STRONGLY EXTREME POINTS IN $L^p(\mu, X)$

MARK A. SMITH

ABSTRACT. A natural characterization of strongly extreme points in the unit ball of $L^p(\mu, X)$, where 1 , is given. This characterization is compared to similar known results concerning strongly exposed points and extreme points.

Sundaresan [8] and Johnson [6] considered the problem of characterizing extreme points in the unit ball of $L^p(\mu, X)$, where X is a Banach space, (S, Σ, μ) is a measure space and 1 . It is easily shown that sufficient conditions for <math>f to be such a point are that $||f||_p = 1$ and, for almost all s in the support of f, the element f(s)/||f(s)|| is an extreme point of the unit ball of X. In [8] it is shown that these conditions are also necessary in the case that X is a separable conjugate space, S is a locally compact Hausdorff space and μ is a regular Borel measure; in [6] the same is shown in the case that X is any separable Banach space, S is a complete separable metric space and μ is a Borel measure. However, Greim [4] has produced an example of a nonseparable X and a norm one f in $L^p(\lambda, X)$, where λ is Lebesgue measure on [0, 1], such that f is an extreme point of the unit ball of $L^p(\lambda, X)$ but, for all s in [0, 1], the element f(s)/||f(s)|| is not an extreme point of the unit ball of X.

Johnson [7] and Greim [5] considered the similar problem of characterizing strongly exposed points. In [7], a sufficient condition is given for g in $L^q(\mu, X^*)$, where $p^{-1} + q^{-1} = 1$, to strongly expose f of norm one in $L^p(\mu, X)$. In [5], the proof that this condition is sufficient is used to show, in the case that X is a smooth Banach space, that f in $L^p(\mu, X)$ is a strongly exposed point of the unit ball if $||f||_p = 1$ and, for almost all s in the support of f, the element f(s)/||f(s)|| is a strongly exposed point of the unit ball of X. It is also shown in [5] that these conditions are necessary in the case that X is a separable Banach space (μ arbitrary) and in the case that μ is a Radon measure on a locally compact Hausdorff space (X arbitrary).

In this paper, the problem of characterizing strongly extreme points in $L^p(\mu, X)$ is considered. It will be shown (Theorem 1) that f is a strongly extreme point of the unit ball of $L^p(\mu, X)$ if $||f||_p = 1$ and, for almost all

2 M. A. SMITH

s in the support of f, the element $f(s)/\|f(s)\|$ is a strongly extreme point of the unit ball of X. Also, it will be shown that these conditions are necessary in the case X is separable (Theorem 2) or in the setting that μ is a Radon measure on a locally compact Hausdorff space (Theorem 3). Thus, when characterizing a strongly extreme point, a notion lying strictly between that of strongly exposed point and extreme point, the natural sufficient conditions are obtained with no restriction on X (for a strongly exposed point, X was required to be smooth) and, in the simple setting of Lebesgue measure on [0, 1], the natural necessary conditions are obtained with no restriction on X (for an extreme point, X must be separable).

The notation and terminology is relatively standard: $(L^p(\mu, X), \|\cdot\|_p)$ denotes the Lebesgue-Bochner space of equivalence classes of p-integrable, X-valued, strongly measurable functions on the measure space (S, Σ, μ) ; without loss of generality, the measure μ is assumed to be complete; for f in $L^p(\mu, X)$, the set $\{s \in S: f(s) \neq 0\}$ is denoted by S_f and the function $s \to \|f(s)\|$ is denoted by $\|f\|$; and, whenever X is the scalar field, $L^p(\mu, X)$ is denoted by $L^p(\mu)$.

Recall an element x of the unit sphere of a Banach space X is a strongly extreme point of the unit ball if and only if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that the conditions $||x \pm z|| < 1 + \delta$ imply $||z|| < \varepsilon$; equivalently, every sequence $\{z_n\}$ such that $||x \pm z_n|| \to 1$ converges to zero.

The following lemma may be known, but, since the author could not find a reference for it, a proof is included for completeness sake.

LEMMA. Let (S, Σ, μ) be a measure space, X a Banach space and $1 \le p < \infty$. For $\{f_n\}$ and f in $L^p(\mu, X)$, if $\|f_n\|_p \to \|f\|_p$ and $f_n \to f$ almost everywhere, then $f_n \to f$ in $L^p(\mu, X)$.

PROOF. Since $||f_n||_p \to ||f_p||$ and $|f_n| \to |f|$ almost everywhere, it follows that (see [1, Exercise 4T])

(1)
$$\lim_{n\to\infty} \int_E \|f_n\|^p d\mu = \int_E \|f\|^p d\mu, \quad \text{for all } E \text{ in } \Sigma.$$

For each positive integer n, define λ_n on Σ by $\lambda_n(E) = ||f_n\chi_E||_p^p$, for E in Σ . In view of (1), the Vitali-Hahn-Saks theorem [3, p. 158] yields

(2)
$$\lim_{\mu(E)\to 0} \lambda_n(E) = 0 \quad \text{uniformly in } n.$$

Let $\varepsilon > 0$ given. Since $f \in L^p(\mu, X)$, there exists a set F in Σ of finite measure such that $||f\chi_{S\setminus F}||_p^p < \varepsilon/2$. By (1), there exists a positive N such that $||f_n\chi_{S\setminus F}||_p^p < \varepsilon$, whenever $n \ge N$. From this and the fact that $f_n \in L^p(\mu, X)$, for $n = 1, \ldots, N - 1$, there exists a set A in Σ of finite measure such that

(3)
$$\int_{S\backslash A} \|f_n\|^p d\mu < \varepsilon, \quad \text{for all } n.$$

In view of (2) and (3), since $f_n \to f$ almost everywhere, the Vitali convergence theorem [3, p. 150] yields that $f_n \to f$ in $L^p(\mu, X)$ and the proof is complete.

THEOREM 1. Let (S, Σ, μ) be a measure space, X a Banach space and 1 . If <math>f in $L^p(\mu, X)$ has norm one and, for almost all s in the support of f, the element $f(s)/\|f(s)\|$ is a strongly extreme point of the unit ball of X, then f is a strongly extreme point of the unit ball of $L^p(\mu, X)$.

PROOF. Suppose $\{g_n\}$ is a sequence in $L^p(\mu, X)$ such that $\|f \pm g_n\|_p \to 1$. Since f has norm one, it follows that $\|2f \pm g_n\|_p \to 2$. By the triangle inequality in X and $L^p(\mu)$,

$$(4) ||2f \pm g_n||_{\mathfrak{p}} \le ||(|f| + |f \pm g_n|)||_{\mathfrak{p}} \le ||f||_{\mathfrak{p}} + ||f \pm g_n||_{\mathfrak{p}}.$$

Since the left side and the right side of (4) tend toward two, the uniform rotundity of $L^p(\mu)$ yields that $|f \pm g_n| \to |f|$ in $L^p(\mu)$ and, hence, there exists a subsequence of $\{g_n\}$, called $\{g_n\}$ again, such that

(5)
$$|f \pm g_n|(s) \rightarrow |f|(s)$$
, for almost all s in S.

Thus, for almost all s in S_f , it follows that $|f \pm g_n|(s)/||f(s)|| \to 1$ and, hence, by the hypotheses, $g_n(s) \to 0$, for almost all s in S_f . Also, by (5), for almost all s in $S \setminus S_f$, it trivially follows that $g_n(s) \to 0$. So $||f + g_n||_p$ $\to ||f||_p$ and $f + g_n \to f$ almost everywhere. An application of the Lemma, with $f_n = f + g_n$, yields $g_n \to 0$ in $L^p(\mu, X)$, and the proof is complete.

The proofs of the next two results are modeled after the proofs given by Greim [5] for the corresponding results concerning strongly exposed points.

THEOREM 2. Let (S, Σ, μ) be a measure space, X a separable Banach space and 1 . If <math>f is a strongly extreme point of the unit ball of $L^p(\mu, X)$, then $\|f\|_p = 1$ and, for almost all s in the support of f, the element $f(s)/\|f(s)\|$ is a strongly extreme point of the unit ball of X.

PROOF. Clearly, $||f||_p = 1$. For each positive integer n and s in S_f , let

$$E(s, n) = \{ z \in X : ||(f(s)/||f(s)||) \pm z|| < 1 + 1/n \},$$

$$d(s, n) = \inf \{ \varepsilon > 0 : \text{ every } z \in E(s, n) \text{ has } ||z|| < \varepsilon \},$$

$$e(s) = \inf \{ d(s, n) : n \text{ is a positive integer} \}.$$

For s in S_f , note that $f(s)/\|f(s)\|$ is a strongly extreme point of the unit ball of X if only if e(s) = 0. Extend each $d(\cdot, n)$ and e to all of S by letting d(s, n) = e(s) = 0 for s in $S \setminus S_f$. To show that e is a measurable function, it suffices to show each $d(\cdot, n)$ is a measurable function, and, for this, it

suffices to show $\{s \in S: d(s, n) > \delta\}$ is in Σ for each $\delta > 0$. Fix such a δ . For each positive integer n and z in X, let

$$A(n, z) = \{ s \in S_f : z \in E(s, n) \}.$$

Then $A(n, z) \in \Sigma$ since f is a measurable function. Let D be a countable dense subset of X. Note that $d(s, n) > \delta$ if and only if $s \in A(n, z)$, for some z in D with $||z|| > \delta$. Hence $\{s \in S: d(s, n) > \delta\}$ is the countable union of sets in Σ and so is in Σ . To finish the proof, it remains to show that $\{s \in S: e(s) > 0\}$ has measure zero. If it does not, then there exists $\delta > 0$ such that $A \equiv \{s \in S: e(s) > \delta\}$ has positive measure. To obtain a contradiction, it suffices to produce a sequence $\{g_n\}$ in $L^p(\mu, X)$ such that

(6)
$$||g_n(s)|| \ge \delta ||f(s)||, \quad \text{for all } s \text{ in } A, \text{ and}$$

$$||f(s) \pm g_n(s)|| \le (1 + 1/n) ||f(s)||, \quad \text{for all } s \text{ in } S;$$

for then, $\|g_n\|_p \ge \delta \|f\chi_A\|_p > 0$, since $A \subset S_f$, and $\|f \pm g_n\|_p \le 1 + 1/n$, contradicting the hypothesis that f is a strongly extreme point of the unit ball of $L^p(\mu, X)$. To this end, let A(n, z) be defined as above and note

$$A \subset \{s \in S \colon d(s, n) > \delta\} = \bigcup \{A(n, z) \colon z \in D \text{ with } ||z|| > \delta\}.$$

So A may be written as the disjoint union of a sequence $\{B_m\}$ in Σ , where each B_m is a subset of some $A(n, z_m)$, with z_m in D and $||z_m|| > \delta$. Now, define g_n by

$$g_n(s) = ||f(s)|| \sum_{m=1}^{\infty} z_m \chi_{B_m}(s),$$

for s in S. Then $\{g_n\}$ satisfies the conditions in (6). This completes the proof.

THEOREM 3. Let μ be a Radon measure on a locally compact Hausdorff space S, X a Banach space and 1 . If <math>f is a strongly extreme point of the unit ball of $L^p(\mu, X)$, then $\|f\|_p = 1$ and, for almost all s in the support of f, the element $f(s)/\|f(s)\|$ is a strongly extreme point of the unit ball of X.

PROOF. For the moment, suppose that f is continuous and never zero on S. Proceed as in the proof of Theorem 2. The sets A(n, z) are open and, hence, so is their union

$$\bigcup \{A(n, z) \colon z \in X \text{ and } ||z|| > \delta\} = \{s \in S \colon d(s, n) > \delta\}.$$

This shows that e is a measurable function. In order to show $\{s \in S: e(s) > 0\}$ has measure zero, replace the set A in the proof of Theorem 2 by a compact subset with positive measure $(A \subset \{s \in S: e(s) > \delta\}, A \text{ compact and } \mu(A) > 0)$ and continue as before. Then, by its compactness, A is contained in a finite union of the sets A(n, z), and defining the sequence

 $\{g_n\}$ in a manner analogous to Theorem 2 completes the proof in this case. Now suppose that f is arbitrary. Since S_f is σ -finite, by repeated applications of Luzin's theorem [2, p. 335], it follows that S_f may be written, up to a μ -null set, as the disjoint union of a sequence $\{K_m\}$ of compact subsets of S of positive measure such that f restricted to each K_m is continuous and never zero. Let K be one of these sets and let μ_K denote μ restricted to K. Since f is a strongly extreme point of the unit ball of $L^p(\mu, X)$, it follows that $f_K \equiv \|f\chi_K\|_p^{-1}f|_K$ is a strongly extreme point of the unit ball of $L^p(\mu_K, X)$; for, if $\{h_n\}$ is a sequence in $L^p(\mu_K, X)$ such that $\|f_K \pm h_n\|_p \to 1$, then, after extending each h_n to be zero on $S\setminus K$, it follows, by direct computation, that $\|f \pm \|f\chi_K\|_p h_n\|_p \to 1$ and hence $\|f\chi_K\|_p h_n \to 0$ in $L^p(\mu, X)$ and so $h_n \to 0$ in $L^p(\mu_K, X)$. By applying the first case to f_K in $L^p(\mu_K, X)$, it follows that, for almost all s in K, the element $f_K(s)/\|f_K(s)\| = f(s)/\|f(s)\|$ is a strongly extreme point of the unit ball of X. This completes the proof.

REFERENCES

- 1. R. G. Bartle, The Elements of Integration, Wiley & Sons, New York, 1966.
- 2. N. Dinculeanu, *Vector Measures*, Pure and Applied Math., vol. 95, Pergamon Press, Oxford, 1967.
- 3. N. Dunford and J. T. Schwartz, *Linear Operators*, *Part I*, Interscience, New York, 1958.
- **4.** P. Greim, An extremal vector-valued L^p-function taking no extremal vectors as values, Proc. Amer. Math. Soc. **84** (1982), 65–68.
- 5. ——, Strongly exposed points in Bochner L^{b} -spaces, Proc. Amer. Math. Soc. 88 (1983), 81–84.
- 6. J. A. Johnson, Extreme measurable selections, Proc. Amer. Math. Soc. 44 (1974), 107-112.
- 7. ——, Strongly exposed points in $L^{b}(\mu, E)$, Rocky Mountain J. Math. 10 (1980), 517–519.
- 8. K. Sundaresan, Extreme points of the unit cell in Lebesgue-Bochner function spaces, Colloq. Math. 22 (1970), 111-119.

MIAMI UNIVERSITY, OXFORD, OH 45056