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SOME SUBORDINATION RELATIONS
T. BASGOZE AND F. R. KEOGH

ABSTRACT. If P,(z) = Di,aiz*, ay = 1, Pyo1(2) = Pu(2) + @pirz™,
and if P,,,(z) is univalent for |z| < 1, then P,(z/2) < P,..(2),
n = 1, and the constant 1/2 is best possible. If f(z) = Xi.a:2%,
a, = 1, is analytic and univalent for |z| <1, 5,(z) = Xi-.a:z*, then
$n(2/8) < s5.1(2/4) < f(2), n = 1 (and the constant 1/8 is best pos-
sible), and s,.,(z/8) < su(z/4) < f(2).

Let y denote the disc |z| < 1 and let S denote the class of functions
f(z)analytic and univalent in y and normalized by the conditions f(0) = 0,
S'(0) = 1. For a function g(z) analytic in , if g(0) = 0 and g(z) is sub-
ordinate to f(z), we write g(z) < f(z). Let P,(2) = X I,a,z%, a; = 1, and
let P,11(2) = Py(2) + aptiztl.

THEOREM 1. If P, 1(2) € S, then
M P(z[2) < Puu(z), nzl,

and the constant 1/2 is best possible.

The fact that the constant 1/2 is best possible is shown by the function
Py(z) = z + (1/2)z2€ S. We deduce Theorem 1 from the following more
precise form.

THEOREM 2. If P, 11(z) € S then
P”(Z/Z) < Pn+1(z)’ h = l’ 2’
P,,(a,,z) < Pn+l(z)’ n

where a,, is the root of the equation

artl _L<1‘“>2_0
n+l 4\1+a/

1\%
w

in the interval (0, 1). a, > 1/2 for all n = 3, a, increases with n and
lim, ,.a, = 1.
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To prove this theorem we require two well-known inequalities which
we state as lemmas.

LeEMMA 1. If f(2) € S, then, for all real 0,

|f(reto)| m, 0§I‘<1.

LEMMA 2. If Y 72 byz* € S, then |b,| < 1/n.

For Lemma 1 see, for example, [2]. Lemma 2 follows from the fact
that, with the given hypothesis, all the zeros of the derivative X;7_; kb,z+~1
lie outside 7.

PROOF OF THEOREM 2. With »n = 1, since |ap] < 1/2 by Lemma 2, for
|z] = 1 we have |z + ayz%| = 1 — |ap] = 1/2, which implies that (1/2)z <
z + ayz%

In the case n = 2, let A;, A, be the zeros of P5(z). Then P3(z) = 3a;
(z—2)(z — 29), [A] = 1, |A3l = 1, and for 0 < r < 1 and all real 4,

) [Py(re®)| 2 3 |as|(1 — r)2.

Let 4 now denote the image of y under the mapping w = Py(z/2), let D
denote the image of y under the mapping w = Pjs(z), and let d be the
distance of the boundary of 4 from the boundary of D. Then by (2),

G) dz j i min [Pi(re")] dr Z |a/2"
/

If a3 = O then the consequence Py(z/2) < Pg(z) is trivial. If a3 # O then
it follows from (3) and |as(z/2)3| < |as|/23.

Let

an+1 1 1l -« 2
m@ = -4 (15a)
Then 4,(0) = —1/4, h,(1) = 1/(n + 1), and h,(a) increases with a. It
follows that there is exactly one solution a = a, of the equation 4,(a) =
0. Also, since A,(a) is a decreasing function of » for fixed a(0 < a < 1),
it is clear that a, increases with »n and lim,_,., «, = 1. In the case n = 3,
let 4, D denote the images of 7 under the mappings w = P,4(a, z), w =
P,11(2), respectively, and let d be the distance of the boundary of 4 from
the boundary of D. Then by Lemma 1,

) iz j' min [Py (re?)| dr 2 T(i o )2.

By Lemma 2 we . have
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+1 oyt =_1-<1 _an>2
'an-f-l(anz)n ' < n + 1 4 1 + a, >

and the rest of the theorem now follows from (4).
The relation (1) of Theorem 1 results from the fact that «, > 1/2,n = 3.
THEOREM 3. If P,(z) € S and |a,4| < 2/9, then P,.1(z/2) < P,(z),n = 1.

v

PrOOF. The case n = 1 is trivial. By an argument similar to that used in
the proof of Theorem 2 for the case n = 3, it is sufficient to note that,
forn = 2,

l@,411/271 < la,4]/8 = 1/36.

We remark that we have not attempted to prove a more precise form
of this result, but it is clear that for a conclusion of the form P,.;(8z) <
P,(z) some restriction on the size of |a,.;| is necessary.

Our last theorem indicates a reciprocal subordination relation between
the successive partial sums of the Taylor series of a univalent function.

THEOREM 4. If f(z) = XL2aa,zk € S and 5,(z) = 27—, a,z%, then
&) 5x(2/8) < 5,11(2/4) < f(2),
© s»+1(2/8) < 5,(2/4) < f(2),
for n = 1. The constants 1/4 in (6) and 1/8 in (5) are best possible.

ProOF. It is known that if f(z) € S, then s,(z/4) is univalent [4], 5,(z/4) <
f(z) for all n and the constant 1/4 is sharp. [3] Statement (5) now follows
from Theorem 1. The case f(z) = z(1 — z)™%, n = 1, shows that the
constant 1/8 cannot be increased. To prove (6), we note first that, since
lagl £ 2 (see, for example, [2]), |sx(z/8)] = 5/32 < 1/4 in y. Next, by
Theorem 3, for n = 2, it is sufficient to show that

(7 la,11/4" = 2/9.

For n = 2 and 3, (7) follows from the inequalities |as| < 3 (see, for ex-
ample, [2]), |ay) < 4 (see, for example, [1]). Finally, by Lemma 2, since
45,.1(z/4) € S, (7) for the case n = 4 follows from the inequality 4|a,4|/
4t < 1/(n + 1).
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