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COMPLETELY MONOTONIC FUNCTIONS OF 
THE FORM s-b(s2 + l ) " a 

DANIEL S. MOAK 

A B S T R A C T . The function s - 6 ( s 2 + l ) _ a is shown to be 
completely monotonie for 6 > 2a > 0, for b > a > 1. or for 
0 < o < 1, 6 > 1. Moreover this function is proven not to be 
completely monotonie for 0 < b < a, nor for a = b, 0 < a < 1. 
This proves some conjectures of Askey [1], and extends some 
of the results of [2], [3], and [4]. 

1. Introduction. In recent years Askey, Gasper, Ismail, and others 
have looked into the problem of determining the nonnegativity of the 
Bessel function integrals fQ (t — s)csdJì^(s)dsì as well as some 1F2S. See 
[2,3]. This is related to the complete monotonicity of s~a(s2 + l ) - 0 as 
we shall see in this article. 

The definition of complete monotonicity used in this paper is: 

DEFINITION. A function f(s) is completely monotonie (CM.) if 

(-)"/(") (s) > 0,5 > 0,n = 0 ,1 ,2 , - . . . 

The main result we will need is the Hausdorff-Bernstein-Widder the­
orem [8]. 

THEOREM A. f(s) is completely monotonie if and only if it is the 
Laplace Transform of a positive measure on (0, oo). 

Accordingly, we will make the following definitions. 

DEFINITION. Let £ denote the Laplace transform operator and let 
£Tl denote its inverse. We define: 

(1.1) Sa,„(*) = £ - W + I)"0). 
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(1.2) f*g(t)= [ f(s)g(t-s)d, 
Jo 

(a)nxn 

where (a)o = 1, and (a)n = a(a + l)(a + 2) • • • (a + n — 1), n > 1. 
The other Series 2 ^ 1 , 3 ^ etc., are defined similarly. 

Using the elementary theory of Laplace transforms, these results 
follow immediately: 

f.2a+b-l 
(1.4) Sa,b(t) = r ( 2 a + b ) i fMa, a + 6/2, a + ft/2 + l/2;-*2/4)-

- .^0+6-1/2 /-l 
(1.5) Sa6(«) = J L J ( l - « ) 6 _ 1 « a - ' J 0 _ l ( * u ) d « . 
v ; ' v ' r(a)r(&)2a-T y0

 v 7 a »y ' 

(1.6) 5 b , 6 ( t ) = f ^ . 

(L7) «-»W = ^ 7 J - * W 
(1.8) 5a,fe(0 * 5Cfd(0 = Sa+cf6+dW-

The problem is to determine the set of all (a, 6) such that £0,0 (£) is 
nonnegative on (0,00). One result that follows immediately from the 
above equations is: 

LEMMA 1. If s"ò(s2 + l)~a is CM. then s~c(s2 + l ) " a t* CM. for 
all c> b. 

2. The positive results. There is a useful sum due to George 
Gasper [5, (3.1)], 

THEOREM B. 

(2.1) iF2(a, a + 6/2, a + 6/2 + 1/2; -x2y) = 

r^T- • 1 V 2 2 | / ^ / r(2i/-H)w(2n + 2i/) 2 

r ( " + l ) ( ; ) 2 ^ n!(n + 2«/) J»+" ( x ) 
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/ -n, n + 2*/, I/ + 1, a \ \ 
4 J P 3 U + 1/2, a + ò/2,a + ò/2 + l / 2 ; y J J ^ - a 

One result that can be obtained from Theorem B is: 

THEOREM l. 

s~b{s2 + l)~a is CM. for b = 1 and 0 < a < 1. 
PROOF. Using (1.4) and (2.1) with b = 1, v = a/2, and y = 1, it suffices 
to show that: 

Now we use a result of Bailey [7, (4.3.5.1)]: 4F3(
x'^'~n; 1) = 

^ t P ^ t , , ; ; : ^ . ^ ; ! ) , provided « + , + « /= l + x + 
y + z — n. Set x = n + a,y = a/2 +1 ,2 = a,v = a/2 + 1 / 2 , w = a +1 /2 , 
and w = a + 1, and the4^3 becomes 

( l / 2 - q / 2 ) n ( l / 2 ) n „ / 1 - n, a/2, a, -n x 
(a/2 + l /2)n(a + l /2 ) n

4 H l / 2 + a/2 - n, 1/2 - n ,a + 1/2' V* 

For 0 < a < 1, the terms of t h e / ^ series are positive which implies 
that (2.2) holds. The theorem is proved. 

One result proved by Fields and M. Ismail [3], is: 

THEOREM C 

s-b(s2 + l ) " a is CM. for b > a > 1. 

Also, Askey and Pollard [2] proved that s~b(s2 + l)~a is CM. for b > 2a 
using a theorem of Schoenberg: 

THEOREM D. Let f(s) be a continuous function defined on [0,00) 
such that /(0) = 1. Then (f{s))x is CM. for all X > 0 if and only if 
there is a completely monotonie function g(t) such that: 

(2.3) / ( S ) = e x p ( - / " % ( * ) < A 
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1 

Figure 1. 

Now all the positive results have been established. 

3. The negative results. The main tool we will use is the following: 

THEOREM E. (Watson's lemma for loop contours) Let f be analytic in 
an open neighborhood, U, o/(-oo,0] except for a branch cut at (-oo,0]. 
Suppose that 

(3.1) /(*) ~ X>n* n - a , as 5 - 0 , 
n = 0 

in a neighborhood of 0, and let T be the loop that starts at -oo, goes 
around the origin then goes back to -oo as depicted in Fig. 1. Then, 

(3.2) 2m Jr
 JK } ^ r (o - n) 

as \t\ -> oo, | arg(£)| < ?r/2 - e, e > 0. 

A proof of this theorem can be found in Olver [6]. One important con­
sequence of this theorem is 
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THEOREM 2. 

(3.3) 

2 l " V U /a , ^ ^ H n ( a ) 2 n ( l - « ) 2 n 
Sa,b(t) ~ Y(â) ( C0S^ - ™/2 " *6/2) £ r(a)V ^ ' ' ' £ , 22n(2n)! 

•2*i(-2n, 6,1 - a - 2n; 2 ) i a " 2 n ~ 1 4- sin(* - ?ra/2 - TT6/2) 

E (-)n(Q)2n-fl(1 - a ) 2 w + l ^ / 9<n , , 9 y i . 9 > i / a-2n-2 \ , 

_ 2*»+1(2n + l)! 3 ^ i ( - 2 n - l , 6 , - a - 2 n , 2 ) t J + 
i ^ ( a ) n( i - 6 ) 2 n ( - r ^ 2 n _ s as | t | _̂  ̂  | a r g W | < x / 2 _ C|g > Q 

1 W n = 0
 n-

PROOF. We use the inversion formula for the Laplace transform: 

i /»C+tOO 

(3.4) Saib(t) = ̂  / e5ts-6(s + 2')~a(5 - i)-ads, c > 0. 

We will assume throughout that the principal values of the powers and 
logs will be taken. The contour can be deformed into r u ( r + i ) U ( r — i ) . 
Translating the integrals over T + i and T - i to integrals over T, we 
obtain 

(3.5) 
Sa,b{t) = 2 ^ J es's-

6(s2 + l)-ads+ 

2Re ( - L f est+it(s + i )_ 6s-°(s + 2i)-ads). 

We now use: 

(3.6) (s2 + I)"0 = £ ) (fl)^")n
g

2", |«| < 1, and 
n=0 

(s + i)-b(s + 2i)~a = e-*(«+t>W*2-a 

(3-7) -E^rE^(|r,N<i-
n=0 ' n=0 

(s + i)"6(s + 2i)~° = e-
v(-a+b)i/22-a 

OO / \ 

(3-8) • E ^ ^ ( ^ 6,1 - a - n; 2)insn, \s\ < 1. 
n=0 
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Now use Theorem E on each integral in (3.5) with the series expansions 
obtained in (3.6) and (3.8) and the result follows. 

Theorem 2 has some interesting consequences, among them being: 

COROLLARY I. s~b(s2 + \)~a is not CM. forO<b<a. 

PROOF. It is evident from (3.3) that 

(3.9) Saib{t) ~ 21-ata~1 cos(t - -Kb/2 - ica/2)/T(a), as t -+ oo, 

i.e., the ratio of the two sides goes to one as t —• oo. There are arbi­
trarily large values of t where the right side of (3.9) is negative, so the 
same is true for Sa,b{t). Hence S~b(s2 + l)~a is not CM. for 0 < b < a. 

Another consequence of Theorem 2 is, 

COROLLARY 2. s~b(s2 + l)~a is not CM. for a = 6,0 < a < 1. 

PROOF. The two dominant terms of (3.2) yield: 

(3.10) Sa,a{t) - [21-acos(^ - Tra) -h l)^-1/T{a). 

For 0 < a < 1, 2 1 _ a > l which implies that there are arbitrarily large 
values of t for which the right side of (3.10) is negative. Hence Sa,a(t) 
must be negative somewhere. So s - a ( s 2 + l ) - a is not CM. for 0 < a < 1. 

4. Conclusion. At this point we know where s~b(s2 -f l)~ a is or is 
not CM. in the first quadrant of the (a, 6) plane, except in the interior 
of the triangle with vertices (0,0), (1,1), and (1/2,1). In that triangle 
there is a boundary curve of complete monotonicity, where s~b(s2+l)~a 

is CM. on or above it, but not CM. below it. There the numerical 
evidence suggests that this curve increases monotonically from (0,0) to 
(1,1) in a concave down fashion with a slope of 2 at (0,0). It remains 
an open challenge to determine this curve more explicitly. 
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Figure 2. 
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