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1. Introduction. The de la Vallée-Poussin means of a series J^an are 
defined by 

The Euler-Knopp means En(x) of £#„ are defined for 0 < x ^ 1 by 

(1.2) En(x) = £ L H W O - x)H-J«k, 0 < x < 1; En(\) = ]£ak. 

The series J^an is said to be F-summable if the sequence {Vn} converges 
and £(.x;)-summable if {En(x)} converges for a given x e (0, 1). The E(x), 
V, and (C, X) methods belong to a general class of summability methods 
defined by T. H. Gronwall [2]. These methods involve an identity of the 
form 

OO OO f \ Y\ 

(1.3) (1 - w)-*-i £ an[f(w)Y = E ( n n ) Unw». 
n=Q n=0\ n / 

(Gronwall's definition is slightly more general.) The function/(w) in (1.3) 
is assumed to be analytic and univalent in \w\ < 1 with /(0) = 0, f{\) = 1. 
Near w = 1 the inverse function w = f~l(z) is assumed to have the form 

w = 1 - (1 - zy(b0 + bxz + •••) 

with ji ^ 1 and b0 > 0. 
When X = 0 in (1.3) and/(w) is replaced by 

(1.4) M w ) ^ T Z ^ - ^ , 0 < x ^ l , 

then Un = En(x). When A = — 1/2 in (1.3) and/(w) is replaced by 

0.5) / 2 W - T , ,i ^ 2 
1 - (1 - W)V* 
1 + (1 - W)l 

then t/n = Kw. When f(wj^= w in (1.3), then, as is well known, Un = 
an{X), the (C, X) mean of 2 a „ \ 
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For a given sequence gn we will write Agn = gn — gn_i, n = 0, 1, 
2, . . . ; g_i — 0. The series J^an is said to be summable |K|, |Zs(;c)|, or 
|(C, A)| respectively if S | J F J < oo, H\AEn(x)\ < oo, or Z\àanQ)\< oo. 
It follows from a fundamental theorem of Gronwall (see Theorem 1 in 
[1] for a corrected version) that (C, A) summability with X ^ 0 implies F 
summability and that is(x) summability with (\/~7 — l)/\/~2~ < * ^ 1 
implies F summability. B. Kwee [5] proved that |(C, X)\ summability 
with X ^ 0 implies | V | summability. Here we will prove the following 
corresponding result for \E(x)\ and | V\. 

THEOREM. 7f%\JEn(x)\ < oo and(VT - 0 / V T < x g 1, then£\AVn\ 
< 00. 

2. Preliminaries. It is known [4] that in order for a series-to-series 
transformation tn = 2 *<*»*** t 0 be such that %\xk\ < oo implies £|fw| 
< oo, it is necessary and sufficient that 

(2.1) sup 2la«*l < °o-
k n 

The proof of the theorem stated in the introduction depends on determin
ing ank such that 

(2.2) AVn = ±ankAEk{x), 

and then showing that the ank satisfy (2.1). The explicit representations 
(1.1) and (1.2) for Vn and En(x) will not be used. Instead we will use the 
relations of the form (1.3) satisfied by {Vn} and {En(x)}. This section 
will be devoted to proving the following preliminary result. 

LEMMA. Define Bnk = Bnk(x) by 

OO 

(2.3) £ BnkWn = w(l - (1 - HO1'2)*"1 [1 + (2x - 1)(1 - wy/2]~k~K 

Then the ank in (2.2) are given by ank = kxBnk/n(n~y2). 

PROOF. First, we will develop some formulas for AUn(Un as defined in 
(1.3)) and then specialize to Vn and En{x). Define bnk for n, k = 0, 1, 
2, . . . by 

oo 

(2.4) (1 - w)-^[f(w)Y = E KkW, k = 0, 1, 2, . . . 
n=k 

and bnk = 0,n < k. From (2.4) and (1.3) we find 

(2.5) (w J *) Un = ±bnkak, n = 0, 1, 2, . . . . 



SUMMABILITY 

Now for n = 1, 2, . . . , we have after a minor computation 

(2.6) n(" J A) JU„ = J>Z>„* - (it + X)bn^k]ak. 

If ̂  ^ 0, then define ynk by 

Tnk = «*«* - (« + A)6„-i, *; « = 1 , 2 , ..., k = 0, 1, 2, 

Then from (2.4) follows 

(2.7) S u^"-x = *0 - *)-* [Aw)]*"1 / » , A: = 1,2, . . . . 

In particular, for V summability with 1 = —1/2 and f(w) = /i(w) 
obtain 

(2.8) *(* - 1 /2) JFM = g r „ A , » = 1, 2 

oo 

V Tnkw*-i = fc(l - (1 - w)^)*-! (1 + (1 - w)1'2)-*"1, 
(2.9) «=* 

* = 1,2, . . . . 

When X = 0 in (2.6), setting ßnk = bnk — bn-itk yields 

(2.10) 4Un = £ ßnkak, n = 0, 1,2, . . . , 

oo 

(2.11) 2 /3„*w = [f(w)]\ k = 1,2,.. . . 
n=k 

Consequently, we have for the Euler-Knopp case 

(2.12) AEn{x) = 2 ft**,, /i = 0, 1, 2, . . . 

oo 

(2.13) S A*w" = (*w)*[l - (1 - *)*]-*, A: = 0, 1,2, . . . . 

Equations (2.12) and (2. 13) can be inverted to give 

(2.14) an = 2 £MÄJ£*(x), /z = 0, 1, 2, . . . , 
£=0 

(2.15) 2 ^ w = w*[x + (1 - x)w]-*9 k = 0, 1, 2, 

From (2.8) and (2.14) it follows that 
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(2.16) n(" n
l,2)jVn = tcnkJEk(xl 

where Cnk = J^}=k TnjSjk. A computation using (2.9) and (2.15) shows that 
oo 

2 Cnkw» = kxw(l - (1 - w)1/2)*-![l 4- (2JC - 1)(1 - w)i/2]-*-i, 
n=k 

so that Cnk = kxBnk and the lemma is proved. 

3. Proof of the theorem. It is known [4] that if 0 < xi < x2 ^ 1, then 
\E(x2)\ summability implies |£(xi)| summability. Also, n(n~l

n
n) ~ (nJ7z)l/2, 

so that it suffices to prove that if (^/~2 — 1)/ v/"2"< x < 1/2, then 
oo 

(3.1) supk^n-^\B„k\<oo. 
k n=k 

To show that (3.1) holds we will write Bnk as a contour integral and then 
estimate the integral. Write t = 1 — 2x and set 

g(w) = (1 - (1 - w)1'2) (1 - t(\ - w)i/2)-i, h(w) = (1 - f(l - w)i/2)"2. 

We take the branch of(l — w)l/2 that equals 1 when w = 0. From the 
lemma, for a suitable contour C„, 

(3.2) Bnk = ̂ - J c [g(w)]*-1 A(w)w» <Av 

The contour Cn will be constructed using the mapping properties of g(w). 
Note first that g(w) is univalent in |w| < 1 and that g(l) = 1. Next 

observe that a fractional linear transformation <f>(z) = (1 — z)/(l — tz) 
with f < 1 satisfies \<f>(z)\ < 1 if and only if |z - (1 4- t)~l\ < (1 + 0"1-
Since g(w) = ^((1 — w)1/2), we have that if t < 1 and if (1 — w)1/2 lies in 
the disc Ct: \w - (1 + 0_1l < 0 + 0 _ 1 , then |g(w)| < 1. Simple geo
metric considerations show that (1 — w)1/2 lies in Ct for \w\ < 1 if 
(-v/T - l ) / v T < * < 1/2. Hence, |g(w)| < 1 for |w| < 1 a n d ( V T - 1)/ 
V T < x < 1/2. Indeed, for these values of x, \g(w)\ < 1 for |w| ^ 1, 
w 7̂  1. Write z = g(w). The inverse function w = g~l(z) satisfies 
arg(l — w) = 2arg(l — z) + o(l) as w -» 1. Thus, near z = 1 the image 
of |w| < 1 by g(w) is contained in the sector z = 1 + p&t, p > 0, 3^/4 
< ^ < 5^/4. 

The mapping properties discussed above allow us to choose ß e (0, TZT/2) 

and R1e(0, 1), so that \g(w)\ < 1 for w in the sector w = 1 + p'<?0, 
0 < p ̂  Ri, ß < 0 < 2x — ß. Also we may choose i?2 > 1 satisfying the 
following three conditions. 

1) Noting that g(w) has a singularity in ( - oo, - 1); we choose R2 so that 
this singularity lies outside of |w| = R2. 
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2) Choose R2 so that \g(w)\ < 1 for \w\ ^ R2 and |1 - w\ ^ Rv 

3) We require that \w\ = R2 intersect the ray w = 1 + pe*ß at a point 
w0 = 1 4- po^ with Po < ^ i . 

Finally we choose R3 = R3(n) < minO^, rr2) such that |1 - w\ g R3 

is interior to |H>| ^ 7£2- Now define the closed contour Cn = r1 U r2 U 
A U A where A is the circular arc |w| = R2 exterior to the sector w = 
1 4- peid, p > 0, - ß < 0 < ß, r2 is the circular arc w = 1 4- R3e

id, ß < 0 < 
lu: — ß9 A is the line segment w = l 4- pe*ß, R3 ^ p g p0, and A is the 
line segment w = l 4- pe -^, R3 S p S Po- Note that |g(w)| < 1 for 
w e Cn. Write 

/y =
 2lri L [g(w)]k~lh(w)W~ndWi 

then | £ J ^ \h\ + |/2| + I/3I + |/4|. Let A = sup{|A(w)|: w e CW,K = 
fc, /c 4- 1, . . . } . Then \h\ S AR2

n+1 and 
CO 

k L « - 1 / 2 | / i l = o(l)asifc-> 00. 

On r2 we have w = 1 4- ^ 3 ^ , R3 < n~2, so 

Since |1 4- R3e
ie\~n ^ (1 - rr2Yn = 0(1), we can conclude that 

CO 

* 2 > - 1 / 2 | / 2 | = o(l)asifc-> 00. 

Turning to 73, we have 
00 A mpQ co 

n=* ^ JO n=k 

There exists a constant 5 so that for 0 < p ^ p0 

0 0 

2] |1 + p(*ß\-*n-™ ^ B |1 + pe^|-V"1 / 2 , 
»=* 

and hence 

(3-3) £ \h\n~m è - 4 . - r ° |g(l + pe**)!*-1 II + pé^p-^dp. 
n—k ^ J 0 

Since w = l + pe*'ß on 7^, (1 - w)V2 = - / pl/2e^/2
9 and then we have 

|g(l 4- pe#)|*|l 4- p ^ h * =| l-f- itpV2 eW2\-* \\ - ip^2e^,2\-K 

Since l^(vv)!-1 is bounded on r3 uniformly in n, we have from(3.3) that for 
some constant Q, 
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(3.4) X\h\ir™ è ß f 0 ° e x p ( - TH<P))p-m<lp* 

where H(p) = log 11 + itpi'W
2\2 |1 - ipV2e^/2\2. We may then apply 

the Method of Laplace (c.f. [3], Theorem 7.1) to the integral in (3.4) and 
obtain 

Thus k 2£L* \h\n~V2 = 0(1). The integral 74 is handled in exactly the same 
way, and the proof of (3.1) is complete. 
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