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ABSTRACT. The undamped linear wave equation with
convolution boundary conditions is considered. Physically,
the boundary condition models the interaction of a viscoelastic
boundary material with memory and the incident waves. We
consider three geometric configurations: an interval, a disc
and a cylinder. The main result is that the rate of exponential
decay can be arbitrarily low. This is demonstrated by proving
the existence of eigenvalues that are arbitrarily close to the
imaginary axis. The assumptions on the convolution kernel a
are: it is of positive type and its Laplace transform a()) tends
to zero when S\ goes to oo while R\ stays bounded.

1. Introduction. Consider a model for the evolution of sound in a
compressible fluid with viscoelastic surface (cf. [5]):

pue(t,z) — Ap(t,z) =0, z€Q,
1 0
M) —p(t,a:)—l—a*pt(t,:v):O, z € 09,
on

where p(t,z) € R denotes acoustic pressure, & C R? is a domain
with smooth boundary and n(z) the outer normal to 92 at x. The
convolution is a*v(t,.) := fioo a(t—s)v(s,.)ds, a is a given real-valued
function on [0, 00).

One can consider either solutions on the line (¢ € R), or solutions
on the halfline (¢ € [0,00)) with initial conditions p(0,.) = po(.),
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p+(0,.) = p1(.). The latter case corresponds to solutions on the line
vanishing on (—o0,0), and in this case a x v(¢,.) = fot a(t — s)v(s,.)ds.
Let p be a solution on the halfline. Taking formally the Laplace
transform p{., z) of p(.,z), we obtain the equation
N\, z) — AP\, z) = Ap(0,z) + pe(0,z), =z € Q,
2 o

5o (A @) + XGNP ©) =a(Np(0,2), = € 9.

We say that A € C\ (—o0, 0] is in the spectrum of equation (1), A € &,
if the following elliptic boundary value problem admits a nontrivial
solution v € H'(Q),

Nov—Av=0, z€eQ,
(3) 0
8—:}1 +Xa(\v =0, zeco.
Under the hypotheses below, the Laplace transform a(A need not exist
for A € (—o0,0]. If A € G, then also A € &, since a(\) = a(A) and v is
the solution for .

Note that if A € &, then there is a nontrivial solution of (1) on the
line of the form p(t, z) = e*wv(x). If RA > 0, this gives an exponentially
growing solution. However, under our hypotheses, there are no such
points in the spectrum. Also note, that one could solve equation (1)
by Laplace transform, provided there is an inverse Laplace transform
formula outside &. This makes important the location of &.

Our goal in this paper is to express the closeness of the spectrum to
the imaginary axis. In particular, we prove that there exist points of
the spectrum with non-positive real part and arbitrarily close to the
imaginary axis. This is in some sense (concerning Laplace inversion
method and concerning stability of the system) a negative result. We
do this in three examples of {2: the interval, a cylindrical domain, the
disc.

As one of the referees pointed out, an argument to exclude exponen-
tially decreasing solutions on the halfline might be the following: if a
solution of (1) would decay exponentially with p;|sq # 0 in a neighbor-
hood of the origin, then from the boundary condition in (1) one would
obtain that @ is extendible meromorphically to a neighborhood of the
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origin, which is not the case for a(t) =t , o € (0,1). We would like to
emphasize that in this article we prove actual existence of solutions on
the line with either an arbitrary slow exponential decay rate as t — oo
(case A € G,R\ < 0) or no decay (case A € S, R\ = 0). In fact, if
)\ € &, then p(t,z) = e*v(z) is a nontrivial solution of (1) on the
line. In the parallel article[4] we consider solutions on the halfline and
prove that they converge to 0 as ¢t — oo, but without specifying any
decay rate. In [4] a different method is employed, and other technical
assumptions on the kernel a, namely that a is completely monotonic
and integrable on (0,00), are used. In the recent article [2] the same
model, including a(t) = t %e ', a € (0,1), ¢ > 0, is treated and
polynomial decay rate of solutions on the halfline is proved by yet a
different method. The general assumptions on a in [2] are structurally
different from ours and also from the ones in [4].

We will use the following hypotheses:

(H1) The kernel a is a function of positive type; equivalently,
Ra(\) > 0 for all RA > 0.

(H2) The Laplace transform of a, a()), has a holomorphic extension
to C\ (—00,0] which satisfies lim| x|, 00, A¢(—00,0] @(A) = 0.
A weaker version of (H2) is
(H2') There exists an g2 > 0 such that lim|gx|—c0,|0A|<es @(A) = 0.
(H3) There exist constants €1 > 0 and M7 > 0 such that

arga(A) < —e; provided SA > 0, RA <0 and |\ > My,
arga(\) >e;  provided S\ <0, ®A <0 and |A| > M;.

Actually, we assume only (H1) and the weaker version (H2') for the
results about existence of points of & near to the imaginary axis (first
part of Theorem 3.1, Theorem 4.3 and Theorem 5.2); whereas (H1),
the stronger version (H2) and (H3) are needed for statements about
the location of & (second part of Theorem 3.1, Theorem 4.2.)

An example of a which satisfies all the hypotheses is a(t) = t~* with
a € (0,1), since a(A) = I'(1 — a)A*" 1. (N.B. arga()\) = (a — 1) arg ),
Ra(A) =T(1— a)A|* cos((aw — 1) arg A).)

In [4] it is assumed that a is completely monotonic and a € L*(0, c0).
As Lemma 2.3 below shows, these assumptions imply our hypotheses
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(H1) and (H2') and thus there is no exponential decay of solutions
of (1), neither under the assumptions (H1), (H2') nor under the
assumptions of [4]. In neither case do we get any decay rates.

The approach of the present paper is based on Rouché’s theorem
([6]): Let @ C C be a domain, v C Q a closed path such that
Ind,(z) = 0 for all z ¢ , and Ind,(z) = 0 or 1 for all z € Q\ 7.
Denote €; := {z € C;Ind,(z) = 1}. If the functions F' and G are
holomorphic in 2 and

|F(z) = G(2)| < |F(2)|, z€n,
then F' and G have the same number of zeros, counted with multiplicity,

in Ql.

For the sake of definiteness, in this paper we consider the branch of
the square root with negative real part, and the branch of argument
argz € (—m,m).

2. Preliminaries. The following two lemmas are general results
about the location of &. The third stands to compare the hypotheses
of [4] to (H2').

Lemma 2.1. If a satisfies (H1), then & C {RA <0}.

Proof. Let R\ > 0. We multiply equation (3) by A7, integrate over
), use the divergence theorem and the boundary condition to obtain

)\/ \Av|2+x/ \Vv|2+?i()\)/ |2 = 0,
Q Q [519]

By taking the real part and using that a is of positive type, we obtain
that necessarily v = 0. o

Lemma 2.2. If Ra(ip) # 0 for some o € R\ {0}, then ip ¢ &.

Proof. Suppose that A = ip € &NiR. Then there exists av € H(),
v # 0, such that —g?v — Av = 0 in , dv/0n + iga(ig)v = 0 on ON.
Multiplying the first equation by 7, using the divergence theorem and



SPECTRUM OF A VISCOELASTIC MODEL 525

the second equation, we obtain

—92/ |v|2+/ \Vv|2+iga(ig)/ (]2 = 0.
Q Q o

By taking the imaginary part, we have
oRi(io) [ ol =o.
a0

Hence, if o # 0 and Ra(ip) # 0 we obtain necessarily that v = 0
on 99, and from the boundary condition also that dv/dn = 0 on
0. Therefore, v can be extended (by 0 outside Q) to a function
vy € HY(R3) which satisfies Av; = —¢?v; on R3. Since the Laplacian
on R™ has an empty point spectrum, this is a contradiction. ]

Now let us turn to the assumptions used in [4]. The assumption that
a is completely monotonic is equivalent to the existence of some non-
decreasing function v : [0,00) — [0,00) such that a(t) = [; e **dv(s)
([7])- This implies that a(\) = fooo )\%rs dv(s); therefore, any completely
monotonic a is of positive type, and @ admits a holomorphic extension
to C\(—o00, 0]. Moreover, for a completely monotonic a, the assumption
a € L*(0,00) is equivalent to dv({0}) =0, [;° L dv(s) < oo.

Lemma 2.3. Suppose that a(t) = [~ e *dv(s), t > 0, with
v : [0,00) — [0,00) nondecreasing, fooo Ldv(s) < co. Then for any
e > 0 one has
lim  a(\) = 0.
[SA|— 00
|RA|<e

Proof. In order to estimate |a())|, split the integral into one over [0,1)
plus one over [1,00). The first one converges to zero as |SA| — oo. The
second one can be estimated by showing that sup,c(; ) ﬁ is finite,
with a bound independent on A, if 3| is large and |R)| < . o

3. Example on the interval. We consider the one-dimensional
form of (1), i.e., 2 =(0,1) C R.
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Theorem 3.1. If a satisfies (H1) and (H2'), then there exists a
sequence A, € & such that R\, <0, R\, — 0, |S\,| — 0.

If a also satisfies (H2), then for all o > 0 (small) there exists an
M > 0 such that

S C{NeC, N <MIU{RN> —0} U(~00,0].

Proof. The equation to be solved for v reads

Moy vy, =0, z€(0,1),
—v.(0) + Aa(A)v(0) =0,
v (1) + Aa(A)v(1) = 0.
A general solution of the differential equation is v(z) = c1€*® +coe™2%;
the boundary conditions have the form

(=A+Aa(N))er + (A + A@(A)ea =0
(Ae* £ Xa(N)eM)er + (—Ae * +Xa(M)e Mep = 0.

A nontrivial solution (c1,c2) # (0,0) exists if and only if the determi-
nant is zero; this gives

We restrict us to solving

a1 _

e 1
4 AV ie. G —
(4) A+ 1 e’, ie. a(\)+

— =0.
er — 1
We will use Rouché’s theorem to compare the number of zeros of
A A A
G(A) =a(\) + S5 ar~1d of F(\) = %1, The function &t is 2mi-
periodic, has zeros at A, = —mi + 2mmi, poles at 2mni, m € Z. On
ing A

the circle B(Ap,,€),e < m, we have |2ﬂ_‘}\ > 6(¢) > 0, independently
of m. Choosing ¢ = ¢,,, = 0 we have

IG(A) — FO)| = [a\)] < 8(em,) < [F(N)| for A € 0B(Am,,em. ),
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where, using (H2'), the subsequence m,, is chosen to satisfy [@(\)| <
d(em,,) for |A| > 2wm,,. Rouché’s theorem says that G has exactly one

zero A, in B(Ap, ,Em,, ) Which, in turn, is a solution of (4).

To prove the second part of the statement, let ¢ > 0 be small.
Then |¢ =+ | > =2 for RA < —p. By (H2), choose M such that

14+e—¢
[a(\)] < hz > for |\| > M, so that R\ < —p along with |\| > M
implies a(\) + EA # 0. o

4. Example on a cylindrical domain. We consider 2 =
(0, L)xQo, Qo C R? such that the operator A on L?(Qp) with Neumann
boundary condition has a spectral resolution, i.e., that there exists
an orthonormal basis of L2(£)) consisting of eigenfunctions. We will
consider the case when the viscoelastic damping takes place only on
the faces of the body, whereas, on the side, homogeneous Neumann
conditions hold:

pie —Ap=0 in (0,L) x Qo,
g—z +axp, =0 on {0} x Qo, {L} x Q,
Ip

= 0 on (0,L) x 9.

Let ¢, —7],% < 0, £ € N, be the eigenfunctions and eigenvalues
of the operator A on 2y with Neumann boundary condition, that is,
Ag¢r = —niéy in o, and %Lnk =0 on 09g.

Lemma 4.1. Let A € C\ (—00,0]. One has A\ € G if and only if
there exists a k € N such that A is a solution of one of the following
two equations:

14 elVAHg

(5) CORE v

Proof. We have to solve the following equation for v:
MNy—Av=0, z€Q,
Vu-n+Xa(A)v =0 on {0} x Qg,{L} x Qo
Vu-n=0 on (0,L) x 0.
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Decompose v(z1, T2, 23) = Y pe; Uk(@1)Pr(x2, z3). Then the equation
for v is equivalent to

Az’ﬁk(m) - 5;;(:17) +’17k(m)77]% =0, z¢& (OaL)a
F.(0) + AT (0

T(L) + X\a(\)Te(L) =0, k€ N.

A general solution is
~ /\2 2 _ 2 2
vk(x) = Cg,1€ Atz + cp eV A T

The boundary conditions say

(\ /A2 + ke’ + Aa(/\)e(J) Ch,1
+ (\/)\2 +npe’ + )\Zi()\)eo> cko2=0

( A2 4 eV AL 4 A&(A)evVJr"iL) Ch1
+ <— A2 g2 e VITHIL Aa(A)e—x/WL) cky2 = 0.

A nontrivial solution exists if and only if the determinant of the system
for (ck,1,ck,2) is zero, i.e.,

~ 2
()\a()\) — N2 n,%) _ 2Ly
Aa(A) + /A2 +

This is equivalent to (5). o

Theorem 4.2. Assume that a satisfies (H1), (H2) and (H3). For all
0 > 0 (small) there exists M > 0 such that

S C{AeC, N <M}U{RN> -0} U(—00,0).

Lz .
Proof. As z — z}izh is an even function, both branches of the

square root can be used in (5) (with either combination of + and —).
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For the sake of definiteness we consider the branch with negative real
part of the square roots, and argz € (—m, 7).

In the proof we will make use of the following properties of complex
numbers, which can be checked by elementary calculations: if A < 0

and 1 > 0, then R4/A2 + 2 < R\ and arg /A2 + 12 > arg A provided
SA > 0, and arg 4/ A2 + n? < arg A provided S\ < 0.

We divide the proof into several steps.

Step 1. Let £; and M; be given in (H3). We prove that there exists
an r > 0 (possibly large) such that if R/A\? + 0 < —r and |A| > M;
then A cannot be a solution of (5). (N.B. From this follows, since
R/A2 + 12 < R\, in particular that

RA < —r,|A\| > M; implies A ¢ S.)

. . Lz
In fact, since limg, , o }_ﬁ =1, we can find an r > 0 such that

14 elvVA ¢ —
\arg ]-6114)\2\/7772‘ < 51 provided Ry /A2 -+ 77]% < —r.
Fe i

Suppose, by contradiction, that (5) holds. We will compare the
arguments of the left-hand side, respectively right-hand side of (5).
For S\ > 0 we have arg \/A? + n{ > arg ), and (5) yields:
arg\ — e > arg A + arga(\) = arg (A\a(\))

1+ lVA*
—————/A
1T eLM
1+ LV}
15 LV

which is a contradiction. Similarly, for A < 0 we have arg /A2 + 72 <
arg A\, and therefore (5) implies:

= arg o

€
= arg + arg )\2+77,%>7§1+arg)\,

arg\ +¢e; < arg\ + arga(A)
1+ elVA*

€1
——F = +ar A2 402 < = Farg),
vl ;

= arg 5

which is a contradiction, too. This proves Step 1.
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Step 2. We prove that for any ¢ € (0, ) fixed there exists a constant
M, € (0,1) such that if A and n > 0 satisfy

A< and R/PF) € [0,
then
YL o 0y and ROV < ol
We proceed by contradiction and assume that no such M exists. Then
there exist sequences \,, 7, such that
i A%t 7l

n—oo  |AZ]

=0.

Since R4/A2 + n2 < R\, we have actually R\, € [-r, —g].
If A2 + 72 would go to 0, then its real and imaginary parts would go
to 0 too,
0® — 3%\, <R\, — SN, + 2
=R\, + 1) =0,
2A RN, = S(A2 +12) = 0,

but the first line above implies that |S\,| is bounded away from 0,
while the second one implies that in contrary S\, — 0, so A2 + 2
cannot go to 0.

Therefore we must have lim |\2| = co. Since [A2] = R2)\,, + 32\, and

since R\, is bounded, we actually have lim |S)\,| = oco. This yields
2
that RA2 = RN, — 3%\, = —o0 and Dal 1.

— 2
n

On the other hand, using that Rz? = R?z — 322 = R%z — f;éi first
for z = 4/AZ 4+ 12, then for z = \,, we have

2 )\2 2
RO+ 02) = RV oo,

ENsET

<prZ_ %
- 4r2
1
=72 R(%ZAH — RAZ)ARZN,
94
<r? +RA2.

= r2
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Therefore,

_ 2 2
> liminf W

(2= (o /) - RN _
pe] |

2
lim inf t |n"|

A2
By

> liminf —

This contradiction proves the first part of Step 2.

The second part of Step 2 is a direct consequence of the first part and

of Jarg /A% + 02| > |arg A|:

. /\2 +772
————— = cos(m — |arg /A2 + n?
e I

> cos(m — |arg \|)

:_%)\> ¢ >97]M2

SN W
Step 3. Now we prove the theorem by contradiction. Suppose that

there exist a ¢ > 0 and sequences {\,}n,en C © and {nin}neN, such
that R\, < —p, |An| = o0 and

1+6LM\/W o
VA
l—eLm\/ﬁ
Lo/, VT e

n € N. Then, by Step 1, we must have R,/A2 + nin > —r for large
n’s. By Step 2 we obtain

A2+ R
S > M, and %(,/)\%—i—n,%n) < —oM,y < 0.

The latter inequality implies that there exists an M3 > 0 small,
depending only on Msp, but not on n, such that

L A2 2 L A2 2
14 "V AT 1— "V At .
S — ——| > M.
L A2 2 L A2 2
1—¢eV 7t e, 14+e V n e,

> M3 and
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So we arrive at

Tde Vi LV,

A
)| = | = e

‘,/Az +2 ‘ > My M| A,

which is a contradiction with @(\,) — 0 (hypothesis (H2)). The
theorem is proved. ]

1Fe

Theorem 4.3. If a satisfies (H1) and (H2') then there exists a
sequence A, € & such that R\, <0, R\, — 0, |S\,| = 0.

Proof. As before, we use the branch of the square root with negative
real part.

Let n > 0 be fixed, and denote

LA 4 q LA/ A2+n?2 1+/)22 2
FOy =S G0 =am) + FIVA AT
e -1 eL\/)\2+n2 -1 A

We are looking for a sequence of zeros of G,. The function F' is %—

periodic, has zeros at Xm = im+i2mr 4nd poles at Xm — %’, m € Z.
Using Rouché’s theorem we will find zeros of G, in small neighborhoods

of zeros of F'.

To this end let us fix 0 < ¢ < 7. Denote 7, := (9B(Xm,€),
m € Z. The function F is holomorphic on a neighborhood of the

closed ball B(An,¢) having exactly one zero inside the ball. Because
of the periodicity, the number

0 :=min{|F(A)|: A€ym} >0

is independent of m € Z (it depends on ¢). Note that

/AT 1 12 1+Z—2—>—1 as |A\| = oo with R\ <0,

A 1+% > — 1 as |\ — oo with RA > 0.
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We distinguish these two cases in the calculation of the difference

Gp(A) = F(N):

eLV/ A% 4n? +1 /\2 +7]2 el 11
IV _ 1 A elA —1
a0 - st (V5 41)

(1) Gy(A) = F(A) =a(A) +

elr—1 A

+ <6L“2+"2+1 eLm) VIR <0,

eLVA24n2 _q elr—1

elr—1 A

() + e (@ _ 1)

L/ 32492 1 Laxiq |\ /22492 .
+ <:m2+n2j1 (‘;mtl) A RA > 0.
By (H2'), there exists an m; € N such that if m > my and A € ~,,
then |@(\)| < §. By periodicity, there exists a K > 0 such that

LA
e"r+1
7@“‘1‘§K’ A E Y, mE Z.

There exists an my € N such that, for m > mg, A € 7,,, one has

‘ VA2

+1‘<i, for A <0,

A 4K
VA2 +n? 0
‘%—1‘<E, for A > 0.

For the third term in the difference Gy, (A) — F(X) in (7) we will work
with the following expressions:

LV L A 4 L2242
LV T 1T Z(BL\/W_ 1)(elr — 1)
LV +1 e 41 LA 1 — eL(V/An2=N)
LA _ elA -1 ¢ (eL\/W_l)(eLA_l)'
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Note that one has

V22 A= 1 0 as |A| = oo with R\ <0,
L
,,72

V22— A= — 0 as |\ — oo with R\ > 0.
+

Further, we express

for RA < 0: elVA*H1? _ 1 = ¢ LA (eL( AENPHA) 41— eL)‘>

)

for RA > 0: fVAH7* 1 = A <€L(” AFHn=2) 1) + (6”‘ -1).

Therefore, the third term in the difference of G, (\) — F(\) can be
written in the following form:

2 (eL(V Nn) 1)
L 1 /)‘2+772
(eL(\/A2+n2+eA),1)+(1,em) elA—1 X RA <0,
2 (1 — el VW—A))
L 1 />\2+’r[2
e“(eL(\/A2+n§fA>71)+(eLA71) T RA>0.

Let &, := min{|e®* — 1], X € 7,,}, which is positive and independent
of m € Z. There exists an mz € N such that, for m > mg, A € v,;,, one
has

N
A

2
for RA<0: [eEWVAH7HN) 1] < min é, o190 )
27 32ele

| <2,

2
for RA>0: [1— PV =2| < min e_Lsg—l, 010 .
27 32ele
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Then, for m > mg := max{my, my, m3} (which depends on K,¢,d,d),
and A € 7, with ®X > 0, we can estimate

2 Le 1
Gy(A) — F(\)| < g+Ki+2 010 e

- —2=4.
4K " "32ele _3 16, 6y

We get the same result when considering R\ < 0. So
G,(A\) = F\)| <3 < [F(N)], A€,

and Rouché’s theorem says that G, has exactly one zero in B(Ap,,¢),
for any m > myg. Repeating this procedure with ¢ = ¢,, — 0, we obtain
a desired sequence {\,} of zeros of G,,. O

Remark. It follows from the above proof that the points A € & which
correspond to a particular 7 approach the imaginary axis from the left
as S\ — oo. But, since the estimates in the proof are not uniform in
71, the convergence is not shown to be uniform in ng, k € N; in fact,
non-uniformity is more probable.

5. Example on the disc. We consider the two-dimensional version
of (1) with Q@ = B(0,1) = {(z,y) € R% z? +y*> < 1}.

Lemma 5.1. Let A € C\ (—00,0]. One has A € & if and only if
there exists a k € Ny for which the problem

2
(8) u'(r) + %u'(r) — (% + )\2>u(r) =0, re€(0,1),
(9) o' (1) + Aa(MN)u(l) =0,
(10) |r1—i>I(IJI+ u(r)] < oo

has a nontrivial solution u.

Proof. The equation to be solved reads

My —Av =0 in B(0,1),
ov

o +Xa(A)v =0 on 9B(0,1).

To solve the equation for v we introduce polar coordinates: x = r cos ¢,

— rsi — 92 410 19 9 _ 0 i
y=rsing, A= 55+ 5+ = 9570 B = b and arrive at

1 1

A2 — vy, — U T Uy = 0, re€(0,1), € (0,2m),

v +Aa(AN)v =0, r=1, € (0,27).
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We decompose v(r,.) in Fourier series with respect to 1, cos ki, sin ke,
ke N: v(r,0) = > pe o U(r)Pr(p) with 9 = 1, ®o,_1(p) = coskyp,
Por(p) = sinkyp, k € N, %‘I’k = @k with no = 0, 2k, = M2k—1 =
—k2, k € N. Then the equation for v is equivalent to the system

- - 1_ -
N2y, — o) — ;vfc — 3Ok = 0, re(0,1),

T+ XG(N)TE =0, r=1, ke N.

Having a nontrivial v is equivalent to having a nontrivial vy, for some

k € Np. O

Theorem 5.2. If a satisfies (H1) and (H2'), then there exists a
sequence A, € & such that R\, <0, R\, — 0, |SA\,| — oo.

Proof. The theory of second order linear ordinary differential equa-
tions (e.g., [3, Chapter 9, Section 7]) gives us the general solution to
(8) in the form of the linear combination Cyuy + Covy, with coefficients
C,,C5 € C, where

(1) k ) )

(12)

v (1) = ug(r)log(r) +r—* Z cont®™, cn €C, (co=1),
n=0

and J are the Bessel functions

k € No.

Note that u¢(0) = 1, and all other uy’s are 0 at the origin. Therefore,
for all k£ € Ny, v is unbounded as r | 0. This is ruled out by the
boundary condition (10), and therefore Cy = 0.
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The boundary condition (9) reads

k
e <%> (IAJL(7) + Xa(\)Je(iA)) = 0.

We are interested in R\ < 0. Then I(iA) < 0. Since Ji has only real
zeros ([1, page 372]), we can equivalently write

Ji(3N)

Ty

(13) —ia(\) +

We arrived at the following conclusion: A € G if and only if there exists
a k € Ny such that A solves (13).

Using the recurrence formula 2J;, = Ji_1 — Ji41 and asymptotic
expansions of Ji(z) for large |z| ([1, 9.2.1]) we have, for fixed k£ € Ny,
(14)

JL(A)  sin(id — (2k + 1)7/4) + e/ SV O(Jin|~1)

Je(iN)  cos(id — (2k + 1) /4) + elSENTO(JiN]| 1)

as |A| = oo.

Note at this point, that we do not claim uniformity of the terms
O(]iA|7t) with respect to k.

As a(\) — 0 for |3\ — oo (actually hypothesis (H2')), Rouché’s
theorem implies that G has zeros in small neighborhoods of zeros of
Fy, with

Fi(\) == tan(id — (2k + 1)1 /4), Gr(\) = —ia(\) +

More specifically, let A, be the zeros of Fr()), ie.,

Am = —i(mm + (2k+ D)7 /4), meZ.

The poles of Fj, are A, + im/2. Let 0 < & < m/2. The function F())

is holomorphic in a neighborhood of the closed ball B(A,,,s) and has

exactly one zero in its interior. Let v,, := 0B(Xm, ), m € Z. Because
of the m-periodicity of tan, the positive number 4§,

§ :=min{|Fx(N\)| : XA € v}

is independent of m.
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Choose mj such that for all m > m; and A € ~,, the estimate
[a(X)] < 6/2 holds. We can write

Gr(A) = Fi(A) = —ia(})
ck(N) elSENTO([iA]7Y) = s (A) elSENTO(JiN]~1)
ce(A) (er(A) + elSENTO([iA|71))

+

as |\ — oo, where si(\) := sin(i\ — (2k + 1)7/4) and cx(A) :=
cos(iA — (2k + 1)w/4). The functions s, and ¢ are 2wi-periodic
and bounded on |RA| < e. Thus, there exists a K > 0 such that
lekx (N)], [sk(A)] < K/2for all X € y,,,, m € Z. Since |ck(N)], A € v0,71, Is
bounded away from zero, e/S(M < 2 for |RA| < ¢, as well as [iA|~! — 0
for A € v, and m — oo, we can choose an mo > 0 with the following
property: There exists an L > 0 such that for all m > mgy and A € v,

ex(X) (ex () + e O )| > 1

as well as

S 101N 4
€ ‘O(|’L)\| 1)‘ < m

Thus, for m > mg := max{mi, ms} and all A € v,,,

0 K ¢
_ het =T _5< .
|Gr(A) — Fr(N)| < 5 +L 5 L § < |Fr(N)]
Therefore, by Rouché’s theorem, for m > mg, G has the same number
of zeros in B(A,,€) as has Fj, namely one, say A,.

Since € € (0,7) can be chosen arbitrarily small, we can obtain the
desired sequence A, of zeros of Gy. a
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