COMPOSITION OPERATORS ON A SPACE OF LIPSCHITZ FUNCTIONS

RAYMOND C. ROAN

ABSTRACT. For $0<\alpha\le 1$, let $\mathrm{Lip}(\alpha)$ denote the space of functions f which are analytic on the open unit disk, continuous on the closed unit disk, and whose boundary values satisfy a Lipschitz condition of order $\alpha:|f(z)-f(w)|\le K|z-w|^{\alpha}$, for |z|=|w|=1. For $0<\alpha<1$, let $\mathrm{lip}(\alpha)$ denote the space of functions f in $\mathrm{Lip}(\alpha)$ such that $|f(z)-f(w)|=o(|z-w|^{\alpha})$, as $w\to z$, |z|=|w|=1. We prove that a function φ in $\mathrm{Lip}(\alpha)$ (resp., $\mathrm{lip}(\alpha)$), with $|\varphi(z)|\le 1$ for $|z|\le 1$, induces a composition operator on $\mathrm{Lip}(\alpha)$ (resp., $\mathrm{lip}(\alpha)$) if and only if there exists a finite number M and a number r<1 such that $|\varphi(z)|\ge r$ implies $|\varphi'(z)|\le M$. We also prove that a composition operator C_{φ} on either $\mathrm{Lip}(\alpha)$ or $\mathrm{lip}(\alpha)$ is compact if and only if for each $\epsilon>0$ there exists an r<1 such that $|\varphi(z)|\ge r$ implies $|\varphi'(z)|\le \epsilon$.

1. Introduction. We shall denote the unit disk $\{|z| < 1\}$ by U. For $0 < \alpha \le 1$, we let $\text{Lip}(\alpha)$ denote the space of functions f which are analytic in U, continuous on U⁻ (the closure of U), and whose boundary values satisfy a Lipschitz condition of order α :

$$\frac{|f(z) - f(w)|}{|z - w|^{\alpha}} = o(1), \qquad |z| = |w| = 1.$$

For $0 < \alpha < 1$, we let $lip(\alpha)$ denote those functions f in $Lip(\alpha)$ for which

$$\frac{|f(z) - f(w)|}{|z - w|^{\alpha}} = o(1) \quad \text{as } w \to z, \ |z| = |w| = 1.$$

Each of the spaces $Lip(\alpha)$ and $lip(\alpha)$ is a Banach algebra when the norm of an element is defined as

$$||f||_{\alpha} = ||f||_{\infty} + \sup_{\substack{z+w \ |z|=|w|=1}} \frac{|f(z)-f(w)|}{|z-w|^{\alpha}},$$

where $||f||_{\infty} = \sup |f(z)| \ (|z| < 1)$.

Received by the editors on October 31, 1977, and in revised form on February 22,

 $AMS\ (MOS)$ Subject Classification (1970). Primary 46E15, 46J15; Secondary 30A98, 47B05.

We say that a function $\varphi: U \to U$ induces the composition operator C_{∞} on $Lip(\alpha)$ (respectively, $lip(\alpha)$) if

$$C_{\varphi}(f) = f \circ \varphi$$

is in $Lip(\alpha)$ (resp. $lip(\alpha)$) for every function f in $Lip(\alpha)$ (resp. $lip(\alpha)$). We shall characterize those functions which induce composition operators on both $Lip(\alpha)$ and $lip(\alpha)$. We shall also characterize those functions which induce compact composition operators on both $Lip(\alpha)$ and $lip(\alpha)$. Both characterizations will follow from the estimates proved in Theorems 1 and 2.

- 2. Main Theorems. Theorem 1. Suppose $0 < \alpha \le 1$, φ and $f_n(n = 1,$ 2, 3, \cdots) are functions in $\text{Lip}(\alpha)$, $\|\varphi\|_{\infty} \leq 1$, and there exist finite positive numbers K_1 , K_2 , M, and r (with r < 1), such that the following conditions are satisfied:
 - (a) $|\varphi(z)| \ge r \text{ implies } |\varphi'(z)| \le M$
 - (b) $||f_n||_{\alpha} \leq K_1 \text{ and } ||f_n||_{\infty} \leq K_2, \text{ for } n = 1, 2, 3, \cdots$ (c) $|z| \leq r \text{ implies } |f_n'(z)| \leq M^{\alpha}.$

Then, for $K = 2K_1 + ||\varphi||_{\alpha}$

$$||f_n \circ \varphi||_{\alpha} < K_2 + KM^{\alpha}$$

PROOF. Let α , φ , $\{f_n\}$, K_1 , K_2 , M, and r be as in the statement of the theorem.

Let |z| = |w| = 1, $z \neq w$; and let L be the line segment joining z and w. If $|\varphi(z)| \le r$, let $z_1 = z$; similarly, if $|\varphi(w)| \le r$, let $w_1 = w$. Otherwise, let z_1 (respectively, w_1) be the point of L closest to z (resp., w) such that $|\varphi(z_1)| \le r$ (resp., $|\varphi(w_1)| \le r$). Such values z_1 and w_1 can be uniquely determined by minimizing the continuous function $d_z(\zeta) =$ $|z-\zeta|$ (resp., $d_w(\zeta) = |w-\zeta|$) on the compact set $L \cap \varphi^{-1}(\zeta) |\zeta| \leq r$. We can assume, with no loss of generality, that $z_1 \neq z$ and $w_1 \neq w$.

By our choice of z_1 and w_1 , we see that

$$|z-w|^{-\alpha} \le \min\{|z-z_1|^{-\alpha}, |z_1-w_1|^{-\alpha}, |w_1-w|^{-\alpha}\}.$$

Consequently,

$$\begin{split} \frac{|f_n(\varphi(z)) - f_n(\varphi(w))|}{|z - w|^{\alpha}} & \leq \frac{|f_n(\varphi(z)) - f_n(\varphi(z_1))|}{|z - z_1|^{\alpha}} \\ + & \frac{|f_n(\varphi(z_1)) - f_n(\varphi(w_1))|}{|z_1 - w_1|^{\alpha}} + \frac{|f_n(\varphi(w_1)) - f_n(\varphi(w))|}{|w_1 - w|^{\alpha}} \end{split}$$

We shall estimate each term separately.

We have used the fact that if $\zeta = \lambda z_1 + (1 - \lambda)z$, $0 \le \lambda \le 1$, then $|\varphi(\zeta)| \ge r$, so $|\varphi'(\zeta)| \le M$ (by (a)).

Similarly,

$$\frac{|f_n(\varphi(w_1)) - f_n(\varphi(w))|}{|w_1 - w|^{\alpha}} \leq K_1 M^{\alpha}.$$

Finally,

$$\begin{split} & \frac{|f_n(\varphi(z_1)) - f_n(\varphi(w_1))|}{|z_1 - w_1|^{\alpha}} \\ & = \frac{|f_n(\varphi(z_1)) - f_n(\varphi(w_1))|}{|\varphi(z_1) - \varphi(w_1)|} \frac{|\varphi(z_1) - \varphi(w_1)|}{|z_1 - w_1|^{\alpha}} \\ & \leq ||\varphi||_{\alpha} |\varphi(z_1) - \varphi(w_1)|^{-1} \int_{\varphi(z_1)}^{\varphi(w_1)} |f_n'(\zeta)| \, d\zeta \\ & \leq ||\varphi||_{\alpha} M^{\alpha}. \end{split}$$

We have used the fact that $|\varphi(z_1)| \leq r$ and $|\varphi(w_1)| \leq r$ implies that for $\zeta = \lambda \varphi(z_1) + (1 - \lambda)\varphi(w_1)$, $0 \leq \lambda \leq 1$, we have $|\zeta| \leq r$; so that $|f_n'(\zeta)| \leq M^{\alpha}$ (by (c)).

Combining these estimates, we see that

$$\frac{|f_n(\varphi(z)) - f_n(\varphi(w))|}{|z - w|^\alpha} \le (2K_1 + ||\varphi||_\alpha)M^\alpha.$$

Consequently, if $K = 2K_1 + ||\varphi||_{\alpha}$, then

$$||f_n \circ \varphi||_{\alpha} \leq K_2 + KM^{\alpha}.$$

Theorem 2. Suppose $0 < \alpha \le 1$ and φ is in $\operatorname{Lip}(\alpha)$, $||\varphi||_{\infty} \le 1$. Suppose $\{k_n\}$ is a sequence of positive numbers and there exists a sequence $\{z_n\}$ of points in U such that $|\varphi(z_n) - \zeta| < 1/n$ for some ζ with $|\zeta| = 1$ and $|\varphi'(z_n)| > k_n$ for $n = 1, 2, 3, \cdots$. Then, there exists a sequence of

functions $\{f_n\}$ in $Lip(\alpha)$ and a constant $K < \infty$ such that

- (a) $\{||f_n||_{\alpha}\}$ is bounded in n
- (b) $f_n(z) \rightarrow 0$ uniformly on U⁻
- (c) $||f_n \circ \varphi||_{\alpha} > K(k_n)^{\alpha}$ for $n = 1, 2, 3, \cdots$

In addition, for $0 < \alpha < 1$, we can choose the functions f_n , $n = 1, 2, 3, \dots$, to be in $lip(\alpha)$.

PROOF. Without loss of generality, we may assume that $\zeta = 1$. For $n = 1, 2, 3, \cdots$, let

$$f_n(z) = n^{-\alpha}(z + 1 - \varphi(z_n))^n$$

(a) Fix n and let $a = 1 - \varphi(z_n)$. If |z| = |w| = 1, $z \neq w$, then

(1)
$$\frac{|f_{n}(z) - f_{n}(w)|}{|z - w|^{\alpha}} = \frac{|(z + a)^{n} - (w + a)^{n}|}{n^{\alpha}|z - w|^{\alpha}}$$

$$= \left\{ \frac{|(z + a)^{n} - (w + a)^{n}}{n|z - w|} \right\}_{=0}^{\alpha} |(z + a)^{n} - (w + a)^{n}|$$

We will estimate each factor separately. First,

$$\frac{|(z+a)^n - (w+a)^n|}{|n|z-w|} \leq \frac{1}{n} \sum_{k=0}^{n-1} \left| \frac{z+a}{w+a} \right|^k$$

$$\leq \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{n+1}{n-1} \right)^k$$

$$\leq \left(\frac{n+1}{n-1} \right)^{n-1}$$

$$\leq e^2.$$

We will make two estimates on the second factor, both of which will make use of the fact that $|z + a| \le 1 + (1/n)$ and $|w + a| \le 1 + (1/n)$.

(3)
$$|(z+a)^n - (w+a)^n| \le |z+a|^n + |w+a|^n \le 2\left(1 + \frac{1}{n}\right)^n \le 2e$$

$$|(z+a)^n - (w+a)^n| \le |z-w| \sum_{k=0}^{n-1} |z+a|^k |w+a|^{n-k}$$

$$\le ne|z-w|.$$

Also, for $|z| \leq 1$,

$$|f_n(z)| \le en^{-\alpha} \le e.$$

If we combine estimates (2) and (3) with (1) and (5), we see that

$$||f_n||_{\alpha} \le e + 2^{1-\alpha}e^{\alpha+1}$$
, for $n = 1, 2, 3, \dots$,

so $\{||f_n||_{\alpha}\}$ is bounded. Furthermore, if we combine estimates (2) and (4) with (1), we see that if $0 < \alpha < 1$, then each f_n is in $lip(\alpha)$.

- (b) The inequality (5) shows that $f_n(z) \to 0$ uniformly on U⁻.
- (c) We know that both φ and φ' are continuous on U. Therefore, for each $n=1, 2, 3, \cdots$, there exists a $\delta_n>0$ such that $|z_n|+\delta_n<1$ and $|z-z_n|<\delta_n$ implies that
 - (i) $|\varphi'(z)| > k_n$

(ii)
$$|\varphi(z)-\varphi(z_n)|<\frac{1}{n}$$
.

Fix n, and suppose $|z - z_n| < \delta_n$. Then

(6)
$$\frac{|f_{n}(\varphi(z)) - f_{n}(\varphi(z_{n}))|}{|z - z_{n}|^{\alpha}} = \left\{ \frac{|f_{n}(\varphi(z)) - f_{n}(\varphi(z_{n}))|}{|z - z_{n}|} \right\}^{\alpha} |f_{n}(\varphi(z)) - f_{n}(\varphi(z_{n}))|^{1-\alpha}.$$

From [4], there exists a ζ , $|\zeta - z_n| \leq |z - z_n| < \delta_n$, such that

$$f_n(\varphi(z)) - f_n(\varphi(z_n)) = (z - z_n) f_n'(\varphi(\zeta)) \varphi'(\zeta).$$

Consequently,

$$\left\{ \frac{|f_{n}(\varphi(z)) - f_{n}(\varphi(z_{n}))|}{|z - z_{n}|} \right\}^{\alpha} = \left\{ |f_{n}'(\varphi(\zeta))| |\varphi'(\zeta)| \right\}^{\alpha} \\
= \left\{ n^{1-\alpha} |1 - (\varphi(z_{n}) - \varphi(\zeta))|^{n-1} |\varphi'(\zeta)| \right\}^{\alpha} \\
> n^{\alpha(1-\alpha)} (k_{n})^{\alpha} \left| 1 - \frac{1}{n} \right|^{(n-1)\alpha} \\
> n^{\alpha(1-\alpha)} (k_{n})^{\alpha} e^{-\alpha}.$$

Similarly,

$$(8) |f_{n}(\varphi(z)) - f_{n}(\varphi(z_{n}))|^{1-\alpha}$$

$$= n^{\alpha(\alpha-1)}|(1 - \varphi(z_{n}) + \varphi(z))^{n} - 1|^{1-\alpha}$$

$$\geq n^{\alpha(\alpha-1)}|(1 - |1 - |\varphi(z_{n}) - \varphi(z)||^{n}|^{1-\alpha}$$

$$\geq n^{\alpha(\alpha-1)} \left| 1 - \left(1 - \frac{1}{n}\right)^{n} \right|^{1-\alpha}$$

$$\geq n^{\alpha(\alpha-1)} \left(1 - \frac{1}{e} \right)^{1-\alpha} .$$

Let $K = e^{-\alpha}(1 - 1/e)^{1-\alpha}$ and use the estimates from (7) and (8) in (6) to get

$$\frac{|f_n(\varphi(z)) - f_n(\varphi(z_n))|}{|z - z_n|^{\alpha}} > K(k_n)^{\alpha} \text{ for } n = 1, 2, 3, \cdots.$$

Hence, by Theorem 2.2 of [5],

$$||f_n \circ \varphi||_{\alpha} > K(k_n)^{\alpha}$$
, for $n = 1, 2, 3, \cdots$.

3. Applications. Observe that since the identity function is in $\text{Lip}(\alpha)$, if $\varphi: U \to U$ is to induce a composition operator on $\text{Lip}(\alpha)$, then φ must be in $\text{Lip}(\alpha)$. For $\alpha = 1$, this necessary condition is sufficient, as we shall see; but, for $0 < \alpha < 1$, it is not sufficient. For example, consider $\alpha = 1/2$. Define functions φ and f by

$$\varphi(z) = [(1-z)/2]^{1/2} - 1$$

$$f(z) = (1+z)^{1/2}.$$

A simple calculation shows that φ and f are in Lip(1/2) and that $||\varphi||_{\infty}=1$. However, $(f\circ\varphi)'(z)=c(1-z)^{-3/4}$, for some constant c. Consequently, $(f\circ\varphi)'(z)\neq O((1-|z|)^{-1/2})$, so $f\circ\varphi$ is not in Lip(1/2) (see [1], Theorem 5.1).

DEFINITION. A function $\varphi: U \to U$ is called a U-primary function if there exist numbers $M < \infty$ and r < 1 such that $|\varphi'(z)| \leq M$ whenever $|\varphi(z)| \geq r$.

Remark. Without loss of generality, we could require r = 1 - 1/M.

COROLLARY 1. Let $0 < \alpha \le 1$. A function φ in $Lip(\alpha)$ (resp., $lip(\alpha)$) induces a composition operator on $Lip(\alpha)$ (resp., $lip(\alpha)$) if and only if φ is a U-primary function.

PROOF. Let φ be in $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$), $0 < \alpha \le 1$, and suppose φ induces a composition operator on $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$). If φ is not a U-primary function, then for every $M=1,\ 2,\ 3,\ \cdots$ there exists a point z_M in U such that $|\varphi(z_M)| \ge 1 - 1/M$ and $|\varphi'(z_M)| > M$.

By choosing a subsequence, if necessary, we may assume that $|\varphi(z_{M}) - \zeta| < 1/M$ for some ζ with $|\zeta| = 1$. Let $k_{M} = M$, $M = 1, 2, 3, \dots$. By Theorem 2, there exists a uniformly bounded sequence $\{f_{M}\}$ in $\operatorname{lip}(\alpha) \subseteq \operatorname{Lip}(\alpha)$ and a constant K such that

$$||C_{\varphi}(f_{\mathbf{M}})||_{\alpha} > KM^{\alpha},$$

contradicting the continuity of C_{φ} (see Proposition 3 of [3]).

Conversely, suppose φ is a U-primary function in $\text{Lip}(\alpha)$ and f is in $\text{Lip}(\alpha)$. For $n = 1, 2, 3, \dots$, let $f_n = f$. By Theorem 1.

$$||f \circ \varphi||_{\alpha} < \infty$$

so $f \circ \varphi$ is in Lip(α). A simple continuity argument shows that if φ and f are in lip(α), $0 < \alpha < 1$, then $f \circ \varphi$ is actually in lip(α).

Notice that if φ' is in H^{∞} , the set of bounded analytic functions on U, and if $||\varphi||_{\infty} \leq 1$, then φ is a U-primary function. But

$$Lip(1) = \{h \mid h' \text{ is in } H^{\infty}\}\$$

(see Theorem 5.1 of [1]). Consequently, every Lip(1) function which maps U into itself induces a composition operator on Lip(1).

An operator L on a Banach space \mathscr{B} is said to be *compact* if every bounded sequence $\{x_n\}$ in \mathscr{B} contains a subsequence $\{x_{n_k}\}$ such that $\{Lx_{n_k}\}$ converges to a point of \mathscr{B} .

Lemma. Let $0 < \alpha \le 1$. The operator $C_{\varphi} : \operatorname{Lip}(\alpha) \to \operatorname{Lip}(\alpha)$ is compact if and only if for each bounded sequence $\{f_n\}$ in $\operatorname{Lip}(\alpha)$ which converges to zero uniformly on U^- , we have $||C_{\varphi}f_n||_{\alpha} \to 0$ as $n \to \infty$.

Proof. Suppose that for each bounded sequence $\{f_n\}$ in $\operatorname{Lip}(\alpha)$ which converges to zero uniformly \mathbf{U}^- we have $||C_{q}f_n||_{\alpha} \to 0$ as $n \to \infty$; and suppose $\{f_n\}$ is a bounded sequence in $\operatorname{Lip}(\alpha)$. From the work of P. Duren, B. Romberg, and A. Shields ([2], Theorem 2), we know that $\operatorname{Lip}(\alpha)$ is equivalent to the dual of an H^p -space with $1/2 \leq p < 1$ $(p = (1 + \alpha)^{-1})$. By the Banach-Alaoglu Theorem ([6], Theorem 3.15), there exists a function f in $\operatorname{Lip}(\alpha)$ and a subsequence $\{f_n\}$ of $\{f_n\}$ such that $f_{n_k} \to f$ in the weak * topology on $\operatorname{Lip}(\alpha)$. With no loss of generality, we may assume that f = 0 and $f_n \to 0$ (weak *). Using Theorem 1 of [2] and the fact that $h_{\S}(z) = (1 - \S z)^{-1}$ is in H^p for $0 and <math>|\S| \leq 1$, one can show that evaluation at a point of \mathbf{U}^- is a weak * continuous linear functional on $\operatorname{Lip}(\alpha)$. Therefore, $f_n(z) \to 0$ for each z in \mathbf{U}^- . But the sequence $\{f_n\}$ is a normal family; hence, equicontinuous. By Ascoli's theorem, $f_n \to 0$ uniformly on \mathbf{U}^- . Our hypothesis then shows that $||C_{\alpha}f_n||_{\alpha} \to 0$; hence, C_{α} is compact.

The proof of the converse is easy and we omit it.

COROLLARY 2. Let $0 < \alpha \le 1$. The composition operator C_{φ} is compact on $\text{Lip}(\alpha)$ (resp., $\text{lip}(\alpha)$) if and only if for each $\epsilon > 0$ there exists an r < 1 such that $|\varphi'(z)| \le \epsilon$ whenever $|\varphi(z)| \ge r$.

Proof. Suppose $0 < \alpha \le 1$ and C_{φ} is compact on $\operatorname{Lip}(\alpha)$ (resp., $\operatorname{lip}(\alpha)$). Suppose there is an $\epsilon > 0$ such that for each $n = 1, 2, 3, \cdots$

378 R. C. ROAN

there exists a point z_n in U with $|\varphi(z_n)|>1-1/n$ and $|\varphi'(z_n)|>\epsilon$. With no loss of generality, we can assume that $|\varphi(z_n)-\zeta|<1/n$ for some ζ with $|\zeta|=1$. By Theorem 2 (with $k_n=\epsilon$), there exists a uniformly bounded sequence $\{f_n\}$ in $\operatorname{lip}(\alpha)\subseteq\operatorname{Lip}(\alpha)$ which converges to zero uniformly on U⁻ such that

$$||f_n \circ \varphi||_{\alpha} > K\epsilon^{\alpha} > 0 \text{ for } n = 1, 2, 2, \cdots$$

Thus $\{||f_n\circ \varphi||_\alpha\}$ is bounded away from zero, contrary to the compactness of $C_\omega.$

Conversely, suppose $\epsilon > 0$ and r < 1 is such that $|\varphi'(z)| \leq \epsilon$ whenever $|\varphi(z)| \geq r$. Suppose the sequence $\{f_n\}$ is bounded in $\mathrm{Lip}(\alpha)$ and converges to zero uniformly on U^- . Then $f_n' \to 0$ uniformly on compact subsets of U. In particular, there exists a number N so that $n \geq N$ implies

$$||f_n||_{\infty} \le \epsilon^{\alpha}$$
 and $\sup |f_n'(z)| < \epsilon^{\alpha}$ $(|z| \le r)$.

By Theorem 1, there exists a constant K (which is independent of n) such that

$$||C_{\omega}(f_n)||_{\alpha} \leq K\epsilon^{\alpha}.$$

Therefore, $||C_{\varphi}(f_n)||_{\alpha} \to 0$ and C_{φ} is compact on $\operatorname{Lip}(\alpha)$. Finally, $\operatorname{lip}(\alpha)$ is a closed subspace of $\operatorname{Lip}(\alpha)$, so C_{φ} is also compact on $\operatorname{lip}(\alpha)$, provided φ is in $\operatorname{lip}(\alpha)$.

REMARK 1. Although we did not use the full strength of either of Theorems 1 or 2 to prove Corollary 1, we did use the full strength of both to prove Corollary 2.

REMARK 2. One can easily verify the following lemma.

Lemma. The composition operator C_{φ} is compact on $\operatorname{Lip}(1)$ if and only if for each sequence $\{f_n\}$ in H^{∞} which is bounded and converges to zero uniformly on compact subsets of U we have $\lim_{n\to\infty} ||f_n(\varphi)\varphi'||_{\infty} = 0$.

Using this lemma, we obtain the following alternate proof of Corollary 2 for the special case $\alpha = 1$.

A simple estimate proves that if φ is in $\operatorname{Lip}(1)$, $\|\varphi\|_{\infty} \leq 1$, and for each $\epsilon > 0$ there exists an r < 1 such that $|\varphi'(z)| < \epsilon$ whenever $|\varphi(z)| > r$, then C_{φ} is compact on $\operatorname{Lip}(1)$. To prove the converse, suppose for $n = 1, 2, 3, \cdots$, there exists a point z_n in U such that $|\varphi'(z_n)| \geq \epsilon$ and $|1 - \varphi(z_n)| < 1/n$. Let $f_n(z) = [z + 1 - \varphi(z_n)]^n$; then the sequence $\{f_n\}$ is bounded in H^{∞} and converges to zero uniformly on compact subsets of U. However,

$$||f_n(\varphi)\varphi'||_{\infty} \ge |f_n(\varphi(z_n)\varphi'(z_n)| \ge \epsilon, n = 1, 2, 3, \cdots$$

so C_{∞} is not compact on Lip(1).

REFERENCES

- 1. P. Duren, The Theory of H^p Spaces, Academic Press, New York, 1970.
- 2. P. Duren, B. Romberg, and A. Shields, Linear Functionals on H^p spaces with 0 , J. Reine Angew. Math. 238 (1969) 32-60.
- 3. R. Roan, Composition Operators on the Space of Functions with H^p Derivative, Houston J. Math. 4 (1978) 423-438.
- 4. J. Robertson, A Local Mean Value Theorem for C, Edinburgh Math. Soc. Proc. 16 (1968–1969) 329–331.
- 5. L. A Rubel, A. L. Shields, B. A. Taylor, Mergelyan Sets and the Modulus of Conttinuity of Analytic Functions, J. of Approx. Theory 15 (1975), 23-40.
 - 6. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506