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INVERSE SCATTERING FOR SHAPE
AND IMPEDANCE REVISITED

RAINER KRESS AND WILLIAM RUNDELL

ABSTRACT. The inverse scattering problem under con-
sideration is to reconstruct both the shape and the
impedance function of an impenetrable two-dimensional ob-
stacle from the far field pattern for scattering of time-
harmonic acoustic or E-polarized electromagnetic plane
waves. We propose an inverse algorithm that is based on
a system of nonlinear boundary integral equations associated
with a single-layer potential approach to solve the forward
scattering problem. This extends the approach we suggested
for an inverse boundary value problem for harmonic func-
tions in [8] and is a counterpart of our earlier work on in-
verse scattering for shape and impedance in [7]. We present
the mathematical foundation of the method and exhibit its
feasibility by numerical examples.

1. Introduction. The general task of inverse obstacle scattering
theory for time harmonic acoustic and electromagnetic waves is to
retrieve information on the shape of a scattering object D and its
physical properties as given by its boundary condition from a knowledge
of the scattered field at infinity, i.e., the far field pattern. The so-called
Leontovich or impedance boundary condition

(1.1)
∂u

∂ν
+ ikλu = 0 on ∂D

for the total field u and its normal derivative contains physical infor-
mation on the scatterer D by the impedance function λ. In general,
it is applied to scattering problems for penetrable obstacles to model
them approximately by scattering problems for impenetrable obstacles
in order to reduce the cost of numerical computations.
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In order to formulate the impedance obstacle scattering problem that
we want to consider, let D be a simply connected bounded domain in
R2 with C2 boundary ∂D, and denote by ν the unit normal vector
to ∂D oriented towards the complement R2 \D. Then, the scattering
problem is to find the total wave u = ui +us ∈ H1

loc(R2 \D) satisfying
the Helmholtz equation

(1.2) ∆u+ k2u = 0 in R2 \D

with positive wave number k and the impedance boundary condition
(1.1), where λ ∈ C(∂D) is a complex valued function. The incident
wave ui is assumed to be a plane wave ui(x) = eik x·d with a unit
vector d describing the direction of propagation, but we can also allow
other incident waves such as point sources. The scattered wave us must
satisfy the Sommerfeld radiation condition

(1.3) lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |r|,

uniformly with respect to all directions. We note that the condition

(1.4) Reλ ≥ 0

ensures the uniqueness of a solution to (1.1)–(1.3) (see [3, Theorem
2.12]). Existence may be established by seeking the solution in the
form of a combined single- and double-layer potential and imitating
the proof of Theorem 3.12 in [3].

The Sommerfeld radiation condition is equivalent to the asymptotic
behavior of an outgoing cylindrical wave of the form

(1.5) us(x) =
eik |x|√

|x|

{
u∞(x̂) +O

(
1

|x|

)}
, |x| → ∞,

uniformly for all directions x̂ = x/|x| where the function u∞ defined on
the unit circle S1 is known as the far field pattern of us. The full inverse
impedance obstacle scattering problem now is to determine both the
boundary ∂D and the impedance function λ from a knowledge of the
far field pattern u∞ on S1 for one or several incident plane waves.

About 15 years ago [7], we proposed a solution method for the
full inverse impedance obstacle problem by regularized Newton type
iterations for the solution operator F : (∂D, λ) 7→ u∞ that maps the
boundary ∂D and the impedance function λ onto the far field pattern
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u∞ of the solution to (1.1)–(1.3). In that paper, we demonstrated the
feasibility of this method by numerical examples and proved a local
uniqueness result, i.e., injectivity for the Fréchet derivative of F .

The approach in [7] is based on the characterization of the Fréchet
derivative of F via an exterior impedance boundary value problem
due to Hettlich [4]. In particular, the derivative with respect to the
boundary in the direction q is given by the far field pattern v∞,q of
the radiating solution vq of the impedance boundary value problem in

R2 \D with boundary condition

(1.6)
∂vq
∂ν

+ ikλvq = k2q · ν u+
d

ds

(
q · ν du

ds

)
− ikλ q · ν

(
∂u

∂ν
− κu

)
on ∂D, where s denotes arc length, κ is the curvature of ∂D and u is
the solution to (1.1)–(1.3). With ∂Dq := {x + q(x) : x ∈ ∂D}, this
differentiability result follows from the estimate

∥u∞,∂Dq − u∞,∂D − v∞,q∥L2(S1) ≤ c ∥q∥C2(∂D)

for some positive constant c and all sufficiently small C2 vector fields
q on ∂D, see [4]. Just as with the corresponding Newton itera-
tion schemes for inverse obstacle scattering for boundary conditions
of sound-soft type (that is, Dirichlet conditions) and sound-hard (that
is, Neumann conditions), the performance suffers due to the computa-
tional cost of setting up the iteration matrix. This requires the incor-
poration of the boundary values in (1.6) for all q spanning the chosen
approximation subspace.

As a remedy, about ten years ago [8] we initiated modified Newton
type iterations with reduced computational costs for a related inverse
problem for the Laplace equation which later was extended to a wide
range of inverse obstacle scattering problems. Its basic idea is to start
from a boundary integral equation approach for the solution of the
forward scattering problem, either via a potential approach or the direct
approach via Green’s representation formulas, to derive a system of
two nonlinear integral equations for the unknown boundary ∂D and
a density function on the boundary as a sort of slip variable. The
derivatives of the corresponding operator can now simply be written
down explicitly in terms of boundary integral operators which then
offers computational advantages. For an overview and survey on this
idea, the reader is referred to [3, subsection 5.4] and [5]. Thus far in the
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literature this approach has been applied only to a related impedance
boundary value problem in electrostatic imaging [1, 2] but not to the
full inverse impedance obstacle scattering problem. The purpose of the
current paper is to fill this gap.

We begin in Section 2 with a short view on uniqueness and then
proceed in Section 3 with the presentation of our solution method.
This is followed in Section 4 by consideration of the relation of our
method to Newton iterations for the operator equation in terms of F .
Finally, in Section 5, we illustrate the method by a couple of numerical
examples.

For further recent approaches to the simultaneous reconstruction of
the shape and the impedance in inverse obstacle scattering, the reader
is referred to [9, 10, 11, 12, 13, 14, 15].

2. Uniqueness. Concerning uniqueness, i.e., identifiability, it is
known that both the shape of D and the impedance function λ are
uniquely determined by the far field patterns for an infinite number of
incident plane waves with distinct directions (see [3, Theorem 5.6]). It
remains a challenging open problem to establish uniqueness for one or
a finite number of incident plane waves.

Theorem 2.1. A disc with constant impedance coefficient is uniquely
determined by the far field pattern for one incident plane wave.

Proof. Using polar coordinates, the Jacobi-Anger expansion (see [3])
reads:

(2.1) eik x·d =

∞∑
n=−∞

in Jn(kr) e
inθ, x ∈ R2,

where θ is the angle between x and d and r := |x|. From this, it can
be seen that the scattered wave us for scattering from a disc of radius
R centered at the origin has the form

us(x) =

∞∑
n=−∞

an i
nH(1)

n (kr) einθ, r > R,(2.2)

with the coefficients

an =
J ′
n(kR) + iλnJn(kR)

H
(1)′
n (kR) + iλH

(1)
n (kR)

.(2.3)
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We note that the uniqueness for the forward scattering problem en-
sures that the denominator in (2.3) is different from zero. Using the

asymptotics of the Bessel and Hankel functions Jn and H
(1)
n for large n,

uniform convergence can be established for the series (2.2) in compact
subsets of R2 \ {0}. In particular, this implies that the scattered wave
us has an extension as a solution to the Helmholtz equation across the
boundary into the interior of the disc, with the exception of the center.

Now, assume that two discs D1 and D2 with centers z1 and z2 have
the same far field pattern u∞,1 = u∞,2 for the scattering of one incident
plane wave. Then, by Rellich’s lemma [3], the scattered waves coincide
us1 = us2 in R2 \ (D1 ∪ D2), and we can identify us = us1 = us2 in
R2 \ (D1 ∪D2). Now, assume that z1 ̸= z2. Then, u

s
1 has an extension

into R2 \ {z1} and us2 an extension into R2 \ {z2}. Therefore, us can
be extended from R2 \ (D1 ∪D2) into all of R2, that is, us is an entire
solution to the Helmholtz equation. Consequently, since us also satisfies
the radiation condition, it must identically vanish us = 0 in all of R2.
Therefore, the incident field ui(x) = eik x·d must satisfy the impedance
condition on D1 with radius R1. This implies cos θ + λ = 0 for all
θ ∈ [0, 2π]. However, this is a contradiction, and therefore, z1 = z2.

In order to show that D1 and D2 have the same radius and the same
impedance coefficient, we observe that, by symmetry, or by inspection
of the explicit solution (2.2), the far field pattern for scattering of plane
waves from a disc with constant impedance coefficient depends only
upon the angle between the observation direction and the incident
direction. Hence, knowledge of the far field pattern for one incident
direction implies knowledge of the far field pattern for all incident
directions. Now, the statement follows from uniqueness for infinitely
many incident plane waves as mentioned above. �

3. The iteration method. We now proceed by describing an it-
erative algorithm for approximately solving the full inverse impedance
problem by extending the method proposed in [8] to this case. For
this, we recall the fundamental solution of the Helmholtz equation

Φ(x, y) =
i

4
H

(1)
0 (k|x− y|), x ̸= y,

in R2, in terms of the Hankel function H
(1)
0 of the first kind of

order zero. Furthermore, following [3], we introduce two classical
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boundary integral operators in scattering theory, given by the single-
layer operator

(3.1) (Sφ)(x) := 2

∫
∂D

Φ(x, y)φ(y) ds(y), x ∈ ∂D,

and the corresponding normal derivative operator

(3.2) (K ′φ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(x)
φ(y) ds(y), x ∈ ∂D.

We note that, for ∂D ∈ C2, both S and K ′ are compact from
C(∂D) into itself. Additionally, we introduce the far field operator
S∞ : C(∂D) → L2(S1) by

(3.3) (S∞φ)(x̂) :=
eiπ/4√
8πk

∫
∂D

e−ik x̂·yφ(y) ds(y), x̂ ∈ S1,

and observe that S∞φ represents the far field pattern of the single-layer
potential with density φ on ∂D and that S∞ is a compact operator.

Now, we can state the next theorem as the basis of our algorithm.

Theorem 3.1. For a given incident field ui and a given far field pattern
u∞, assume that the boundary ∂D, the impedance function λ and the
density φ satisfy the system:

(3.4) φ−K ′φ− ikλSφ = 2
∂ui

∂ν

∣∣∣∣
∂D

+ 2ikλui|∂D

and

(3.5) S∞φ = u∞.

Then, ∂D and λ solve the inverse impedance problem.

Proof. Under the assumption of the theorem, as a consequence of
(3.5), the single-layer potential

us(x) :=

∫
∂D

Φ(x, y)φ(y) ds(y), x ∈ R2 \D,

has far field pattern u∞ and, in view of the jump relations, as a
consequence of (3.4), the superposition u = ui + us satisfies the
impedance boundary condition. �
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We note that, for a given λ, the boundary integral equation (3.4)
is uniquely solvable, provided k2 is not a Dirichlet eigenvalue for −∆
in D.

The ill-posedness of the inverse impedance problem is reflected
through the ill-posedness of the second equation (3.5). Note that
the system (3.4)–(3.5) is linear with respect to the density φ and the
impedance λ and nonlinear with respect to the boundary ∂D. We solve
it by simultaneous linearization with respect to all three unknowns and
iteration, i.e., by Newton iterations that require regularization due to
the ill-posedness.

At this point, we note that the approach by Serranho [14] cited at
the end of the introduction is, in principle, also based on the system
(3.4)–(3.5). However, it is set up differently: given an approximation
for the shape and the impedance function, it solves the ill-posed linear
equation (3.5) for the density φ, and then, keeping φ fixed, linearizes
(3.4) to update the shape and the impedance.

However, before proceeding, we need to formulate the straightfor-
ward extension of Theorem 3.1 to the case of more than one incident
wave since, in general, we cannot expect to retrieve the three unknowns
∂D, λ and φ from only two equations.

Corollary 3.2. For M ∈ N, given incident fields ui1, . . . , u
i
M and cor-

responding far field patterns u∞,1, . . . , u∞,M , assume that the boundary
∂D, the impedance function λ and the densities φ1, . . . , φm satisfy the
system

(3.6) φm −K ′φm − ikλSφm = 2
∂uim
∂ν

∣∣∣∣
∂D

+ 2ikλuim|∂D

and

(3.7) S∞φm = u∞,m

for m = 1, . . . ,M . Then, ∂D and λ solve the inverse impedance
problem.

For the linearization of the boundary integral operators we assume
that the boundary curve ∂D is given by a regular 2π periodic parame-
terization
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(3.8) ∂D = {z(t) : 0 ≤ t ≤ 2π}.

Then, emphasizing the dependence of the operators on the boundary
curve, we introduce the parameterized single-layer operator

S̃ : L2[0, 2π]× C2[0, 2π] −→ L2[0, 2π]

as the integral operator

S̃(ψ, z)(t) :=

∫ 2π

0

L(t, τ ; z)ψ(τ) dτ, t ∈ [0, 2π],

with kernel

L(t, τ ; z) :=
i

2
H

(1)
0 (k|z(t)− z(τ)|)

and the parameterized normal derivative operator

K̃ ′ : L2[0, 2π]× C2[0, 2π] −→ L2[0, 2π]

as the integral operator

K̃ ′(ψ, z)(t) :=

∫ 2π

0

M(t, τ ; z)ψ(τ) dτ, t ∈ [0, 2π],

with kernel

M(t, τ ; z) :=
ik

2

[z′(t)]⊥ · [z(τ)− z(t)]

|z(t)− z(τ)|
H

(1)
1 (k|z(t)− z(τ)|).

Here, we made use of H
(1)′

0 = −H(1)
1 with the Hankel function H

(1)
1 of

order one and of the first kind. Furthermore, we denote a⊥ := (a2,−a1)
for any vector a = (a1, a2), that is, a⊥ is obtained by rotating a
clockwise by 90 degrees. We also require the parameterized far field
operator

S̃∞ : L2[0, 2π]× C2[0, 2π] −→ L2(S1),

given by

(3.9) S̃∞(ψ, z)(x̂) :=
eiπ/4√
8πk

∫ 2π

0

e−ik x̂·z(τ)ψ(τ) dτ, x̂ ∈ S1.

It follows that the parameterized form of the system (3.4)–(3.5) is
given by

(3.10) ψ − K̃ ′(ψ, z)− ikµS̃(ψ, z) = g(z, µ)
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and

(3.11) S̃∞(ψ, z) = u∞,

where we set

(3.12) ψ := |z′|φ ◦ z and µ := |z′|λ ◦ z

and

(3.13) g(z, µ) := 2[z′]⊥ · gradui ◦ z + 2ikµui ◦ z.

This system needs to be solved for ψ, µ and z. We accomplish this
via linearization. Given an approximation for (ψ, µ, z), we solve the
linearized equations

η − K̃ ′(η, z)− ikµS̃(η, z)− ikγS̃(ψ, z)− 2ikγui ◦ z

−dK̃ ′(ψ, z; ζ)− ikµdS̃(ψ, z; ζ)− ∂zg(z, µ; ζ)(3.14)

= g(z)− ψ + K̃ ′(ψ, z) + ikµS̃(ψ, z)

and

(3.15) S̃∞(η, z) + dS̃∞(ψ, z; ζ) = u∞ − S̃∞(ψ, z)

for (η, γ, ζ) and update (ψ, λ, z) into (ψ + η, µ+ γ, z + ζ).

These equations contain Fréchet derivatives with respect to z acting
as linear operators on ζ. These are obtained by differentiating the
kernels with respect to z and are given by

dS̃(ψ, z; ζ)(t) =

∫ 2π

0

dL(t, τ ; z, ζ)ψ(τ) dτ, t ∈ [0, 2π],

where

dL(t, τ ; z, ζ) := − ik
2

{z(t)− z(τ)} · {ζ(t)− ζ(τ)}
|z(t)− z(τ)|

H
(1)
1 (k|z(t)− z(τ)|)

and

dK̃ ′(ψ, z; ζ)(t) =

∫ 2π

0

dM(t, τ ; z, ζ)ψ(τ) dτ, t ∈ [0, 2π],
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where

dM(t, τ ; z, ζ) :=
ik

2

[z′(t)]⊥ · {z(τ)−z(t)} {z(t)−z(τ)} · {ζ(t)−ζ(τ)}
|z(t)−z(τ)|3

×
{
k |z(t)− z(τ)|H(1)

0 (k|z(t)− z(τ)|)− 2H
(1)
1 (k|z(t)− z(τ)|)

}
+
ik

2

[ζ ′(t)]⊥ ·{z(τ)−z(t)}+ [z′(t)]⊥ ·{ζ(τ)−ζ(t)}
|z(t)−z(τ)|

H
(1)
1 (k|z(t)−z(τ)|).

Here, we used the relation

H
(1)′

1 (w) = H
(1)
0 (w)− 1

w
H

(1)
1 (w).

The Fréchet derivative of the far field operator S̃∞ is given by

dS̃′
∞(ψ, z; ζ)(x̂) =

e−iπ/4
√
k√

8π

∫ 2π

0

e−ik x̂·z(τ) x̂ · ζ(τ)ψ(τ) dτ, x̂ ∈ S1.

Finally, for the plane wave incidence ui(x) = eik x·d, we have

g(z, µ)(t) = 2ik
(
[z′(t)]⊥ · d+ µ

)
eik z(t)·d,

and consequently,

∂zg(z, µ; ζ)(t) = 2ik
{
[ζ ′(t)]⊥ · d+ ik([z′(t)]⊥ · d+ µ)ζ(t) · d

}
eik z(t)·d.

Here, we would like to emphasize the fact that we have explicit
representations of the Fréchet derivatives as weakly singular boundary
integral operators which allow for a straightforward discretization as
opposed to the discretization of the Fréchet derivatives of the forward
operator F based on the characterization (1.6).

Now, for finitely many incident fields ui1, . . . , u
i
M and correspond-

ing far field patterns u∞,1, . . . , u∞,M , summarizing, we describe one
iteration step of our algorithm as follows: given an approximation z
for the parameterization of the boundary ∂D and µ = |z′|λ ◦ z for
the impedance function on ∂D and ψ1, . . . , ψm for the densities, after
abbreviating

(3.16) gm(z, µ) := 2[z′]⊥ · graduim ◦ z + 2ikµuim ◦ z,



INVERSE SCATTERING FOR SHAPE AND IMPEDANCE 303

we solve the linearized system

ηm−K̃ ′(ηm, z)−ikµS̃(ηm, z)−ikγS̃(ψm, z)−2ikγuim ◦ z

−dK̃ ′(ψm, z; ζ)− ikµdS̃(ψm, z; ζ)− dgm(z; ζ)(3.17)

= gm(z, µ)− ψm + K̃ ′(ψm, z) + ikµS̃(ψm, z)

and

(3.18) S̃∞(ηm, z) + dS̃∞(ψm, z; ζ) = u∞ − S̃∞(ψm, z),

where m = 1, . . . ,M . We solve the system (3.17)–(3.18) of 2M
equations for the 2 +M unknowns ζ, γ and ηm, m = 1, . . . ,M , and
update z into z + ζ, µ into µ+ γ and ψm into ψm + ηm.

For the initial step of the iteration, only an initial guess for the
shape z and the impedance µ = |z′|λ◦z is required. The initial densities
ψm can then be obtained by solving the parametrized equation (3.6),
that is, (3.10).

Due to the ill-posedness, stabilization, for example, by Tikhonov
regularization is required in each iteration step. For this, we suggest
an L2 penalization for the densities and anHp Sobolev penalty term for
some small p ∈ N for the boundary parameterization and the impedance
function.

4. Connection with the forward operator. We can relate the
above approach to the Newton iterations from [7] for solving the inverse
obstacle scattering problem previously mentioned in the introduction.
Denoting by F : (z, µ) → u∞, the operator that maps the boundary
∂D represented by the parameterization z and the impedance function
µ = |z′|λ◦z onto the far field pattern for scattering of the incident wave
ui from the impedance obstacle D, the inverse problem is equivalent to
solving the nonlinear operator equation

(4.1) F (z, µ) = u∞.

Linearization leads to

(4.2) ∂zF (z, µ; ζ) + ∂µF (z, µ; γ) = u∞ − F (z, µ),

which must be solved for ζ and γ in order to update an approximation
z and µ into z + ζ and µ+ γ.
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If we assume that k2 is not a Dirichlet eigenvalue for the negative
Laplacian, as noted in connection with Theorem 3.1, in view of the
system (3.10)–(3.11), we can express the forward map in the form

(4.3) F (z, µ) = S̃∞(A(z, µ)g(z, µ), z)

with g defined by (3.13). Here, we have abbreviated

A(z, µ) :=
(
I − K̃ ′(·, z)− ikµS̃(·, z)

)−1
.

By the product and chain rule this implies the total Fréchet derivative

(4.4)

∂zF (z, µ; ζ) + ∂µF (z, µ; γ) = dS̃∞ (A(z, µ)g(z, µ), z; ζ)

+ S̃∞(A(z, µ)[dK̃ ′ + ikµdS̃](A(z, µ)g(z, µ), z; ζ), z)

+ ikS̃∞(A(z, µ)γS̃(A(z, µ)g(z, µ), z)

+ S̃∞(A(z, µ)(dg(z, µ; ζ) + ikγui ◦ z), z).

Now, we can establish the following interrelation between our pro-
posed iterative scheme and the Newton iterations for the forward
map F .

Theorem 4.1. Assume that k2 is not a Dirichlet eigenvalue of the
negative Laplacian in D, and set

ψ := A(z, µ)g(z, µ).

Provided ζ and γ satisfy the linearized forward equation (4.2), then

η := A(z, µ)[dK̃ ′(ψ, z; ζ) + ikµdS̃(ψ, z; ζ)

+ ikγS̃(ψ, z) + dg(z, µ; ζ) + ikγui ◦ z]

and ζ and γ satisfy the linearized equations (3.14) and (3.15). Con-
versely, if η, ζ and γ solve (3.14) and (3.15), then ζ and γ satisfy
(4.2).

Proof. From (4.2), (4.3) and the definition of ψ, we have

∂zF (z, µ; ζ) + ∂µF (z, µ; γ) = u∞ − S̃∞(ψ, z).

The representation (4.4) of the derivative of F yields

∂zF (z, µ; ζ) + ∂µF (z, µ; γ) = dS̃∞(ψ, z; ζ) + S̃∞(η, z)
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and, combining this with the previous equation establishes that (3.15)
holds. From the definition of η we observe that (3.14) is also satisfied
since its right hand side vanishes for ψ = A(z, µ)g(z, µ).

Conversely, (3.14) implies that

η = A(z, λ)χ,

where

χ := ikγS̃(ψ, z) + 2ikγui ◦ z + dK̃ ′(ψ, z; ζ)

+ ikµdS̃(ψ, z; ζ) + ∂zg(z, µ; ζ)

since, as already observed, the right hand side of (3.14) vanishes due
to the choice of ψ. Inserting this into (3.15) leads to

dS̃∞(ψ, z, ζ) + S̃∞A(z, λ)χ = u∞ − S̃∞(ψ, z)

and, via (4.3) and (4.4), this implies (4.2). �

Based on Theorem 4.1, the result from [7] on injectivity of the
derivative of F can be carried over to the present case by the next
corollary.

Corollary 4.2. With the restriction to real valued impedance func-
tions, at the exact solution, the system (3.10)–(3.11) is injective, pro-
vided λ ≥ 1.

Indeed, if λ is real valued, the two complex valued equations (3.10)
and (3.10) formally determine the complex valued density ψ and the
two real valued functions z and µ = λ ◦ z. In one of our numerical
examples we will provide reconstructions using only one incident wave.

Theorem 3.1 also illustrates the difference between the iteration
based on the simultaneous linearization of the two integral equations
(3.10) and (3.11) and the Newton iterations for (4.1). In general,
when placing (3.14) and (3.15) in the sequence of updates, the relation
ψ = A(z, µ)g(z, µ) between the current approximations for the shape
and the impedance z and µ, as well as for the density ψ, will not
be satisfied. (This condition will hold for only the first step.) This
observation also indicates a possibility for using (3.10) and (3.11) to
implement the Newton scheme for (4.1). We merely need to change
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the update ψ + η for the density into A(z, µ)g(z, µ) at the expense
of throwing away η and solving (3.6) with the updated z and µ for
a new density. As opposed to this possibility, we pointed out in the
introduction that, in [7], the implementation of Newton iterations for
(4.1) is based upon the characterization of the Fréchet derivative of F
given by (1.6).

5. Numerical implementation. For the numerical implementa-
tion, we need to discretize the boundary integral operators S and K ′

and their Fréchet derivatives. All four operators have kernels of the
form

(5.1) K(t, τ) = K1(t, τ) ln

(
4 sin2

t− τ

2

)
+K2(t, τ)

with smooth functions K1 and K2 and, for their numerical approxi-
mation by weighted trigonometric interpolation quadrature, we refer
to [3]. The factors L1, M1, dL1 and dM1 in the decomposition of the
kernel function L, M , dL and dM corresponding to (5.1) are obtained
by replacing the Hankel function in the definitions of L, M , dL and
dM by the corresponding Bessel function multiplied by a factor of i/π.
For the convenience of the reader, we provide the diagonal elements of
the smooth parts as

L1(t, t) =M1(t, t) = dL1(t, t) = dM1(t, t) = 0

and, with the Euler-Mascheroni constant

C = lim
n→∞

( n∑
1

(1/k)− ln(n)

)
,

L2(t, t) =
i

2
− C

π
− 1

π
ln

(
k

2
|z′(t)|

)
,

M2(t, t) = − 1

2π

[z′(t)]⊥ · z′′(t)
|z′1(t)|2

, dL2(t, t) = −z
′(t) · ζ ′(t)
π |z′(t)|2

,

dM2(t, t) =
|z′(t)|2

{
[z′(t)]⊥ · ζ ′′(t) + [ζ ′(t)]⊥ ·z′′(t)

}
2π |z′(t)|4

− 2[z′(t)]⊥ ·z′′(t)z′(t) · ζ ′(t)
2π |z′(t)|4

.



INVERSE SCATTERING FOR SHAPE AND IMPEDANCE 307

When solving the system (3.10)–(3.11), in principle, the parameter-
ization of the update is not unique. To cope with this ambiguity, one
possibility that we pursued in our numerical examples was to allow only
parameterizations of the form

(5.2) z(t) = r(t)(cos t, sin t), 0 ≤ t ≤ 2π,

with a non-negative function r representing the radial distance of ∂D
from the origin. Consequently, the perturbations are of the form

(5.3) ζ(t) = q(t)(cos t, sin t), 0 ≤ t ≤ 2π,

with a real function q. In the approximations, we assume r and its
update q to have the form of a trigonometric polynomial of degree Jz,
in particular,

(5.4) q(t) =

Jz∑
j=0

aj cos jt+

Jz∑
j=1

bj sin jt

with real coefficients aj and bj .

We also approximate the unknown (parameterized) impedance func-
tion µ by a trigonometric polynomial of degree Jµ and confine ourselves
to the case of a real valued impedance function. Then, we collocate
the two equations (3.10) and (3.11), each at 2n equidistant collocation
points, the first equation at the points tj = jπ/n, j = 1, . . . , 2n, and
the second equation at the points (cos tj , sin tj) ∈ S1. The resulting
linear system for the 2Jz + 2Jµ + 2 Fourier coefficients and the 2n (or
2nM if we useM incident waves) nodal values of the density function ψ
is solved in the least squares sense, penalized via Tikhonov regulariza-
tion. As experienced in the application of regularized Newton iterations
for related problems, it is advantageous to use an Hp Sobolev penalty
term for the shape and the impedance rather than an L2 penalty in
the Tikhonov regularization for some small p ∈ N. For the density
function, merely L2 regularization suffices.

The following two numerical examples are intended as proof of the
concept and not as indications of an already fully developed method. In
particular, the regularization parameters and the number of iterations
were chosen by trial and error instead of, for example, a discrepancy
principle. In order to avoid committing an inverse crime, the synthetic
far field data were obtained by solving the integral equation based on a
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combined single- and double-layer approach, whereas the inverse solver
is based on the single-layer approach.
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Figure 1. Reconstruction of shape (upper) and impedance (lower) of the
peanut (5.5) for exact data (left) and 3 percent noise (right).

As boundary curves, we considered a peanut-shaped obstacle with
parametric representation

(5.5) z(t) =
√
cos2 t+ 0.25 sin2 t (cos t, sin t), 0 ≤ t ≤ 2π,

and an apple-shaped obstacle with parametric representation

(5.6) z(t) =
0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.7 cos t
(cos t, sin t), 0 ≤ t ≤ 2π,

For both examples, the impedance function was given by

(5.7) µ(t) =
1

1− 0.2 sin 2t
, t ∈ [0, 2π].
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Figure 2. Reconstruction of shape (upper) and impedance (lower) of the
apple (5.6) for exact data (left) and 3 percent noise (right).

The number of quadrature points was 2n = 64, both on the bound-
ary curve and on the unit circle for the far field pattern. The wave
number was k = 1 for the peanut and k = 3 for the apple. The degree
of the trigonometric polynomials was chosen as Jz = 4 and Jµ = 2, and
the regularization parameter for an H2 regularization of both the shape
and impedance was 0.001 × 0.9m for the mth iteration step for exact
data and 0.01×0.9m for perturbed data. The regularization parameter
for the density was 10−10 for exact data and 10−7 for perturbed data.
The iteration was stopped after 20 iterations for exact data and 12 it-
erations for perturbed data. For the perturbed data, random noise was
added point wise with relative error in the L2 norm. The iterations
were begun with an initial guess given by a circle (of radius 0.9 for the
peanut and 0.9 for the apple), centered at the origin. For the peanut, we
used one incident wave with d = (1, 0) and, for the apple, two incident



310 RAINER KRESS AND WILLIAM RUNDELL

waves with d = (±1, 0). For the apple, the reconstruction with only
one wave also worked but was less accurate.

In the figures, the exact ∂D is given as dotted (magenta), the
reconstruction as full (red) and the initial guess as dashed (blue)
curve. The exact impedance is given as dotted (magenta) curve and
the reconstruction as full (green) curve. In conclusion, we can state
that both examples show satisfactory reconstruction and stability.

In closing, we would like to note that, when using more than one
incident wave instead of changing the incident direction and keeping
the wave number, in principle, we also can use incident waves with one
direction and various wave numbers.
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