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VOLTERRA-TYPE OPERATORS FROM ANALYTIC
MORREY SPACES TO BLOCH SPACE
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ABSTRACT. In this note, we study the boundedness and
compactness of integral operators Ig and Tg from analytic
Morrey spaces to Bloch space. Furthermore, the norm and
essential norm of those operators are given.

1. Introduction. Let D = {z : |z| < 1} and ∂D = {z : |z| = 1}
denote, respectively, the open unit disc and the unit circle in the
complex plane C. Let H(D) be the space of all analytic functions
on D and dm(z) = 1

π dx dy the normalized area Lebesgue measure.

The aim of this paper is to characterize the boundedness and com-
pactness of two Volterra type operators Ig and Tg from the analytic
Morrey spaces L2,λ to the classical Bloch space B, and from the lit-

tle analytic Morrey spaces L2,λ
0 to the little Bloch space B0. Also, we

estimate the essential norm of Ig and Tg.

The Morrey space was initially introduced in 1938 by Morrey [21]
to show that certain systems of partial differential equations (PDEs)
had Hölder continuous solutions. In the past, the Morrey space has
been heavily studied in different areas. For example, Adams and Xiao
studied Morrey spaces which is defined on Euclidean spaces Rn by
potential theory and Hausdorff capacity in [1, 2]. Cascante, Fàbrega,
Ortega [11] (partially) and Wang and Xiao [28] studied holomorphic
Campanato spaces on the open unit ball Bn of Cn. But here we will be
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mostly interested in the analytic Morrey spaces L2,λ in the unit disk.
It was introduced and studied by Wu and Xie in [31].

For an arc I ⊂ ∂D, let |I| = 1
2π

∫
I
|dζ| be the normalized arc length

of I,

fI =
1

|I|

∫
I

f(ζ)
|dζ|
2π

, f ∈ H(D),

and let S(I) be the Carleson box based on I with

S(I) =

{
z ∈ D : 1− |I| ≤ |z| < 1,

z

|z|
∈ I

}
.

Clearly, if I = ∂D, then S(I) = D.
Let L2,λ(D) represent the analytic Morrey spaces of all analytic

functions f ∈ H2 on D such that

sup
I⊂∂D

(
1

|I|λ

∫
I

|f(ζ)− fI |2
|dζ|
2π

)1/2

< ∞,

where 0 < λ ≤ 1 and the Hardy space H2 consist of analytic functions
f in D satisfying

sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|2 dθ < ∞.

Similarly to the relation between BMOA space and VMOA space,

we have that f ∈ L2,λ
0 (D), the little Morrey spaces, if f ∈ L2,λ(D) and

lim
|I|→0

(
1

|I|λ

∫
I

|f(ζ)− fI |2
|dζ|
2π

)1/2

= 0.

Xiao and Xu [36] studied the composition operators of L2,λ spaces.
Cascante, Fàbrega and Ortega [11] studied the Corona theorem of
L2,λ. Wang and Xiao [29] characterized the first and second preduals
of the analytic Morrey spaces. Xiao and Yuan [37] studied analytic
Campanato spaces (including the analytic Morrey spaces) in terms of
the Möbius mappings and the Littlewood-Paley forms. It is a useful tool
for the study of harmonic analysis and partial differential equations. We
refer the interested reader to [21, 22, 42].

The following lemma gives some equivalent conditions of L2,λ(D)
(see [32, Theorem 3.1] or [35, Theorem 3.21]).
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Lemma 1.1. Suppose that 0 < λ < 1 and f ∈ H(D). Let a ∈
D, φa(z) = (a− z)/(1− az). Then the following statements are
equivalent :

(i) f ∈ L2,λ(D);

(ii) sup
I⊂∂D

1

|I|λ

∫
S(I)

|f ′(z)|2(1− |z|2) dm(z) < ∞;

(iii) sup
a∈D

(1− |a|2)1−λ

∫
D
|f ′(z)|2(1− |φa(z)|2) dm(z) < ∞.

From the lemma above, we can define the norm of the function
f ∈ L2,λ(D) and its equivalent formula as follows:

∥f∥L2,λ = |f(0)|+ sup
I⊂∂D

(
1

|I|λ

∫
S(I)

|f ′(z)|2(1− |z|2) dm(z)

)1/2

≈ |f(0)|+ sup
a∈D

(
(1− |a|2)1−λ

∫
D
|f ′(z)|2(1− |φa(z)|2) dm(z)

)1/2

.

It is known that L2,1(D) = BMOA and if 0 < λ < 1, BMOA ( L2,λ(D).
For more information on BMOA and VMOA, see [15].

A function f analytic on the unit disk is said to belong to the Bloch
space B if

∥f∥B = sup
z∈D

{(1− |z|2)|f ′(z)|} < ∞,

and to the little Bloch space B0 if f ∈ B and

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

It is well known that B is a Banach space under the norm ∥|f∥|B =
|f(0)| + ∥f∥B and B0 is a closed subspace of B. See [5]. By [7,
34], together with [8, Lemma 2.1], we have the following equivalent
statements about the norm of f ∈ B.
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Proposition 1.2. For all p ∈ (1,∞),

∥|f∥|B ≈ |f(0)|+ sup
a∈D

(∫
D
|f ′(z)|2(1− |φa(z)|2)pdm(z)

)1/2

≈ |f(0)|+ sup
I⊂∂D

(
1

|I|p

∫
S(I)

|f ′(z)|2(1− |z|2)pdm(z)

)1/2

.

Suppose that g : D → C is a holomorphic map. The integral operator
Tg, called the Volterra-type operator, is defined as

Tgf(z) =

∫ z

0

f(w)g′(w) dw, z ∈ D, f ∈ H(D).

In [23], Pommerenke introduced the operator Tg and showed that Tg

is a bounded operator on the Hardy space H2 if and only if g ∈ BMOA.

The companion integral operator Ig is analogously defined as

Igf(z) =

∫ z

0

f ′(w)g(w) dw, z ∈ D, f ∈ H(D).

The boundedness, compactness or essential norm of Tg and Ig
between spaces of analytic functions were investigated by many authors.
Aleman and Siskakis in [4] studied the integral operator Tg on the
Bergman space, and then Aleman considered with Cima Tg acting on
the Hardy space in [3]. Siskakis and Zhao [27] also investigated Tg

on the BMOA space. Tg on the Qp space was studied by Xiao in
[33]. Li and Stević in [19] studied the boundedness and compactness
of Tg and Ig on the Zygmund spaces and the little Zygmund spaces.
Constantin in [12] considered the boundedness and compactness of Tg

on Fock spaces. Ye in [39] studied products of Volterra-type operators
and composition operators on logarithmic Bloch space. Ye and Gao
in [40] gave the boundedness and compactness of Tg between different
weighted Bloch spaces.

There are some articles about the integral operator acting on the
Morrey space. For example, Wu in [30] considered Tg from Hardy
to analytic Morrey spaces. Li, Liu and Lou [17] characterized the
boundedness and essential norms of Tg and Ig on analytic Morrey
spaces (see also the related references therein).
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Now, we need two spaces. Let α > −1. Recall that f ∈ H(D)
belongs to the weighted space H∞

α if it satisfies

sup
z∈D

(1− |z|2)α|f(z)| < ∞.

When α > −1, H∞
α endowed with the norm ∥f∥α = supz∈D(1 −

|z|2)α|f(z)| is a Banach space. This space is connected with the study
of growth conditions of analytic functions and was also studied in detail,
see [9, 10, 25, 26, 38]. The space H∞

α is used in the characterizations
of the boundedness and essential norm of Ig. Then we conclude the
boundedness and essential norm of Tg by introducing the following
Bloch-Morrey type spaces.

Definition 1.3. Let 0 < λ ≤ 1 and p > 1. The Bloch-Morrey type
space BLp,λ is the set of all g ∈ H(D) such that

M(g) = sup
I⊂∂D

(
1

|I|p−λ+1

∫
S(I)

|g′(z)|2(1− |z|2)pdm(z)

)1/2

< ∞.

The corresponding subspace BLp,λ
0 , the little Bloch-Morrey type space,

can be defined as

BLp,λ
0 =

{
g ∈ BLp,λ, lim

|I|→0

(
1

|I|p−λ+1

∫
S(I)

|g′(z)|2(1−|z|2)pdm(z)

)1/2

= 0
}
.

It is easy to prove that BLp,λ is a Banach space under the norm

∥g∥BLp,λ = |g(0)|+M(g).

Clearly, BLp,1 = B. From [8], we know that ∥g∥BLp,λ is comparable
with the norm

|g(0)|+ sup
a∈D

(∫
D
(
1− |a|2

|1− az|2
)p+1−λ|g′(z)|2(1− |z|2)pdm(z)

)1/2

.

Notation. For two functions F and G, if there is a constant C > 0
dependent only on indexes p, λ, . . ., such that F ≤ CG, then we say
that F . G. Furthermore, denote that F ≈ G (F is comparable with
G) whenever F . G . F .
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2. L2,λ vs B. Evidently, when 0 < λ < 1, BMOA ( L2,λ(D). On
the other hand BMOA ( B. Does L2,λ and B have the inclusion
relation? We claim that the answer is negative by the following two
proposition.

Proposition 2.1. L2,λ * B.

Proof. Consider g(z) = (log 1
1−z )

2, which is obviously not a Bloch

function. We get that g(z) ∈ L2,λ. Indeed,

sup
a∈D

(1− |a|2)1−λ

∫
D
|g′(z)|2(1− |φa(z)|2) dm(z)

. sup
a∈D

(1− |a|2)1−λ

×
∫
D
| 1

1− z
|2 log2 1

1− |z|
(1− |φa(z)|2) dm(z)

.
∫
D
| 1

1− z
|2(1− |z|2)1−λ log2

1

1− |z|
dm(z)

=

∫ 1

0

∫ 2π

0

| 1

1− reiθ
|2dθ(1− r2)1−λ log2

1

1− r
dr

=

∫ 1

0

(1− r2)−λ log2
1

1− r
dr < ∞.

This finishes the proof. �

Conversely, the function

f(z) =
∞∑

n=0

z2
n

is a Bloch function (see [6]), and it is well known that it has a radial
limit almost nowhere. Consequently, f does not belong to any of the
Hardy spaces, and so f /∈ L2,λ. Now we have the following proposition.

Proposition 2.2. B * L2,λ.
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3. Boundedness of Ig and Tg from L2,λ to B. In this section,
we prove the boundedness and estimate the norms of Ig and Tg. The
following lemmas will be used through this paper.

Lemma 3.1. Let 0 < λ < 1 and b ∈ D. We set functions fb(z) and
Fb(z) as

fb(z) = (1− |b|2)(1−λ)/2(φb(z)− b), Fb(z) = (1− |b|2)(1− bz)(λ−3)/2.

Then fb(z) ∈ L2,λ(D) and Fb(z) ∈ L2,λ(D). Particularly, we have

fb(z) ∈ L2,λ
0 (D) and Fb(z) ∈ L2,λ

0 (D). Moreover, ∥fb∥L2,λ . 1,
∥Fb∥L2,λ . 1.

Proof. See [17, Lemma 4]. From its proof, we further deduce that

fb(z) ∈ L2,λ
0 (D) and Fb(z) ∈ L2,λ

0 (D). �

We get a result about the growth rate of functions in L2,λ(D) from
[17].

Lemma 3.2. Let 0 < λ < 1. If f ∈ L2,λ(D), then

|f(z)| . ∥f∥L2,λ

(1− |z|2)(1−λ)/2
, z ∈ D.

We first consider the boundedness of Ig : L2,λ → B.

Theorem 3.3. Let 0 < λ < 1 and g ∈ H(D). Then Ig : L2,λ → B
is bounded if and only if g ∈ H∞

(λ−1)/2. Moreover, the operator norm

satisfies
∥Ig∥ ≈ ∥g∥(λ−1)/2.

Proof. For 0 < λ < 1 and 1 < 2− λ, we set B = Q2−λ.
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Let g ∈ H∞
(λ−1)/2. For any f ∈ L2,λ(D), we have

∥Igf∥B ≈ sup
a∈D

(∫
D
|f ′(z)|2|g(z)|2(1− |φa(z)|2)2−λdm(z)

)1/2

= sup
a∈D

(
(1− |a|2)1−λ

∫
D
|f ′(z)|2

× (1− |φa(z)|2)|g(z)|2
(

1− |z|2

|1− az|2

)1−λ

dm(z)
)1/2

. ∥g∥(λ−1)/2∥f∥L2,λ ,

which implies that Ig is bounded and ∥Ig∥ . ∥g∥(λ−1)/2.

On the other hand, let Ig be bounded. For any b ∈ D, considering
functions fb(z) in Lemma 3.1, we have ∥fb∥L2,λ . 1. Then

∥Ig∥ & ∥Igfb∥B

≈ sup
a∈D

(∫
D
|f ′

b(z)|2|g(z)|2(1− |φa(z)|2)2−λdm(z)

)1/2

= sup
a∈D

(∫
D

(1− |b|2)1+λ

|1− bz|4
|g(z)|2(1− |φa(z)|2)1+1−λdm(z)

)1/2

>
(∫

D

(1− |b|2)2

|1− bz|4
|g(z)|2

(
1− |z|2

|1− bz|2

)1−λ

(1− |φb(z)|2) dm(z)

)1/2

(3.1)

=

(∫
D
|φ′

b(z)|2|g(z)|2
(

1− |z|2

|1− bz|2

)1−λ

(1− |φb(z)|2) dm(z)

)1/2

=

(∫
D
|g(φb(w))|2

(
1− |φb(w)|2

|1− bφb(w)|2

)1−λ

(1− |w|2) dm(w)

)1/2

&
∣∣∣∣ g(b)

(1− |b|2)(1−λ)/2

∣∣∣∣,
where we used [41, Lemma 4.12] in the last inequality. Since b is
arbitrary, we have ∥Ig∥ & ∥g∥(λ−1)/2. The proof is finished. �

With the space BLp,λ, we can establish the boundedness of Tg :
L2,λ → B as in the following theorem.
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Theorem 3.4. Suppose that 0 < λ < 1 and g ∈ H(D). Then the
following conditions are equivalent :

(i) Tg : L2,λ → B is bounded ;
(ii) g ∈ BLp,λ for all p ∈ (1,∞);
(iii) g ∈ BLp,λ for some p ∈ (1,∞).

Moreover,
∥Tg∥ ≈ M(g).

Proof. (i) ⇒ (ii). Suppose that Tg : L2,λ → B is bounded. For any
I ⊂ ∂D, let b = (1− |I|)ζ ∈ D, where ζ is the center of I. Then

(1− |b|2) ≈ |1− bz| ≈ |I|, z ∈ S(I).

Considering the functions Fb(z) in Lemma 3.1, we have ∥Fb∥L2,λ . 1.
This, together with Proposition 2.2, we obtain that for any p ∈ (1,∞),

1

|I|p−λ+1

∫
S(I)

|g′(z)|2(1− |z|2)pdm(z)

≈
1

|I|p

∫
S(I)

|Fb(z)|2|g′(z)|2(1− |z|2)pdm(z)

. ∥TgFb∥2B ≤ ∥Tg∥2∥Fb∥2L2,λ . ∥Tg∥2.

Since I is arbitrary, we have M(g) . ∥Tg∥.
(ii) ⇒ (iii). It is obvious.

(iii) ⇒ (i). Suppose that fixed p ∈ (1,∞) and M(g) < ∞. For
f ∈ L2,λ(D) and any I ⊂ ∂D, by Lemma 3.2, it follows that

∥Tgf∥B ≈ sup
I⊂∂D

(
1

|I|p

∫
S(I)

|f(z)|2|g′(z)|2(1− |z|2)pdm(z)

)1/2

(3.2)

. ∥f∥L2,λ · sup
I⊂∂D

(
1

|I|p

∫
S(I)

|g′(z)|2(1− |z|2)p+λ−1dm(z)

)1/2

.

To the end, for a given subarc I of ∂D, let Dn(I) represent the set of
2n subarcs of length 2−n|I| obtained by n successive bipartition of I.
For each J ∈ Dn(I), write T (J) for the top half Carleson box of S(J),
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i.e.,

T (J) =

{
z ∈ S(J) :

z

|z|
∈ J, 1− |J | < |z| < 1− |J |

2

}
.

Then

S(I) =
∞∪

n=0

∪
J∈Dn(I)

T (J).

Noting that z ∈ T (J), 1− |z| ≈ |J |, one has∫
S(I)

|g′(z)|2(1− |z|2)p+λ−1dm(z)

=
∞∑

n=0

∑
J∈Dn(I)

∫
T (J)

|g′(z)|2(1− |z|2)p+λ−1dm(z)

≈
∞∑

n=0

∑
J∈Dn(I)

∫
T (J)

|J |λ−1|g′(z)|2(1− |z|2)pdm(z)

≤
∞∑

n=0

∑
J∈Dn(I)

∫
S(J)

|J |λ−1|g′(z)|2(1− |z|2)pdm(z)

≤
∞∑

n=0

∑
J∈Dn(I)

M(g)2|J |λ−1|J |p−λ+1(3.3)

=
∞∑

n=0

2nM(g)2|J |p =
∞∑

n=0

(2n)1−pM(g)2|I|p

. M(g)2|I|p.

Now invoking (3.2),

∥Tgf∥B . M(g) · ∥f∥L2,λ .

As a result, ∥Tg∥ . M(g). �

Theorem 3.4 has an interesting consequence.

Corollary 3.5. Let 0 < λ < 1 and 1 < p < q < ∞. Then
BLp,λ = BLq,λ.
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4. Essential norm of Ig and Tg from L2,λ to B. Let X and Y be
Banach spaces. The essential norm of a bounded operator T : X → Y ,
∥T∥e,X→Y , is defined as the distance from T to the space of compact
operators,

∥T∥e,X→Y = inf {∥T −K∥X→Y : K is any compact operator},

where the norm of T is denoted by ∥ · ∥X→Y .

Since that T is compact if and only if ∥T∥e,X→Y = 0, then the
estimation of ∥T∥e,X→Y indicates the condition for T to be compact.
For some recent results related to the essential norm, see [16, 17, 18,
24] and the references therein.

In this section, we estimate the essential norm of Ig and Tg from
L2,λ to B. We need some auxiliary results.

Lemma 4.1. Let 0 < λ < 1. For 0 < t < 1, z ∈ D, ft(z) = f(tz). If

f ∈ L2,λ(D), then ft ∈ L2,λ
0 (D) and ∥ft∥L2,λ ≤ ∥f∥L2,λ .

Proof. If f ∈ L2,λ(D) and 0 < t < 1, then ft is analytic on the

closed unit disk D. A simple computation shows that ft ∈ L2,λ
0 (D). In

addition, by the Poisson formula, we have

ft(z) =

∫ 2π

0

f(zeiθ)
1− t2

|eiθ − t|2
dθ

2π
, z ∈ D.

Then,

sup
a∈D

(1− |a|2)1−λ

∫
D
|f ′

t(z)|2(1− |φa(z)|2) dm(z)

≤ sup
a∈D

(1− |a|2)1−λ

×
∫
D

∫ 2π

0

|f ′(zeiθ)|2 1− t2

|eiθ − t|2
dθ

2π
(1− |φa(z)|2) dm(z)

=

∫ 2π

0

sup
a∈D

(1− |a|2)1−λ

∫
D
|f ′(zeiθ)|2

(1− |φa(z)|2) dm(z)
1− t2

|eiθ − t|2
dθ

2π

≤ sup
a∈D

(1− |a|2)1−λ

∫
D
|f ′(z)|2(1− |φa(z)|2) dm(z)
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·
∫ 2π

0

1− t2

|eiθ − t|2
dθ

2π

= sup
a∈D

(1− |a|2)1−λ

∫
D
|f ′(z)|2(1− |φa(z)|2) dm(z).

Thus, ∥ft∥L2,λ ≤ ∥f∥L2,λ . �

By Lemma 3.2 and standard arguments (see, e.g., [13, Proposition
3.11]), the following lemma follows.

Lemma 4.2. Assume that g is an analytic function on D. Then Tg

(or Ig) : L2,λ → B is compact if and only if Tg (or Ig) : L2,λ → B is
bounded, and for any bounded sequence (fk)k∈N in L2,λ which converges
to zero uniformly on D as k → ∞, ∥Tgfk∥B → 0 (or ∥Igfk∥B → 0) as
k → ∞.

Lemma 4.3. Suppose that 0 < λ < 1 and p > 1. For g ∈ BLp,λ,
define the following operators Tg,r : L2,λ → B:

Tg,rf(z) =

∫ z

0

f(rw)g′(w) dw,

where r ∈ (0, 1). Then Tg,r is compact.

Proof. Let {fn} be such that ∥fn∥L2,λ ≤ 1 and fn → 0 uniformly
on compact subsets of D as n → ∞. We are required to show that
lim

n→∞
∥Tg,rfn∥B = 0. In fact, since ∥g∥B . M(g), we have

|g′(z)| . M(g)

1− |z|2
.

From ∥fn∥L2,λ ≤ 1 and Lemma 3.2, it yields that (1−|r|2)(1−λ)/2|fn(rz)|
. 1. Thus,

∥Tg,rfn∥B = sup
z∈D

(1− |z|2)|fn(rz)||g′(z)|

. M(g) sup
z∈D

1

(1− r2)(1−λ)/2
.

Accordingly, by the dominated convergence theorem, one reaches

lim
n→∞

∥Tgrfn∥B = 0. �
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Now, we present the main result of this section.

Theorem 4.4. Suppose 0 < λ < 1 and g ∈ H(D). If Ig : L2,λ → B is
bounded, then

∥Ig∥e,L2,λ→B ≈ ∥g∥(λ−1)/2.

Proof. Choose the zero operator O : L2,λ → B : f 7→ 0. Since O is
compact and ∥O∥ = 0, we get

∥Ig∥e,L2,λ→B = inf
K

∥Ig −K∥ ≤ ∥Ig∥ . ∥g∥(λ−1)/2.

Conversely, choose the sequence {bn} ⊂ D such that |bn| → 1
as n → ∞. Considering the sequence of functions fn(z) = (1 −
|bn|2)(1−λ)/2(φbn(z) − bn), we obtain ∥fn∥L2,λ . 1 by Lemma 3.1. By
an easy calculation,

fn(z) = −(1− |bn|2)(1+λ)/2

∫ z

0

dw

(1− bnz)2
,

and thus fn converges to zero uniformly on compact subsets of D. Then
∥Kfn∥B → 0 as n → ∞ for any compact operator K. So

∥Ig −K∥ & lim sup
n→∞

∥(Ig −K)fn∥B

≥ lim sup
n→∞

(∥Igfn∥B − ∥Kfn∥B)

≥ lim sup
n→∞

∥Igfn∥B .

By (3.1), we have

∥Ig −K∥ & lim sup
n→∞

∣∣∣∣ g(bn)

(1− |bn|2)(1−λ)/2

∣∣∣∣.
Then the arbitrary choice of the sequence {bn} implies

∥Ig∥e,L2,λ→B & ∥g∥(λ−1)/2. �

Theorem 4.5. Suppose 0 < λ < 1 and g ∈ H(D). If Tg : L2,λ → B is
bounded, then

∥Tg∥e,L2,λ→B ≈ lim sup
|a|→1

(∫
D

(
1− |a|2

|1− az|2

)p+1−λ

|g′(z)|2(1−|z|2)pdm(z)

)1/2
.
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Proof. For any rn ∈ (0, 1) such that rn → 1 as n → ∞, we introduce
Tg,rn : L2,λ → B which is compact. Letting s ∈ (0, 1), we have

∥Tg∥e,L2,λ→B ≤ ∥Tg − Tg,rn∥ ≈ sup
∥f∥L2,λ=1

∥Tg − Tg,rn∥B

= sup
∥f∥L2,λ=1

× sup
a∈D

(∫
D
|f(z)−f(rnz)|2|g′(z)|2(1−|φa(z)|2)p+1−λdm(z)

)1/2

≤ sup
∥f∥L2,λ=1

× sup
|a|≤s

(∫
D
|f(z)−f(rnz)|2|g′(z)|2(1−|φa(z)|2)p+1−λdm(z)

)1/2

+ sup
∥f∥L2,λ=1

× sup
|a|>s

(∫
D
|f(z)−f(rnz)|2|g′(z)|2(1−|φa(z)|2)p+1−λdm(z)

)1/2

≤ sup
∥f∥L2,λ=1

× sup
|a|≤s

(∫
D
|f(z)−f(rnz)|2|g′(z)|2(1−|φa(z)|2)p+1−λdm(z)

)1/2

+ 2 sup
|a|>s

(∫
D

(
1− |a|2

|1− az|2

)p+1−λ

|g′(z)|2(1− |z|2)pdm(z)

)1/2

, K1 +K2.

Since |a| ≤ s is a closed set of D and g ∈ BLp,λ, the dominated
convergence theorem yields K1 → 0 as n → ∞.

Now, letting n → ∞ and then letting s → 1, we get

∥Tg∥e,L2,λ→B

. lim sup
|a|→1

(∫
D
(
1− |a|2

|1− az|2
)p+1−λ|g′(z)|2(1− |z|2)pdm(z)

)1/2

.

Conversely, let In ⊂ ∂D be such that |In| → 0 as n → ∞. ζn is the
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center of arc I and bn = (1− |In|)ζ, so

(1− |bn|2) ≈ |1− bnz| ≈ |In|, z ∈ S(In).

Consider the function Fn(z) = (1 − |bn|2)(1 − bnz)
(λ−3)/2. Then

∥Fn∥L2,λ . 1 and Fn → 0 uniformly on the compact subsets of D as
n → ∞ by Lemma 3.1. Thus, ∥KFn∥B → 0 for any compact operator
K. Therefore,

∥Tg −K∥ & lim sup
n→∞

∥(Tg −K)Fn∥B

≥ lim sup
n→∞

(∥TgFn∥B − ∥KFn∥B)

≥ lim sup
n→∞

∥Tgfn∥B

& lim sup
n→∞

(
1

|In|p

∫
S(In)

|Fn(z)|2|g′(z)|2(1− |z|2)pdm(z)

)1/2

≈ lim sup
n→∞

( 1

|In|p+1−λ

∫
S(In)

|g′(z)|2(1− |z|2)pdm(z)

)1/2

.

Since the sequence {In} is arbitrary, we conclude

∥Tg∥e,L2,λ→B

& lim sup
|I|→0

(
1

|I|p+1−λ

∫
S(I)

|g′(z)|2(1− |z|2)pdm(z)

)1/2

≈ lim sup
|a|→1

(∫
D

(
1− |a|2

|1− az|2

)p+1−λ

|g′(z)|2(1− |z|2)pdm(z)

)1/2

.

This completes the proof. �

We have the following corollary about their compactness.

Corollary 4.6. Suppose that 0 < λ < 1 and p > 1. Then:

(i) Ig : L2,λ → B is compact if and only if g = 0.

(ii) Tg : L2,λ → B is compact if and only if g ∈ BLp,λ
0 .
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5. Boundedness and essential norm of Ig and Tg from L2,λ
0

to B0.

Theorem 5.1. Let 0 < λ < 1 and g ∈ H(D). Then Ig : L2,λ
0 → B0 is

bounded if and only if g ∈ H∞
(λ−1)/2. Moreover,

∥Ig∥ ≈ ∥g∥(λ−1)/2.

Proof. Necessity. Assume that Ig : L2,λ
0 → B0 is bounded. Then it

is clear that Ig : L2,λ
0 → B is bounded. The necessity of Theorem 3.3,

together with fb(z) ∈ L2,λ
0 (D), proves g ∈ H∞

(λ−1)/2.

Sufficiency. Let g ∈ H∞
(λ−1)/2. Then, from Theorem 3.3, Ig : L2,λ →

B is bounded, and hence Ig : L2,λ
0 → B is bounded. It suffices to prove

that, for any f ∈ L2,λ
0 , Igf ∈ B0. In fact, for any f ∈ L2,λ

0 , we have

lim
|a|→1

∫
D
|f ′(z)|2|g(z)|2(1− |φa(z)|2)2−λdm(z)

= lim
|a|→1

(1− |a|2)1−λ

×
∫
D
|f ′(z)|2(1− |φa(z)|2)|g(z)|2

(
1− |z|2

|1− az|2

)1−λ

dm(z)

≤ ∥g∥(λ−1)/2 · lim
|a|→1

(1− |a|2)1−λ

×
∫
D
|f ′(z)|2(1− |φa(z)|2) dm(z) = 0.

Consequently, Ig : L2,λ
0 → B0 is bounded. �

Theorem 5.2. Suppose that 0 < λ < 1 and g ∈ H(D). If Ig : L2,λ
0 →

B0 is bounded, then

∥Ig∥e,L2,λ
0 →B0

≈ ∥g∥(λ−1)/2.

Proof. As a matter of fact, if g ∈ H∞
(λ−1)/2, then for any f ∈ L2,λ

0 ,

Igf ∈ B0. Since fn(z) ∈ L2,λ
0 (see Theorem 4.4), we complete the proof

as the same as in the proof of Theorem 4.4. �
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Theorem 5.3. Suppose that 0 < λ < 1 and g ∈ H(D). Then the
following conditions are equivalent :

(i) Tg : L2,λ
0 → B0 is bounded ;

(ii) g ∈ BLp,λ
0 for all p ∈ (1,∞);

(iii) g ∈ BLp,λ
0 for some p ∈ (1,∞).

Moreover,
∥Tg∥ ≈ M(g).

Proof. (i) ⇒ (ii). Suppose that Tg is bounded. For any I ⊂ ∂D, let
b = (1− |I|)ζ, where ζ is the center of I. Then

(1− |b|2) ≈ |1− bz| ≈ |I|, z ∈ S(I).

Concerning the functions Fb(z) in Lemma 3.1, we have Fb(z) ∈ L2,λ
0 (D);

thus, Tg(Fb(z)) ∈ B0. Furthermore, from Proposition 2.2, it yields

g ∈ BLp,λ
0 .

(ii) ⇒ (iii). It is obvious.

(iii) ⇒ (i). Fix p ∈ (1,∞) and g ∈ BLp,λ
0 . Then from Theorem 3.4,

Tg : L2,λ → B is bounded, and hence Tg : L2,λ
0 → B is bounded. It

suffices to prove that, for any f ∈ L2,λ
0 , Tgf ∈ B0. Indeed, g ∈ BLp,λ

0 ,
for every ε > 0 there is a constant δ > 0 such that, as |J | < δ,

1

|J |p−λ+1

∫
S(J)

|g′(z)|2(1− |z|2)pdm(z) < ε.

With the above δ, for any |I| < δ, we break up S(I) in the same way
as in Theorem 3.4. Then, by (3.2),∫

S(I)

|g′(z)|2(1− |z|2)p+λ−1dm(z)

.
∞∑

n=0

∑
J∈Dn(I)

∫
S(J)

|J |λ−1|g′(z)|2(1− |z|2)pdm(z)

≤
∞∑

n=0

∑
J∈Dn(I)

ε|J |λ−1|J |p−λ+1

. ε|I|p;
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namely,

lim
|I|→0

1

|I|p

∫
S(I)

|g′(z)|2(1− |z|2)p+λ−1dm(z) = 0.

Now, it is easy to see that

lim
|I|→0

(
1

|I|p

∫
S(I)

|f(z)|2|g′(z)|2(1− |z|2)pdm(z)

)1/2

. ∥f∥L2,λ · lim
|I|→0

(
1

|I|p

∫
S(I)

|g′(z)|2(1− |z|2)p+λ−1dm(z)

)1/2

= 0.

In conclusion, Tg : L2,λ
0 → B0 is bounded. �

Lemma 5.4. Suppose that 0 < λ < 1, 1 < p and g ∈ BLp,λ
0 and the

operator Tg,r : L2,λ
0 → B0 satisfies

Tg,rf(z) =

∫ z

0

f(rw)g′(w) dw,

where r ∈ (0, 1). Then Tg,r : L2,λ
0 → B0 is compact.

Proof. Since g ∈ BLp,λ
0 , it follows from Lemma 4.3 that Tg,r : L2,λ →

B is compact, and hence Tg,r : L2,λ
0 → B is compact. As a matter of

fact, in Theorem 5.3, if g ∈ BLp,λ
0 , then for any f ∈ L2,λ

0 , Tgf ∈ B0.

Together with Lemma 4.1, we conclude f ∈ L2,λ
0 , Tg,rf ∈ B0, so that

Tg,r : L2,λ
0 → B0 is compact. �

Theorem 5.5. Let 0 < λ < 1 and g ∈ H(D). If Tg : L2,λ
0 → B0 is

bounded, then

∥Tg∥e,L2,λ
0 →B0

≈ lim sup
|a|→1

(∫
D

(
1− |a|2

|1− az|2

)p+1−λ

|g′(z)|2(1−|z|2)pdm(z)

)1/2

.

Proof. Noting that Fn(z) ∈ L2,λ
0 and the compact operator Tg,r in

Lemma 5.4, we can obviously complete the proof as the same as in
proof of Theorem 4.2. �
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The following corollary is an immediate consequence of the above
theorem.

Corollary 5.6. Let 0 < λ < 1 and p > 1. Then

(i) Ig : L2,λ
0 → B0 is compact if and only if g = 0.

(ii) Tg : L2,λ
0 → B0 is compact if and only if Tg : L2,λ

0 → B0 is

bounded if and only if g ∈ BLp,λ
0 .
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11. C. Cascante, J. Fàbrega and J.M. Ortega, The Corona theorem

in weighted Hardy and Morrey spaces, Ann. Sc. Norm. Super. Pisa, DOI

10.2422/2036-2145.201202 006.

12. O. Constantin, A Volterra-type integration operator on Fock spaces, Proc.

Amer. Math. Soc. 140 (2012), 4247–4257.

13. C. Cowen and D. MacCluer, Composition operators on spaces of analytic
functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.

14. P. Duren, Theory of Hp paces, Academic Press, New York, (1970).

15. D. Girela, Analytic functions of bounded mean oscillation, Complex function

spaces, Univ. Joensuu Dept. Rep. Ser. 4, University of Joensuu, Joensuu, 2001.



308 ZHENGYUAN ZHUO AND SHANLI YE

16. J. Laitila, S. Miihkinen and P. Nieminen, Essential norms and weak com-
pactness of integration operators, Arch. Math. 97 (2011), 39–48.

17. P. Li, J. Liu and Z. Lou, Integral operators on analytic Morrey spaces, Sci.
China Math. 57 (2014), 1961–1974.

18. J. Liu, Z. Lou and C. Xiong, Essential norms of integral operators on spaces

of analytic functions, Nonlin. Anal. 75 (2012), 5145–5156.
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