such a par-
tial dynamics is also reachable independent of the external delay size
since rank (N, Bga, B12) = rank (Boa, B12, NBo2, NB1a) = 2, see The-
orem 7. For a finite time 7', the discrete state-transition and control-
transition matrices are given, respectively, by:

AT AT

e Te

\I’H(F): |: 0 ge)\T :|

Fg(T) =

1 b11(e*T=1) + bayg (€>‘T (T - %) + %) bi2(eT — 1) + baag (€>‘T (T - %)-ﬁ-%)

X { e* gy (AT — 1) er gy (A — 1) :| ’

In the case of two Jordan blocks, i.e., g = 0, the discrete system is
both weakly positive and weakly strongly positive as well as weakly
reachable through a constant nonnegative control vector function for
any \ € (—oo, —¢€) U (g,00), T € (g,00), provided that b; = 0 for i € 2
and b;; > 0, 1,5(# i) € 2 and in the case that b; > 0 for ¢ € 2 and
b;j =0, 1,j(s# i) € 2. For the case g = 1, the system is weakly reachable
if b;; > 0 for ¢ € 2 and b;; = 0 for i, j(# i) € 2 since then the (1,1)
and (2, 2) entries of I'1(T') are positive, its (2, 1) entry is zero while its
(1,2) entry is also zero provided that

e 1

: R x R+ — R

since ¢ = 1. If A > 0, this always holds for some sufficiently large
T > 0 since 0 < (e* —1)/(Te*T) — 0 as T — oo so that there is
a real solution to the constraint A = (e’T — 1)/(Te*”). For A < 0
such a finite time exists implying that the above constraint holds
since f(A,0) = 0, f(A,00) = limyp_o f(A,00) = —0c0 and f(A,T)
is continuous on R X R, for all ¢ € R4. In this last case, the
discrete system is also asymptotically weakly controllable to any region
R? := {z € R} : 2; > ¢,Vi € @}, for all ¢ € Ry. If, in addition to
the above conditions, A < 0, then the system is asymptotically weakly
controllable to any region R? := {z € R} : z; > ¢,Vi € 7}, for all
¢ € R. If the parameterization changes to A = Diag (A1, A2), A2 € R
(i.e., the two eigenvalues are real and distinct or they are equal with two
Jordan blocks discussed above) then W((7T) = Diag ((e*T,e*2T) and
['(T) =To(T), defined above with the replacements A — A; and A — Az
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in the first and second row vectors, respectively. The same conclusions
about weak reachability and weak asymptotic controllability to R} :=
{z e R" : z; > ¢,Vi e m}, for all € € Ry, provided that \; <0, i € 2,
as in the case g = 0.

Example 2 (Generalizations of Example 1). Assume that
B, = 0 is replaced with any B;; > 0. The system is still weakly
positive and weakly reachable for any finite T > h{ which follows
directly by considering the above nonnegative input which is zeroed
for the time interval [T — h{,T) (see the proofs of Theorems 5 and
7). If the matrices G and H of the transformation to the canoni-
cal Weierstrass form are monomial, then their inverses are positive so
that the original state-space realization (1)—(2) of the singular system
also maintains the weak positivity property since E = G"'EH~! > 0:
C = CH™! > 0, etc., and also the weak reachability /weak controllabil-
ity properties under similar conditions as in Example 1. Note that while
reachability/controllability of the original state-space realization would
hold for any nonsingular transformation matrices, i.e., for any equiv-
alent realization, this is not the case for reachability/controllability of
positive systems since both positivity and positivity maintaining reach-
ability /controllability are dependent on the state-space realization, in
general (see, for instance, [10, 11, 18, 19]).

V. Conclusion. This paper has dealt with the characterization of
reachability and controllability properties of singular linear time-delay,
time-invariant dynamic positive systems subject to constant known in-
ternal and external point delays. The research has been performed
based either on a general nonunique solution trajectory including dis-
continuities at points of the initialization time-interval or based on a
particular solution with initial conditions in an appropriate subspace
of the whole potential admissible set which avoids such discontinuities
and guarantees uniqueness. In the first case, the various properties
obtained are characterized as weak (weak positivity, reachability, etc.)
since they do not fully characterize singular systems of index strictly
exceeding unity. In all of the manuscript, reachability/controllability
properties refer to controllability from zero or among any given initial
and final states, respectively, and furthermore, since applied on positive
systems, they guarantee simultaneously some kind of state-trajectory
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positivity under nonnegative initial states and controls. In this sec-
ond case, the positivity, reachability and controllability properties of
the Weierstrass canonical state-space realization have also been inves-
tigated.
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