A T_B SPACE WHICH IS NOT KATETOV T_B

WILLIAM G. FLEISSNER

In 1943, E. Hewitt [1] proved the beautiful theorem that a compact Hausdorff space is minimal Hausdorff and maximal compact. Restating this result in more detail, if (X, τ) is a compact Hausdorff space and (X, τ') and (X, τ'') are spaces $\tau' \subseteq \tau \subseteq \tau''$, then (X, τ') is not Hausdorff, and (X, τ'') is not compact. The converses to this theorem are appealing but false. There are noncompact minmal Hausdorff spaces [2] and non Hausdorff maximal compact spaces [2].

A compact space is maximal compact if every compact set is closed [3]. Let us call spaces in which all compact sets are closed T_B spaces, as this notion can be thought of as a separation axiom between T_1 and T_2 . They are also called KC spaces. R. Larson [4] asked whether a space is maximal compact iff it is minimal T_B . A related question is whether every T_B topology is Katetov T_B , that is whether every T_B topology contains a minimal T_B topology. The author wishes to thank Douglas Cameron for bringing these questions to his attention. In this paper we construct a T_B not Katetov T_B tpace.

The point set of all spaces in this paper will be the countable ordinals. To avoid ambiguity, we will refer to the first uncountable ordinal (and cardinal) as ω_1 , and to the point set of the spaces as Ω . A typical point of Ω will be x_{α} , where $\alpha < \omega_1$. The point set $\{x_{\beta} : \beta < \alpha\}$ will be called $P(\alpha)$, the predecessors of α ; and the point set $\{x_{\beta} : \beta > \alpha\}$ will be called $S(\alpha)$, the successors of α . The usual topology on Ω , generated by $\{P(\alpha) : \alpha < \omega_1\}$ $\cup \{S(\alpha) : \alpha < \omega_1\}$ will be called α . The cardinality of a set S will be denoted |S|.

LEMMA 1. If $\tau' \subset \tau$ and K is τ compact, K is τ' compact.

LEMMA 2. A compact T_B space is a minimal T_B space.

If $S \subset \Omega$, we denote the subspace of (Ω, τ) with point set S by $(S, \tau|S)$. Equivalently, $\tau|S = \{U \cap S \colon U \in \tau\}$. We say that τ , τ' agree on countable sets if for all $S \subset \Omega$ with $|S| \leq \omega$,

$$(S, \tau | S) = (S, \tau' | S).$$

Lemma 3. Suppose $\tau \subset \mathscr{A}$ and (Ω, τ) is T_B . Then τ, \mathscr{A} agree on countable sets.

Received by the editors on July 29, 1977.

LEMMA 4. If τ , α agree on countable sets, then for all α , $S(\alpha) \in \tau$.

LEMMA 5. Suppose (Ω, τ) and G satisfy

- i) $G \in \tau \subset \omega$,
- ii) τ , " agree on countable sets,
- iii) $|\Omega G| = \omega_1$,
- iv) $\forall x_{\alpha} \in (\Omega G) \exists G_{\alpha} \in \tau(x_{\alpha} \in G_{\alpha} \subset P(\alpha + 1) \cup G).$ Then (Ω, τ) is T_B .

PROOF. Suppose K is τ compact. By ii) it is sufficient to show that K is countable.

First, by considering the τ open cover $\{G\} \cup \{G_{\alpha} : x_{\alpha} \in Q - G\}$, we may conclude that $|K - G| < \omega_1$. Aiming for a contradiction, we assume $|K| = \omega_1$. With this assumption we can find $\{\alpha(i) : i \in \omega\}$, $\alpha = \sup\{\alpha(i) : i \in \omega\}$ so that $\{x_{\alpha(i)} : i \in \omega\} \subset K \cap G$, $x_{\alpha} \notin K \cup G$. Now $P(\alpha + 1)$ is \mathscr{C} closed, hence τ closed. Then $P(\alpha + 1) \cap K$ is τ compact. But $P(\alpha + 1) \cap K$ is not \mathscr{C} compact, and τ and ε agree on countable sets.

Let I be the set of isolated points of (Ω, α) . We define (Ω, α) , the space referred to in the title, by defining

$$\angle = \{U \in \mathscr{L}: (x_0 \notin U \text{ and } x_1 \notin U) \text{ or } |I - U| < \omega_1\}.$$

Clearly ℓ is a topology and $\ell \subset \omega$. And $\ell \neq \omega$ as $\{x_0\} \in \omega - \ell$. By Lemma 5, (Ω, ℓ) is T_B .

Henceforth let τ be a topology with $\tau \subset \ell$.

LEMMA 6. If (Ω, τ) is T_B then for all $\alpha < \omega_1$ there is $V_\alpha \in \tau$ satisfying $x_\alpha \in V_\alpha$ and $|\Omega - V_\alpha| = \omega_1$.

PROOF. Suppose not, that for some α , $x_{\alpha} \in V \in \tau$ implies $|Q - V| < \omega_1$. Let $y \in \{x_0, x_1\} - \{x_{\alpha}\}$. We aim for the contradiction that $Q - \{y\}$ is τ compact but not τ closed. From $\tau \subset \varepsilon$ and the definition of ε , $Q - \{y\}$ is not τ closed.

Let \mathscr{U} be a τ open cover of $\Omega - \{y\}$. Then there is $V \in \mathscr{U}$, $x_{\alpha} \in V \in \tau$. By hypothesis, $|\Omega - V| < \omega_1$, so there is a β with $\Omega - V \subset P(\beta + 1)$. Now $P(\beta + 1) - \{y\}$ is "compact, so by Lemma 1, there is $\mathscr{U}' \subset \mathscr{U}$, \mathscr{U}' a finite subcover of $P(\beta + 1) - \{y\}$. Then $\mathscr{U}' \cup \{V\}$ is a finite subcover of $\Omega - \{y\}$, establishing the contradiction that $\Omega - \{y\}$ is τ compact.

We assume (Q, τ) is T_B ; we aim towards constructing a coarser T_B topology.

For all $\alpha < \omega_1$, let V_{α} be as asserted in Lemma 6. We define

$$\varDelta = \{x_{\alpha} : x_{\alpha} \notin \bigcup_{\beta < \alpha} V_{\beta}\}$$

Note that $x_0 \in \Delta$. (By definition, if you like.)

Lemma 7. $\Omega - \Delta \in \tau$.

PROOF. If $x_{\alpha} \in Q - \Delta$, then there is $\beta < \alpha$ such that $x_{\alpha} \in V_{\beta}$. Since $\tau \subset \alpha$ and τ is T_B , by Lemmas 3 and 4, $S(\beta) \in \tau$. Thus $x_{\alpha} \in V_{\beta} \cap S(\beta) \subset Q - \Delta$, $V_{\beta} \cap S(\beta) \in \tau$.

Lemma 8. $|\Delta| = \omega_1$.

PROOF. By definition $\alpha < \omega_1$ means that there is a map f_α from ω onto $\{\beta \colon \beta < \alpha\}$. Let g and h be maps from $\omega - \{0\}$ to ω such that g(i) < i, and for all $(m, n) \in \omega \times \omega$ there are infinitely many $i \in \omega$ such that (g(i), h(i)) = (m, n).

Let $\alpha(0) < \omega_1$ be arbitrary. We will establish Lemma 8 by finding $\alpha > \alpha(0)$ with $x_{\alpha} \in \Delta$.

For i>0, we may choose, by our assumption on V_{α} , $\alpha(i)>\alpha(i-1)$ such that $x_{\alpha(i)}\in \Omega-V_{f_{\alpha(g(i))}(h(i))}$. Let $\alpha=\sup\{\alpha(i)\colon i\in\omega\}$; we claim $x_{\alpha}\in \Delta$. For let $\beta<\alpha$. Then $\beta<\alpha(j)$ for some $j\in\omega$, and so $\beta=f_{\alpha(j)}(k)$ for some $k<\omega$. Now g(i)=j, h(i)=k implies $x_{\alpha(i)}\in\Omega-V_{\beta}$, a closed set. By our choice of g and g, g = $\sup\{\alpha(i)\colon g(i)=j, h(i)=k\}$, so g = g

Now we define I' to be the set of isolated points of $(\Delta, \tau | \Delta)$. That is, $I' = \{x_{\alpha} : U \in \tau, U \cap \Delta = \{x_{\alpha}\}\}.$

Lemma 9. $|I'| = \omega_1$.

PROOF. Let $\alpha < \omega_1$. Let $\beta = \inf\{\gamma : x_{\gamma} \in \Delta, \ \gamma > \alpha\}$. Then $\Delta \cap V_{\beta} \cap S(\alpha) = \{x_{\beta}\}$.

Finally, we define a T_B topology coarser than τ . Set $\tau' = \{U \in \tau : (x_0 \notin U) \text{ or } |I' - U| < \omega_1\}.$

Clearly τ' is a topology and $\tau' \subset \tau$. By Lemma 3 τ , ω agree on countable sets, and by definition τ' , τ agree on countable sets. Also, $\tau' \neq \tau$ because $V_0 \in \tau - \tau'$. (Ω, τ') is T_B by Lemma 5, setting $G = (\Omega - \Delta) \cup I'$, and $G_\alpha = V_\alpha - \{x_0\}$.

BIBLIOGRAPHY

- 1. E. Hewitt, A problem of set theoretic topology, Duke Math. J. 10 (1943), 309–333.
- 2. Smythe N. and C.A. Wilkens, *Minimal Hausdorff and maximal compact spaces*, J. Austral. Math. Soc. 3 (1963), 167–177.
- 3. A. Ramanathan, *Minimal bicompact spaces*, J. Indian Math. Soc., 19 (1948), 40-46.
- **4.** R. Larson, *Complementary topological properties*, Notices AMS, **20** (1973), 176 (Abstract #701–54–25).

Institute for Medicine and Mathematics, Ohio University, Athens, Ohio 45701