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POINCARÉ DUALITY AND POSTNIKOV FACTORS 
J. W. VICK 

With the advent of generalized homology and cohomology theories 
during the last decade there has been a natural movement toward 
recasting classical results from ordinary homology into these new 
theories. One of the earliest of the generalizations was the Poincaré 
duality theorem [ 10]. Perhaps the most interesting problem in this 
area has been the characterization of the class of orientable manifolds 
corresponding to each new theory ([6] , [7], [9] and [10]). For 
example a manifold is orientable for stable homotopy if it is stably 
parallelizable, for real K-theory if it admits a Spin structure and for 
complex K-theory if it admits a Spinc structure. 

In [7] Kan and Whitehead asked if it is possible to fill the gap 
between the Eilenberg-Mac Lane spectrum K(Z) (integral homology) 
and the sphere spectrum S (stable homotopy) with interesting spectra 
and corresponding classes of orientable manifolds. Using semi-
simplicial methods, they constructed a sequence of ring spectra for 
which orientability was characterized by the vanishing of certain 
higher order ordinary homology operations on the integral funda­
mental class. 

Our purpose here is to give an alternate, but related, solution to this 
problem and in the process to present an approach which should 
shed light on the orientability question in general. The basic tool 
is the Atiyah-Hirzebruch-Dold spectral sequence ([2]— [5] ). Starting 
with an axiomatic slant product, it is shown that a corresponding 
product is induced on the associated spectral sequences which satisfies 
a derivation property with respect to the differentials (§2). This allows 
us to proceed from ordinary Poincaré duality at the E2-stage to prove 
the generalized theorem at the E°°-stage. A natural result of this 
approach is that the Poincaré duality isomorphism is seen to be an 
isomorphism of filtered groups, under the natural CW filtrations (§3). 

This leads to the characterization of orientability as the requirement 
that the fundamental class at the £2-stage be a permanent cycle. 
Then one might ask if there are intermediate homology theories for 
which a manifold is orientable if and only if its ordinary fundamental 
class remains a cycle until the £fc-stage. This question is answered 
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affirmatively by exhibiting the relationship between the Postnikov 
factors of the homology theory [4] and the various stages of the 
spectral sequence. These results are summarized in a Poincaré duality 
theorem for Postnikov factors (§4). 

The Postnikov factors of stable homotopy are presented as a solu­
tion to the question of Kan and Whitehead (§5). One reason this alter­
nate solution is interesting is that orientability for the intermediate 
theories may be given a concise geometrical characterization. 
Results of Milnor and Spanier [8] show that a manifold is orientable 
for stable homotopy if and only if its stable normal sphere bundle 
is fibre homotopically trivial. These techniques may be applied to 
show that a manifold is orientable for a Postnikov factor if and only 
if the restriction of the stable normal sphere bundle to the correspond­
ing skeleton is fibre homotopically trivial. Finally, examples are given 
to show that these theories are nonvacuous (§6). 

Much appreciation is due Professor E. E. Floyd for originally sug­
gesting the spectral sequence approach and for many enlightening 
conversations. 

1. Preliminaries. Let h* be a generalized homology theory in the 
sense of Dold [5]. Thus h* satisfies excision in the sense that if A 
and B are subcomplexes of a finite CW complex X, the homomorphism 

i* : hJiB, BDA)-> h*(A U B, A) 

induced by inclusion is an isomorphism. A generalized cohomology 
theory is the contravariant analog. 

Given finite CW triples (C, X, A) and (Y, B, D), define a homomor­
phism 

D, : hn+1((C, X) X (Y, B)) -+ hn((X, A) X (Y, B)) 

by the composition i* - 1 ° d in 

hn+1(C X Y . C X B U X X Y ) ^ - hn(C X B U X X Y , C X B U A X Y ) 

M X X Y , X X B U A X Y ) 

where i* is an excision isomorphism. Similarly define 

D2 : hn((X, A) X (Y, B)) -» hn_y((X, A) X (B, D)). 
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Now suppose h*, h% and fc* are generalized theories. A slant 
product is a bilinear pairing 

/ : hr(X, A) ® fcn((X, A) X (Y, B)) -* Ä*_P(Y, B) 

defined for any finite CW pairs (X, A) and (Y, B) satisfying the follow­
ing axioms: given maps / : (X', A') —> (X, A) and g : ( Y ' , B ' ) - > 
(Y,B) and elements a G /i»(X, A), fo G kn((X', A') X (Y\ B')) and 
c £ U ( C , X ) X (Y,B))then 

( U ) f l / ( / X g ) * ( b ) = g*(/*(fl)/fc), 
(1.2) ôalc = alDx(c), 
(1.3) alD2(c)= ( - l ) "3 ( a / c ) , 

where d and ô are the ordinary boundary and cobounding operators 
of the respective triples. 

EXAMPLES, (i) There is the usual slant product in ordinary homology 
and cohomology induced by a pairing of the coefficient groups. 

(ii) If 7T* and 7T* are stable homotopy and cohomotopy theory, there 
is a slant product 

TT"(X, A) ® nn{{X, A) X (Y, B)) -* ,rn_p(Y, B). 

To see how this is defined, let a G TTP(X, A) be represented by a map 
a : Sfc A (X/A) -» Sfc+" and b G TTB((X, A) X (Y, B)) be represented 
by a map ß : Sk+n -* Sfc A (X/A) A (Y/B), where fc is large. Then 
alb G 7Tn_p(Y, B) is represented by the composition 

Sk+n £> S* A (X/A) A (Y/B) a A ^ Sfc+» A (Y/B). 

(iii) In the manner of Whitehead [10] any pairing of spectra 
gives rise to a slant product on the associated theories. (In fact, this 
is how examples (i) and (ii) both arise.) 

There is a standard spectral sequence discussed by Dold [5], 
Atiyah and Hirzebruch [2] and others which we now describe. In 
order to hold notational confusion to a minimum, we deal with single 
spaces rather than pairs. 

Denote by Xp the p-skeleton of a finite CW complex X and let h* 
be a generalized homology theory. 

Define E^q = hp+q(X
p
9 X»"1) and let dl : E^q - • E£_Uq be the 

boundary operator of the corresponding triple. In general the defini­
tions are given by 

Z'M= Image [hp+q(X», X"- ) -> ^ ( X ' . X ' - » ) ] , 

^ = Image [hv+q+l(X»+<-\ X") $» hp+q(X", X"~% 
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andE p q = Z£jBp*>q. The composition d ° ß^l given by 

hp+q(Xr>,Xr>-i) +-?- hp+q{XP9X*-<) -* fcp^X^X"-'-1) 

induces the differential dr : E^q —> E,J_r/?+,,_!« 
If dim X = n, there is filtration 

0 = / - l , m + l £ /o,m £ ' * ' £ Jn,m-n = hm(X) 

where 

/p,q = Image[^P+(?(X^ - • Äp+q(X)] and Jp,qIJp-hq+i « E;>q . 

Finally there is the identification [5] 

£ ^ * H p ( X ; ^ ( p t ) ) . 

An analogous spectral sequence may be defined converging to 
h*(X) for h* a generalized cohomology theory. Here we have E™ « 
Hp(X; hq(pt)) and if dim X = n, the filtration has the form 

0 = jrn + l ,q - l Ç jrn/jr Q ' ' 'C / ° ' n + « = hn+«(X) 

where 

/ "* = kernel [ / i ^ (X) -* hr+*(X?-1)] 

and 

Jp,qljp+i,q-i « Ej?,q. 

2. Products in the spectral sequence. Suppose that we have a slant 
product h* ® fc* -» h* in the sense of §1. Let X and Y be finite CW 
complexes and denote by {E£'q}, {E^q} and {E^q} the spectral 
sequences associated with h*(X), k*(X X Y) and h*(Y), respectively. 

Note that 

E } ; = U ( n Y ) ' , ( X X Y ) ' - i ) 

« S K+s((xp> *p _ 1) x (Yr-p
? Y - » - * ) ) 

V 

and let 

^ p : E\, -> fcr+s((X", X"-i) X (Y'-", Y-""1)) 

be projection onto the direct summand. Then there is a pairing 

/,:£?•*«> £},-»£»_,,,,-, 

given by 
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alib= alirp(b). 

Since for each n, Z%>qQ E$>q and Zn
TtSQ E\>sy there is a product 

induced by lY on these subgroups. In order to show that this gives a 
well-defined product on the En-terms, the following properties must 
be established: 

(i) ^ ^ Z ^ Ç Z v . 
(ii) B ^ / i Z ^ Ç g ? . ^ , 
(iii) Z r / i ß ? , s C ß ? . p , s . q . 
We will prove (i); the verification of (ii) and (iii) follows from similar 

arguments. Consider the subcomplexes of X X Y given by 

A = Xr X Y° U Xr~l X Y1 U • • • U X»+* X Y*-v-\ 

B = x» -^ - 1 X Y r-»- fc+1 U • • • U X" X Yr-", 

C = X""1 X T-P+I\J • . . U X ° X Yr and D = F f c " 1 x n 

N o t e t h a t A U B U C = (XX Y)r. Let 

y : ((X X Y)', (X X Y)'-*) -+ (A U D U C, A U B) 

be the inclusion map of pairs. There is also the inclusion 

€ : ((X"-*-*-1, X"-1) X (Y ' -P , Yr-"-*)) -> (A U D U C, A U B) 

which is an excision map. So define a homomorphism 

ß : fc,+f((X X Y)', (X X Y)'"*) -» fcr+s((X^fe-i, X"-i) X (Y'-", y'""-*)) 

byß=€ % - 1 oy s | e . 

Consider the diagram 

*r+,((-Vx y)',(.vx y)'-1) 

t \ 

\ ^ , J - / ^+«(.v*+*-i t 

hp**(Xp, Xp'1) ® u ^((\0, X*-l)x{Yr-P, Yr->-1)) 

xp~l) ® | ^((.v***-1. x^My-", y-*-1» 

< i d x g ) + 

hp*f(Xp+k'1, Xp~l) ® ! Ä._((.VP+4-1, Xp-l)x(Yr-p, Yr-p~k)) 

ß 

k((X x YY, (.V x YY~k) 

^ - M ( r - r P _ 1 ) 

K+s-p-P'-*- yr-'-1) 

/.' ^ (y r-^, Yr~p-k) 
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where the maps i, j and g are inclusions. It can be seen from the 
definition of ß that the middle loop commutes. Now if 
a G ^P+"(X"+fc-1, X"-1) and b G kr+s((X X Y)', (X X Y)'-k) then the 
functional properties of the slant product imply 

i*(a)lij*(b) = i*(a)Iwpj*(b) = al(iX id^j^b) 

= al (id Xg)*ß(b) = gtk(a Iß(b)). 

Thus (image of i*) lx (image of j*) Ç image g* or 

7P,q I yk C yk 

This proves (i). The proofs of (ii) and (iii) require only a slight modifi­
cation of the homomorphism ß and the diagram (2.1). Therefore, for 
each integer m > 1 there is induced a product 

(2.2) ln : E*« ® E * -+ E?_PtS_q. 

We now want to show that the product given in (2.2) satisfies a 
derivation formula with respect to the differentials. Let A G Ek'

q 

and B G Ek
r>s be represented by i*(a) and j*(b) respectively, where 

i* and j * are as in (2.1). Then from the diagram (2.1) we see that 
A lk B may be represented by 

i*(a)liU(b) = i*(a)/*„}&) = g*(o//8(b)). 

Then cf k(A lk B) may be represented by dx(a lß(b)) where 

di : A.+.-p.^Y'-", Y'""-*) -* Ä r+._p_,_1(Y'-'- fc, Y'-p-k-i). 

On the other hand, dk(A) lk B may be represented by 8(a) /x j*(b) = 
8(a) lirp+kjJib) where 

Ô : Ä"+"(X',+fc-1, X^-1) -> fe"+« + 1(Xp+fc, X^*" 1 ) . 

Similarly A /fc d
h(B) may be represented by 

i*(a)lld2(b) = i*(a)lnpd2(b), 

where 

ö2 : fcr+s((X X Y)', (X X Y)'"*) -* fer+s_!((X X Y)'-* (X X Y)-*- ' ) . 

By applying (1.1), (1.2) and (1.3) these three representatives may be 
rewritten as follows: 

(2.3) 9i(alß(b)) = (-l)»+«(alD2ß(b)), 

(2.4) ô(a) 17Tp+kj (fc) = alD^^b), 
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(2.5) i*(a) 17Tpd2(b) = a / (t X idk#pd2(b). 

Since the slant product is bilinear, it will be sufficient to determine 
the relationships among the three factors involving b. Define sub-
complexes of X X Y by 

A = Xr>+k X Y ' - P - * , C = X»+fc X yr-p-fc-i^ 

B = x ^ * " 1 X Yr-", D = X""1 X Yr"P. 

Duplicating the technique used to define ß, we construct a homo-
morphsim 

€ : kr+s((X X Y)', (X X Y)'-*) -» fcr+s(A U B, C U (A H B) U D) 

by composing a homomorphism induced by inclusion with the inverse 
of an excision isomorphism. 

Now consider the diagram 

a 2 * 
kr+s(A u ß . C u M n B)uD) < >

 kr^B' (/4 n ß ) u D) 

l i N . 
k S(A, c uM nß)) ^ v 

^ ^ ^ *r s - i ( A ^ ß . ( C u D ) n A n ß ) 

where ax and a2
 a r e inclusion maps and D 3 is defined in the same 

manner as Dx and D2, by composing a boundary operator with the 
inverse of an excision isomorphism. Note that both triangles commute 
and £*!* and a2s|s are monomorphisms onto direct summands. De­
noting by yx and y2 the corresponding projections, it follows that 
E>3 = Di7i + D2y2. 

A check of the definitions shows that yx ° e = 7rp+k ° j * and 
y2° e = ß. Finally, the homomorphism D3° e may be factored as 
the composition D 3 ° € = (i X id)* ° 7rp ° d2. Assembling these 
facts, we have 

(i X id^rfpda = Di^p+fej* + £>2j3 

which when applied to the representatives in (2.3), (2.4) and (2.5) 
establishes the derivation property 

(2.6) Alkdk(B)=dk(A)lkB+(-iy+idk(AlkB). 



490 J. W. VICK 

3. The Poincaré duality thorem. A slant product h* ® k%-± h* 
is a dual pairing of h* with h* via k* if there exists an element 
e G fco(pt) s u ch that the homomorphism hp(pt) —> /i_p(pt) given by 
taking x into x / e is an isomorphism for each p. 

For example let A be a ring spectrum and M a spectrum which is 
an A module (cf. [10]). Then H*( ; M) and H*( ; M) are dually 
paired via H%( ; A). In particular the sphere spectrum S is a ring 
spectrum and the element e G H0(pt; S) is represented by the identity 
map. Any spectrum M is a module over S. 

Now suppose h* <8> fc* —» h% is a dual pairing. Let M be a closed 
n-manifold carrying the structure of a finite CW complex. Suppose 
further that M is orientable for ordinary homology with coefficients 
in fc0(pt). If the spectral sequence (§1) for &%(M) is denoted by 
{Ê^q}, this means there is an ordinary fundamental class cr2 G 
Ê^o- We define M to be k^-orientable if a 2 is a permanent cycle. 

Since M is n-dimensional, the inclusion induces a homomorphism 

kn(M) -+kn(M
n,Mn-1) 

whose image is contained in É^0
 = Ên,o- So it may be interpreted 

as a homomorphism 

«D : kn(M) - * Hn(M; fc0(pt)). 

Then M is fc*-orientable if and only if a 2 is in the image of <I>. For 
example if fc* is stable homotopy theory, then 4> is the stable Hurewicz 
homomorphism and M is k*-orientable if and only if its integral funda­
mental class is stably spherical. 

So let M be fc*-orientable and fix a G kn(M) with <ï>(o") = a2; 
a will be called a k ̂ -fundamental class. Let A : M — » M X M be a 
skeletal approximation to the diagonal. Then the standard Poincaré 
duality theorem gives an isomorphism E2

p'q Ä Ë%_p_q defined by 
taking x into xl2 A%(a2). Note that A%(<72) must also be a permanent 
cycle by naturality. This fact and the derivation property (2.6) of the 
differentials make it possible to apply standard comparison techniques 
for spectral sequences and conclude 

(3.1) Slanting with A*(cr2) yields an isomorphism 

Eup'q « Ëk 

for all p and q and for 2 ^ k = <». 
Returning to the filtrations (§1) of the spectral sequences, 
(3.2) The homomorphism hk(M) —» hn_k(M) given by slanting with 

A*(a) sends Jp>k~p into Jn_p>_k+P. 
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To see this, define subcomplexes of M X M by 

A= MX Mn~k and 

B = Mk~l X Mn~k+l U Mk~2 X Mn~k+2 U • • • U M° X Mn. 

Note that there is an excision isomorphism 

a : kn((M, Mk~l) X (Mn~k)) 5 *n(A U B, B). 

Consider the diagram 

k (M)Mk ((M x M ) " ) ^ A (A U ß , B) 
n — n 

I 

bk{M, Mp~l)\®k {(M, Mp-l)xMn-p)-+h AMn-p) 
n n — K 

hk(M, Mp-ly ®k ((M, Mp-l)x M)-*b AM) 
•» * » — f t 

i 
i i f e (M)®MMxM) ^ > b AM) 

n n — K 

where the composition g ° / is A* and all the other homomorphisms 
are induced by inclusions. Then (3.2) follows by diagram chasing. 

By combining (3.1) and (3.2) we have 
(3.3) The homomorphism hk(M) —> hn_k(M) given by slanting with 

As|e(a) induces an isomorphism 

jp*-Pljp+U-p-i~Jn_P9_k+p / / B - p - l t - f c + p + 1 

Finally, the fact that jr»+i.*-»-i = 0 = JL1>n_fc+1 allows us to pro­
ceed inductively on the filtrations using (3.2) and (3.3) to complete 
the proof of the following duality theorem: 

(3.4) THEOREM. If h* ® k* -» h^ is a dual pairing and M is a closed 
n-manifold which is k%-orientable, then there is an isomorphism 
hk(M) « hn_k(M) given by taking x into xl A*(o*) where a G kn(M) 
is a fundamental class. Moreover, under the natural CW filtrations, 
this is an isomorphism of filtered groups. 

4. Postnikov factors. Recall that a closed n-manifold M is fc*-
orientable if there exists a fundamental class a 2 G 2,%$ = Ê%0 « 
Hn(M; k0(pt)) which is a permanent cycle. If it is only known that 
a 2 G 2™,o> does this mean that M is orientable in some inter­
mediate homology theory? That is, is there a sequence of homology 
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theories, proceeding from H*( ; k0(pt)) to fc*, associated with the 
successive stages of the spectral sequence in such a way that orien-
tability of M is characterized by whether or not or2 é %*%$? This 
question has been studied in a different context by Kan and White­
head [7] for the case k* = TT*, stable homotopy. The relationship 
with their results will be discussed in §5. 

The approach we use is due to Dold in [3] and [4] where it was 
used to study the decomposition of a cohomology theory. If h* is a 
homology theory and p and r are integers, then for any finite CW 
complex X define 

(4.1) hn^
+r\X) = Image [hn(X^n+r, Xp+n~l) - * /*n(X»+n+r+1, X»+n). 

Note that this group is naturally isomorphic to kernel d '/image d 
in the composition 

a 
hn+l(Xt>+n+r+l, Xv+n+r) -> hn(Xr>+n+r, X"+ n) 

(4.2) 
-> K^{X'+; x«"- ') , 

of course the groups will be zero unless r = 1. The groups may be 
defined similarly for any finite CW pair (X, A). 

(4.3) h^p>p+r] is a generalized homology theory. 
This follows without difficulty as in [4]. Note that if / : (X, A) —> 

(X ', A ' ) is a map of pairs, then / is homotopic to a skeletal map 
f : (X, A) —> (X', A') and we define f% to be j ^ . The only property 
which is not obvious is exactness and this may be established using 
the characterization in (4.2). 

The coefficient group of this homology theory is given by 

f hn(r>t) forp < — n e p + r, 

I u otherwise. 

In particular hn^~^\X, A) « Hn+p(X, A; h_p(pt)). 
To describe the relationship between these theories and the 

spectral sequence for/i%, let E%q be the spectral sequence (§1) for 
h%(X). There is a filtration 

0 = F0 Ç Fl C • • • Ç Fr = hn^p+r\X) 

where 

Fk = Image [hn(X
p+n+\ X^"" 1 ) -» hn(X*+n+r+\ X*+n)]. 

(4.4) In the notation above 
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FklFk-l ~ Zp$n+k,-p-klBp+n+k,-p-k' 

To prove this consider the following diagram 

h {Xp+n+k, Xp+n) 

h (Xp+n+k xp+n+k~l) N.1 

h AXp+n+r+l, Xp+n+k) 

h (X^+w+r+1, Xp+n) 

-> h (Xp+n+k, Xp+n~l) 

h (xp+n+k-\ Xp+n~1) 

in which FkIFk_i = image c/>(3/image c/>3 ° c/>2, and image fa = 
Zp+n+fc,-p-fc and image d2 = B£+*+!,_p_fc. 

Define ^P: image (^ —> image <£3/image fa ° fa as follows: if co = 
<t>i(x), set ty(o>) equal to the coset containing fa(x). Iffa(xf) = 0, then 
by exactness there exists a y with fa(y) = x'. But then fa(xf) = 
fa fa(y) is m the zero coset, so ^ is well defined. It is evident that *P 
is an epimorphism. By using the diagram, the kernel of ^ is easily 
seen to be the image of d2. This proves (4.4). 

The spectral sequence {p>rEk
Sft} for h^p*p+r\X) is a "truncated" 

version of the spectral sequence forhHc(X) in the following sense: 

(4.5) 

so that 

P,r7k = 

p - r B k
s , = 

nf 
ZT*" 
Bit 
Bgjp+r+l 

ift+ p^-k, 
ift+ p ê - k, 

ift+ p + r+ l^fc, 

if t + p + r + 1 g k, 

r>>*Z:>t = Z - ? - P and " B £ = B J J P + ' + 1 . 

In this sense, (4.4) says that 

FklFk-l ~ P/Ep+n+fc,-p-fe' 

In a similar fashion, for a cohomology theory h* there are the Post-
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nikov factors h*aq+r] which are also cohomology theories. For 
details see Dold ( [3], [4] ). 

In particular 

h«{q_hq](X, A) « H«+"(X, A; h-«(pt)). 

There are relations analogous to (4.4) and (4.5) between these theories 
and the spectral sequence for h*. 

Now if h* ® k* —» h% is a slant product, the techniques of §2 may 
be applied to show that there is induced a slant product 

(4.6) K,q+r] ®fc^" + ' ] ->h^-*-l.*+r-<,-l] 

for any integers p, q and r. If the original product is a dual pairing, 
the products in (4.6) will also be dual pairings whenever p < 0 ^ p 
+ r. Suppose then that this is the case and let M be a closed n-
manifold with ordinary fundamental class <j2 G Hn(M; fco(pt)) ~ 
£n,o ~ p'rE%,o- Suppose further that a2 remains a cycle until the 
kth stage, where k ^ max(p + r + 1, —p). Then since p,rZ*>0

 = 

Z ^ and p ' r ß * 0 =B£o r+1, we have that a2 is a permanent cycle 
in the spectral sequence {ork^p>p+r\M). Thus M is k^'P+^-orien table 
and the duality theorem (3.4) may be applied to the pairing (4.6). 
All of this is summarized in the following: 

(4.7) THEOREM. Let h* ® k* —» h* be a dual pairing and <72 G 
Hn(M; ko(pt)) ~ E%0 be an ordinary fundamental class. Then for 
p < 0 ^ p + r, (4.6) is a dual pairing. If <r2 ^ Z£o where k ^ 
max(p + r + 1, — p) then M is k^'f)+r]-orientable and there is an 
isomorphism 

of filtered groups for each integer m. 

5. The results of Kan and Whitehead. The motivating question 
behind the paper of Kan and Whitehead [7] was whether the gap be­
tween the Eilenberg-Mac Lane spectrum K(Z), for which orientability 
has its usual meaning, and the sphere spectrum S, for which a manifold 
is orientable if and only if it is stably parallelizable, could be filled 
by interesting spectra and corresponding classes of orientable mani­
folds. Using semisimplicial methods, they construct a sequence of ring 
spectra {Aj}°J=1 and maps 

(5.1) K(Z) = A, t i A2 t ? A3 ^ - • - * -S 

so that each <fo is a fibration of spectra whose fibre is an abelian 
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spectrum, i.e. a product of Eilenberg-Mac Lane spectra. Correspond­
ing to the spectrum A^ they construct a "universal normal" homology 
operation (a higher order operation) in ordinary homology and char­
acterize orientability of a manifold for A^ by the vanishing of this 
operation on the ordinary fundamental class. We will view the Ai 
as the topological realizations of the semisimplicial spectra defined 
in [7]. 

Let IT* denote stable homotopy a.ndir^p'p+r] the Postnikov factors in 
the manner of §4. 

(5.2) For any p < 0 and any finite CW complex X there is a natural 
isomorphism 

The basic reason for this is that the coefficient group 77-* (pt) is zero 
in negative dimensions. The proposition may be verified from the 
diagram 

77 , ( X n + 1, X") n AXp+n,Xp+n-1) 
n +1 n— I 

7Tn(Xn, X * + « ) > 7Tn{X, XP+n) > 7Tn(X, X") = 0 

n (Xn+1, X*+n) 
n 

y \ 
0 = 77 , (X , Xw + 1 ) 77 (Xw + 1, X*) = 0 

n + 1 n 

by constructing an isomorphism from 

n^°\X) = kernel a/image d" onto irn<* °°](X) = kernel d '. 

(5.3) For any homology theory h* and integers p and q there is a 
natural exact triangle 

\ / 

in which A has degree — 1. 
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The construction of A from the boundary operator and the verifica­
tion of (5.3) are easily obtained from the definition (4.1). 

Thus there exists a sequence of multiplicative homology theories 
and natural transformations 

(5.4) H»( ; Z) = *«<-1.«" t± ^,<-2.o] t 2 • • • «- „. 

such that each ^ is part of an exact triangle (5.3) in which the third 
homology theory is an ordinary homology theory, i.e. it has nonzero 
coefficient group in only one dimension. 

Now by [7, Appendix C] the mapping S —» \ is an n-equivalence. 
Hence the homomorphism on homology groups 

nm = H* ( ; S) -* Jf„( ; 4 . ) 

gives a natural transformation 

6 : / / * ( ; AJ -MT.J-».«» 

which is an isomorphism on the coefficient groups in dimensions 
0 g i < n. 

The technique used to construct the "universal normal" homology 
operation for A^ in [7] from the sequence (5.1) when applied to the 
sequence (5.4) yields the nth differential of the spectral sequence for 

A justification for this alternate approach is that orientability for the 
theories TT* (~n>°ì may be given a concise geometrical interpretation. 
It was shown by Milnor and Spanier [8] that a closed connected 
oriented smooth manifold M is 7r%-orientable if and only if the stable 
normal sphere bundle has the fibre homotopy type of a product bundle. 
We now want to generalize this result in terms of the Postnikov factors. 

Let Mn be a closed connected oriented smoothly triangulated n-
manifold, Mk the fc-skeleton of M. Then the collection of dual cells 
{Bi} gives a decomposition of M as a finite CW complex [11]. Denote 
the fc-skeleton of this dual structure by M*k. This cellular structure 
is particularly nice since the closure of an m-cell is an m-ball. Note 
then that the (n — k — l)-skeleton of M* is the union of the boundaries 
of the duals of /c-simplices in M. Thus passing to the second bary-
centric subdivision we have: 

(5.5) Let N be the regular neighborhood of the k-skeleton Mk, 
N° = N — dN. Then M — N° is a regular neighborhood ofM£~k~l. 
Note that both of these regular neighborhoods have boundary given 
bydN. 
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Suppose M is embedded smoothly in high dimensional euclidean 
space and let 17 be the normal bundle. Then 17 restricts to the 
normal bundle of N. We now have the result of Atiyah [1]. 

(5.6) The Thorn space of r) restricted to N, IV\ is the S-dual of 
NldN. 

The techniques of Atiyah for manifolds with boundary [1, (3.1) 
and (3.2)] may be incorporated in Milnor and Spaniens proof [8, 
Theorem 1] to yield 

(5.7) The normal sphere bundle of N has the fibre homotopy type 
of a product bundle if and only if there is an S-map a E {Sn, N} 
such that 

is an isomorphism. 
Note that the composition 

(N, dN) -X (M,M- N°) -4 (M,M$-k-ll 

where i is an excision map and j is given by retracting M — N° opto 
M%~k~l, will induce isomorphisms of homology groups. This implies 
the following corollary. 

(5.8) The restriction of the stable normal sphere bundle to the 
k-skeleton of M has the fibre homotopy type of a product bundle if 
and only if there is an S-map y such that 

ym : H„(S") -* Hn(M,MS-
k'1) 

is an isomorphism. 
Such an S-map y represents an element {y} of the stable homotopy 

group 7Tn(M, M%~k~l) whose image in 

irtk>°\M) = Image [nn(M, Mrk~l) -+7rn(M, M%~k)] 

is a fundamental class. Thus we have 
(5.9) M is ir^~k>°ì-orientable if and only if the restriction of the 

stable normal sphere bundle to the k-skeleton of M has the fibre 
homotopy type of a product bundle. 

6. Examples. To show that these theories are not vacuous we cite 
two examples. Following Kan and Whitehead [7], let X be a wedge 
of p copies of Sr and / a map representing a homotopy class [f] in 
7T2r-i(2). Let K be the space obtained by attaching a 2r-cell to S 
via / Thus the skeleta of K are given by 
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Kn = 

K for n è Ir, 

X for r ^ n ^ 2r — 1, 

[ pt f o r O ^ n ^ r - 1. 

With a suitable choice of the homotopy class off K has the homotopy 
type of closed manifold [7]. Then K is easily seen to be orientable in 
èie usual sense. Moreover, since ir*(Kn, Kn~l) = 0 f o r r + l ^ n ^ 
2r — 1, the fundamental class in E\rS) lies in Z | r 0 . So K is 7r^~m>0]-
orientable for 0 < m ^§ r. However, the differential dr : Er

2r>0 —» 
Err,r-\ is j u s * the boundary operator from 7r2r(K, X) to 7r2r-i(2) which 
takes the ordinary fundamental class into [ / ] . Thus K is not 
TT ì_m '0]-orientable for m> r. Therefore, for arbitrarily high values 
of m there are manifolds which are7r*(~m'0]-orientable but not TT*-
orientable. 

As a second example, let h^ be a homology theory for which 

fci(pt)~ I 
I 0 

Zo ifi = Oor n — 1, 

otherwise, 

and the differential dn : E% -* E^_nq+n_l is the dual of Sqn. 
Then any closed manifold will have a fundamental class at the E2-
stage, however this class will not be in Z n + 1 if the fundamental co-
homology class is in the image of Sqn. For example, take the manifold 
to be RP(2n). Thus we have a homology theory whose coefficient 
group is a Z2-module, for which some closed manifolds fail to be 
orientable. 
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