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COMPLETELY MONOTONIC FUNCTIONS OF
THE FORM s %(s2 + 1)@

DANIEL S. MOAK

ABSTRACT. The function s7®(s% + 1)™® is shown to be
completely monotonic for b > 2a¢ > 0, for b > a > 1. or for
0<a<1, b>1. Moreover this function is proven not to be
completely monotonic for 0 < b < a,norfora =5, 0<a < 1.
This proves some conjectures of Askey [1], and extends some
of the results of [2], [3], and [4].

1. Introduction. In recent years Askey, Gasper, Ismail, and others
have looked into the problem of determining the nonnegativity of the
Bessel function integrals fot (t — 8)°s%J, (s)ds, as well as some Fjs. See
[2,3]. This is related to the complete monotonicity of s~*(s? + 1) as
we shall see in this article.

The definition of complete monotonicity used in this paper is:

DEFINITION. A function f(s) is completely monotonic (C.M.) if
O f™(s) >0,8>0,n=0,1,2,---.

The main result we will need is the Hausdorff-Bernstein—Widder the-
orem [8].

THEOREM A. f(s) is completely monotonic if and only if it is the
Laplace Transform of a positive measure on (0, 00).

Accordingly, we will make the following definitions.

DEFINITION. Let £ denote the Laplace transform operator and let
L7 denote its inverse. We define:

(1.1) Sap(t) = L7H(s7(s2 + 1)),
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(1.2) [*alt) = / £()g(t — s)ds
(1.3) 1Fy(a,b,c; x) Z bgr: nznn"

where (a)o =1, and (a)p, =ala+1)(a+2)---(a+n—1),n > 1.
The other Series o F,3F5, etc., are defined similarly.

Using the elementary theory of Laplace transforms, these results
follow immediately:

(1.4) Sup(t) = %@(a,a +b/2,a +b/2+1/2;-t%/4).
(1.5)  Sap(t) = %Al(l—u)b‘lu“"' Jo—y (tu)du
(1.6) So,b(t)=;b(;b;.

(17) sa,o(t)=$%z,_%(t>

(1.8)  Sap(t) * Sc,a(t) = Sateptalt).

The problem is to determine the set of all (a,b) such that S, p(t) is
nonnegative on (0,00). One result that follows immediately from the
above equations is:

LEMMA 1. If s%(s2 + 1)@ is C.M. then s °(s* + 1)@ is C.M. for
allc > b.

2. The positive results. There is a useful sum due to George
Gasper [5, (3.1)],

THEOREM B.
(2.1) 1Fa(a,a+b/2,a+b/2+1/2; —2%y) =

I 4 1) 2,,Z(zuﬂ 2n+2v)JZ+V(z)

nl(n + 2v)
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-n, n+20, v+1, a
. > 0.
4F3(u+1/2, a+b/2,a+b/2+1/2’y))"’—°

One result that can be obtained from Theorem B is:

THEOREM 1.
s(s?+1)®isCM.forb=1and0<a<1.

PROOF. Using (1.4) and (2.1) with b =1,v = a/2, and y = 1, it suffices
to show that:
(2.2)

-n,n+a,a/2+1,a
F: 111 2>20,0<a<1 =0,1,2,---.
4 3(a/2+1/2,a+1/2,a+1’ )- wsazhn=0

Now we use a result of Bailey (7, (4.3.5.1)]: 4F3(%¥:* ™:1) =

u,v,w
ﬁ—(—%——ﬁ—)—u: oy s (Y e i 1), provided u+v+w =1+a+
y+z—n. Setz=n+a,y=a/2+1,z2=0a,v=0a/2+1/2,w =a+1/2,
and u = a + 1, and the 4F3 becomes
(1/2 —a/2)n(1/2)n F ( 1-n, a/2, a, -n .1)

(@/2+1/2)n(a+1/2)," 2\1/2+a/2-n,1/2—n,a+1/2" ")
For 0 < a < 1, the terms of the 4F3 series are positive which implies
that (2.2) holds. The theorem is proved.

One result proved by Fields and M. Ismail [3], is:

THEOREM C.
.s_"(s2 +1)™isCM.forb>a>1.

Also, Askey and Pollard [2] proved that s7?(s2+1)"® is C.M. for b > 2a
using a theorem of Schoenberg:

THEOREM D. Let f(s) be a continuous function defined on [0,0)
such that f(0) = 1. Then (f(s))* is C.M. for all X\ > 0 if and only if
there is a completely monotonic function g(t) such that:

(2.3) f(8) =exp (—/08 g(t)dt).
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Figure 1.

Now all the positive results have been established.
3. The negative results. The main tool we will use is the following:

THEOREM E. (Watson’s lemma for loop contours) Let f be analytic in
an open neighborhood, U, of (—00,0] ezcept for a branch cut at (—00,0].
Suppose that

o0
(3.1) f(8)~ ) ans"™?, as s >0,

n=0
tn a neighborhood of 0, and let T be the loop that starts at —oo, goes
around the origin then goes back to —oo as depicted in Fig. 1. Then,

1 st . An —n—1
— s)ds ~ —t* ",
(3.2) 2mi /pe f(s)ds ;F(a -n)
as [t| — oo, |arg(t)| < /2 — €, > 0.
A proof of this theorem can be found in Olver [6]. One important con-
sequence of this theorem is
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THEOREM 2.
(3.3)
l1-a \n 3
Sap(t) ~ i,( )(cos(t—m/z b/2) Z o) (ggiyz;)! a)zn

n=0
oF1(-2n,b,1 — a — 2n;2)t*~ 2"~ 4 sin(t — 7a/2 — wb/2)

[o o)
(5)"(@)2n+1(1 — @)2n+1 . —2n—2
) Z 22n+1(2n 1) 3F1(2n —1,b,—a — 2n;2)t**" )+

n=0

= 2n ()"
I‘(b Z 921 a5 |t| — oo, | arg(t)| < /2 — €, > 0.

PROOF. We use the inversion formula for the Laplace transform:

c+1i00
(34)  Saplt) = — / e*57 (s +14) (s — i) °ds, c > 0.

2m c—100

We will assume throughout that the principal values of the powers and
logs will be taken. The contour can be deformed into I'U(T'+2)U(T —2).
Translating the integrals over I' + ¢ and I' — ¢ to integrals over I', we
obtain

1 _ _
Sap(t) = 5z /F e%ts7 (s 4 1) Ods+

(3.5) ) ‘
2Re (—2—7}; /F ettt (s +4) P (s + 2i)'ads).
We now use:
(3.6) (s +1)" Z (“ s |s| < 1, and
(849 (s +2)° = _"(“‘H’)'/22‘“
3.7 i@ (is)* Z = " |s| < 1.
(s+19) (s +2i)™° —n _""(a+b>1/22-a

(3.8) Z '2n (—n,b,1 —a —n;2)i"s™,|s| < 1.
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Now use Theorem F on each integral in (3.5) with the series expansions
obtained in (3.6) and (3.8) and the result follows.

Theorem 2 has some interesting consequences, among them being:
COROLLARY 1. s7%(s%2 +1)7 4s not C.M. for 0 < b < a.

PROOF. It is evident from (3.3) that
(3.9)  Sup(t) ~2'7%* 1 cos(t — mb/2 — ma/2)/T(a), as t — oo,

i.e., the ratio of the two sides goes to one as t — oo. There are arbi-
trarily large values of ¢ where the right side of (3.9) is negative, so the
same is true for S, 5(t). Hence S™(s?+1)"® is not C.M. for 0 < b < a.

Another consequence of Theorem 2 is,
COROLLARY 2. s%(s2+1)7® 4s not C.M. fora=5b,0<a < 1.

PROOF. The two dominant terms of (3.2) yield:
(3.10) Saa(t) ~ [2'7% cos(t — ma) + 1)t*~ /T (a).

For 0 < a < 1, 2!7% > 1 which implies that there are arbitrarily large
values of ¢ for which the right side of (3.10) is negative. Hence S, 4(t)
must be negative somewhere. So s7¢(s2+1) ¢ isnot C.M.for0 < a < 1.

4. Conclusion. At this point we know where s™(s% 4+ 1)™@ is or is
not C.M. in the first quadrant of the (a, b) plane, except in the interior
of the triangle with vertices (0,0), (1,1), and (1/2,1). In that triangle
there is a boundary curve of complete monotonicity, where s ?(s2+1)™@
is C.M. on or above it, but not C.M. below it. There the numerical
evidence suggests that this curve increases monotonically from (0, 0) to
(1,1) in a concave down fashion with a slope of 2 at (0,0). It remains
an open challenge to determine this curve more explicitly.
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