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ABSTRACT. We consider the two-dimensional inverse elec-
trical impedance problem in the case of piecewise constant
conductivities with the currents injected at adjacent point
electrodes and the resulting voltages measured between the
remaining electrodes. Our approach is based on nonlinear in-
tegral equations for the unknown shape of an inclusion with
conductivity different from the background conductivity. It
extends a method that has been suggested by Kress and Run-
dell [7] for the case of a perfectly conducting inclusion. We
describe the method in detail and illustrate its feasibility by
numerical examples.

1. Introduction. Electrical impedance tomography creates images
of the electrical conductivity of a medium by applying currents at a
number of electrodes at the boundary and measuring resulting voltages.
If @ ¢ R? is a simply connected bounded domain representing the
conducting medium, the electric potential w satisfies the potential
equation

divogradu =0 in )

with a strictly positive L* function ¢ representing the isotropic conduc-
tivity in . In the classical model, imposing currents on the boundary
0N is described via a Neumann boundary condition

a@ =f on 00
ov
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where f is a current density and v is the outward unit normal to 0.
The measured voltages are represented by the boundary trace g := ulsq
and the classical inverse impedance tomography problem consists in
recovering information on o from a number of current and voltage pairs

(f,9)

In a more realistic model, following [10], the electrodes are considered
as connected open subsets £, C 0 with the imposed currents given by

ou
—ds=1 =1,...,n.
Laay s py P ) ,

p

The measured voltages at the electrodes and the vanishing currents
on the space N between the electrodes are modeled by the boundary
conditions

u
u—i—sz%:Up oné&,, p=1,...,n,
and 5
3_1::0011/\/’

where 2, denotes a constant contact impedance of the electrode &,.
The inverse impedance tomography problem in the framework of the
complete electrode model consists in recovering information on the
conductivity ¢ from a number of pairs of imposed currents I,...,I,
and measured voltages Uy, ... ,U,.

However, the more complicated form of the boundary condition in
the complete electrode model leads to severe difficulties in numerical
approximations both via finite element or boundary element methods
due to singularities of the solution u at the end points of each of the
electrodes. Since on the other hand, the accuracy of reconstructions via
impedance tomography suffers from ambiguities for the location both of
the boundary itself and the electrodes [5], without any loss of accuracy
in reconstructions, it might be appropriate to use a simpler model for
the current injection, for example, by considering point electrodes as
investigated in this paper.

In a number of applications of impedance tomography the conduc-
tivity in €2 has the property to be of high contrast. This, for example,
is the case for the human thorax where the conductivity within the
lungs is much smaller than the conductivity in the neighboring tis-
sues. Also in geophysical explorations the contrast between minerals
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and the surrounding soil can be quite large. In such a situation it seems
natural to approximate the conductivity by a piecewise constant func-
tion. Then inverse impedance tomography simplifies into an inverse
transmission problem with the boundaries of the unknown subdomains
and their respective constant conductivities as unknowns. This inverse
transmission problem may now be treated via boundary integral equa-
tion methods. In our investigations on impedance tomography with
point electrodes we also will confine ourselves to the case of piecewise
constant conductivities.

More precisely, we will study the inverse problem to recover the shape
of an inclusion D, supposed to be a simply connected bounded Lipschitz
domain with constant conductivity o; in a homogeneous medium 2
with conductivity og. As background medium 2 we consider either
a disk or a half plane. The configuration of the disk covers medical
imaging of the human thorax via impedance tomography and the case
of the half plane models applications in geophysical exploration. We
position n point electrodes ¢, on the boundary 02 and denote their
location by z, for p = 1,... ,n such that £, is adjacent to £,,; (with
the convention that z,,+1 = x1). For each adjacent pair of electrodes a
current I, is imposed between the electrodes located at x, and zp,1,
and this is modeled by the Neumann boundary condition

ou

o) =— —
Ov

I,(6z, — 0s,,,) on 0N

in terms of the Dirac distribution. The inverse impedance tomography
problem we are concerned with is to recover an approximation of the
shape of the inclusion D from the measured voltages between the other
pairs of electrodes.

For the solution of this inverse problem we propose a variant of a
nonlinear integral equation method that originally was suggested by
Kress and Rundell [7] for the inverse problem to recover the shape
of a perfectly conducting medium D from measured Cauchy data on
the boundary 0f2. This method has also been successfully extended by
Eckel and Kress [1, 2] to inverse impedance tomography with piecewise
constant conductivities both for the case of Cauchy data on 02 and
for the complete electrode model. In the current setting, basically
it consists in representing the solution of the transmission problem
as a single-layer potential in terms of the Green’s function for the
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Neumann problem for 2. Then the transmission condition transform
into a well-posed boundary integral equation over 0D for the density
¢ of the potential that might be considered as the field equation. The
measured potentials at the electrodes for the various current inputs
then lead to a second and ill-posed equation in terms of the density ¢
and the boundary 0D that we might denote as data equation. Then,
roughly speaking, given a current approximation for the boundary 0D
we can solve the well-posed field equation for ¢. After this, keeping ¢
fixed, we linearize the data equation with respect to 8D to update the
boundary approximation via regularization of the linearized equation.
This procedure is iterated until some stopping criterium is satisfied.
Given a reasonable initial guess, we will provide numerical evidence for
practicality of the method.

Although for simplicity we assume that we have only one inclusion,
our approach extends to the case of a finite number of disjoint inclusions
provided we know the number of components in advance and have
reasonable a priori information on their size and location to start the
iteration. This information, for example, could be retrieved from so-
called qualitative methods such as the factorization method [3].

The plan of our presentation is as follows: In Section 2 we present
an existence analysis for the direct problem under the assumption of
a Lipschitz boundary for D including the numerical solution. Then
in Section 3 we proceed with the detailed description of the proposed
inverse algorithm. In both sections we concentrate on the case of a disk
Q as background medium and treat the case where  is a half plane
only in passing. The paper is concluded with some numerical examples
in Section 4 illustrating the feasibility of the proposed algorithm.

2. The direct problem. We begin by considering the case of an
open disk 2 of radius R centered at the origin and denote its boundary
by I' := 0. Assume that D is a simply connected Lipschitz domain
with D C Q. Both for Q and D we will denote the outward normal by
v. The trace of a sufficiently regular function u from outside a domain
will be denoted by uy and the trace from inside by u_. The same
notations will be used for the normal derivatives d,u; and 0,u_. In
terms of the constant conductivities o of the inclusion D and o of the
background Q \ D we define the piecewise constant conductivity o by
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0_:{0'0 an\D,

oy in D.

Denote the locations of two electrodes on the boundary I' by z
and z_ and impose a current I between z; and x_. In terms of the
fundamental solution to the Laplace equation given by

1 1

O(z,y) = — In ———

we introduce a harmonic function A in R? \ {z1,z_} by setting

(2.1)  A(z,z4,2_):= %{@(w,m) - ®(z,z )}, xHzxL,T_.

Formally, the forward problem amounts to seeking a solution ug to the
potential equation
divogradug =0 in Q

subject to the boundary condition

8’[1,0

UOE:I(&H_%—) onlT.
Since A satisfies A
00521(6“—695_) onT

in the distributional sense, the above problem can be cast into finding
a function u € H'(2) such that

(2.2) divograd(u+A) =0 in Q
and

ou
(2.3) 005 = 0 onl.

Here, physically speaking, A represents the imposed potential and u
stands for the induced potential. Using the fact that A is harmonic
in , the problem (2.2)—(2.3) can be equivalently written as finding
u € H'(Q) satisfying the Laplace equation

(2.4) Au=0 inQ\ 0D,



198 FABRICE DELBARY AND RAINER KRESS

the homogeneous Neumann boundary condition

ou
(2.5) o 0 onT

and the transmission conditions

(2.6) ur —u_=0 ondD
and
ou ou OA
(27) (o) %+—0'1 5_ ——(0’0—0’1)% on OD.

Since (2.4)—(2.7) define the potential u only up to an additive constant,
we impose

(2.8) /Fuds =0

as an additional normalization condition.
2.1. Existence and uniqueness.

Theorem 2.1 The direct problem (2.4)—(2.8) has at most one solu-
tion.

Proof. Assume that u is the difference of two solutions. Then, in view
of (2.4)~(2.7), Green’s integral theorem yields [, o|gradu|®dz = 0.
Together with (2.6), this implies v = const in  and (2.8) enforces
u=0in Q. O

To establish the existence of a solution we employ a single-layer po-
tential approach using the Green’s function for the Neumann problem
in the disk Q. To this end, noting that R%y/|y|*> € R\ Q for all y € Q,
we define a function ®. on Q x by

), z,y € Q.

R2y

ly|?

1 R
(2.9) Pe(z,y) = 5-In <7
™ \lylfo
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Since for all z,y € 2 we have that

2

1
=R?>-2z-y+

R2%y
ﬁ |Z/|2

e Y
ly/?

|z [*]y]*
R2

0,

we observe that ®, is symmetric and harmonic in ©Q both with respect
to z and y. Moreover, it can be verified that

zxel, yeq.

(210) SO0 {Ba0) + Bela,9)} = 5 op

ov(x)

For densities ¢ € H~1/2 (D), we introduce the single-layer potential
($0)@) = [ a@nes) dst), @R
D

(As usual, integrals on H '/2(0D) have to be understood in the sense
of the duality pairing.) Then, the normal traces of S on dD are given
by

0 R
(2.11) ™ (Sp)+ = Fo 3K

where K': H=Y/2(0D) — H~/2(dD) is defined by
0% (z,y)

2.12 K’ =2 / —

212 (Ko@) =2 ]

Further we define the potential

o(y)ds(y), =z e€0dD.

Sep)a) = [ @la)e)dsts), v
Since the kernel ®. is regular the normal trace of S. on 0D is simply
given by

0

— 1 ’
(213) — (Se¢) = 5 Klg

where K : H-Y/2(dD) — H~'/%(0D) is defined by

1) (K =2 [ ZAT)

oD 81/(;[;) (P(y)ds(y), x € 0D.
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As the kernel @, is regular, for all o € H'/2(9D), we have thatK’p €
L*(8D) and since the injection L?(0D) — H/2(dD) is compact the
operator K is compact.

We now try to find a solution to problem (2.4)—(2.8) in the form of the
sum of a single layer potential S and a potential S.. For convenience
we set

0Og — 01

oo+ 01

and note that u € (—1, 1) as consequence of og, 01 > 0.

Theorem 2.2. Assume that ¢ € H Y%(dD) is a solution to
boundary integral equation

A
(2.15) ¢ — pK'o — pKop =2p g—-

v
Then
(2.16) / pds =0

oD

and
(2.17) u=Sp+ Scp

solves the transmission problem (2.4)—(2.8).

Proof. Clearly, (2.17) defines u € H'(Q) satisfying (2.4) and (2.6).
Via (2.11) and (2.13) the integral equation (2.15) ensures that the
transmission condition (2.7) is satisfied. Since S.¢ is harmonic in D,
in view of (2.13) we have that

(2.18) / Klpds=0.
oD

Similarly, since S¢ is harmonic in D from the second equation of (2.11)
we deduce

(2.19) / pds+ K'ods=0
oD 8D
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and adding both equations we arrive at

/ gads—i—/ {K'¢+ K.p}ds =0.
oD oD

On the other hand, observing that A is harmonic in D from the integral
equation (2.15) we obtain

/npdsfu/ {K'o+ KlLp}ds =0
oD oD

and together with the previous equation in view of y # —1 this implies
(2.16). Now putting (2.10) and (2.16) together, for z € ' we find

5@ = [ s (8 Rla) oly) dsto)
1
=% - pds =0,

i.e., the Neumann boundary condition (2.5) is satisfied.

The potential with constant density

w(y) = / (9(,y) + @ul(z,y)} ds(z), yeQ,

is harmonic in Q and, by symmetry, is constant on the boundary T'.
Hence, by the maximum-minimum principle w = wy in 2 for some
constant wy. Interchanging the order of integration, this finally implies

/uds:/{Sg@+Sc¢}ds:/ wgads:wo/ QDdS,
r r oD oD

and as consequence of (2.16) we observe that the normalization condi-
tion (2.8) is also satisfied. O

Note that the condition (2.16) is usually imposed in order to insure
the boundedness of the single-layer potential at infinity. Here, this
condition is automatically satisfied for any solution of the boundary
integral equation (2.15). This is quite interesting from a numerical
point of view since for the computations of the solution to the forward
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problem, the equation (2.15) is directly usable without any modification
and the spaces used for the discretization do not have to be adapted.

Now, the loss of compactness for the operator K’ for non regular
domains involves a proof of existence different than the one for domains
of class C? where the Riesz-Fredholm theory is sufficient since the
operator K’ is compact [6] and also K, is compact as pointed out above.
In order to keep a general framework, we will first prove the existence of
a solution to the integral equation (2.15) for Lipschitz domains. After
this we will briefly describe the analysis for more regular domains. We
define

Hy Y*(0D) := {(,0 e H-Y*(oD) : /BD 0= o}

and note that K’ maps H(;l/2 (0D) into itself as consequence of (2.19).

Theorem 2.3. The operator I — pK' : H(;l/z(@D) — H(;l/z(@D)
has a bounded inverse.

Proof. We introduce the single-layer operator Sy : H Y/2(dD) —
H'2(dD) by

(Sop)(z) = /M ®(z,y)p(y) ds(y), z €D,

and assume that the diameter diam (0D) of 0D is less than 1. In this
case, the operator Sy is positive and strictly coercive and the so-called
energy norm given by

lellse = / oSup ds
oD

is equivalent to the H~'/2(dD) norm (see [8]). In [11] it is shown that
max {[[(1 + K'N¢lls,, I(I — K")ells, } < cllells,

for all ¢ € H51/2(8D) and some constant 0 < ¢ < 2. Since p € (—1,1)
we have that (1 4+ u)/2 and (1 — p)/2 both are positive. Therefore,
writing

1+ 1-
I+MK’:T“(I+K’)+TM(I—K’),
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we can estimate

1—p
2

14 p
(I + pK")p|ls, <

< —5cllellso + cllells, < ellells,

for all ¢ € Hy 1/ 2(E)D). Consequently, the Neumann series for the
operator

1 1
S(I—pK') =I—5 (I+uK)
converges and the theorem is proven in the case where diam (0D) < 1.
Finally, from
0 1 v(z) {y—=}

@) T = T g P

it can be seen that K’ is invariant with respect to scaling of 4D, i.e.,
for the domain D and aD := {az : * € D} for o > 0 the kernels of
K’ coincide. Therefore, the result of the theorem remains valid also for
diam (0D) > 1. o

Corollary 2.4. The transmission problem (2.4)—(2.8) has a unique
solution.

Proof. According to the previous Theorem 2.3, the operator I — uK'
has a bounded inverse on H(;l/z(@D). Remarking that K/ as a
consequence of (2.18) also maps H 1/ *(8D) into itself, and recalling
that it is compact we observe that I — uK’' — pK| is a Fredholm
operator of index zero. Moreover, according to Theorems 2.1 and 2.2
the operator I — uK' — puK/ is injective and therefore bijective. o

As stated before, if the boundary of D is supposed to be of class C?
then from (2.21) it can be seen that the operator K’ has a continuous
kernel and consequently K’ : H=Y/2(dD) — H~'/?(dD) is compact.
Hence, in this case we immediately have that I — pK’' — pK| is a
Fredholm operator of index zero without appealing to the techniques
of the proof of Theorem 2.3. Furthermore, since in this case 0,A
is in C?(0D), we also may consider I — uK' — uK! as an operator
from the Holder space C%*(dD) into itself with compact operators K’
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and K. Moreover, this consideration allows us to establish stronger
regularity results on w. Indeed, in this case ulz € C"*(D) and
ulg\p € cle(Q\ D).

In concluding this subsection we note that in view of the fact that
®+®, corresponds to the Neumann function for the Laplace equation in
the disk of radius R our analysis can be extended to arbitrary domains

Q.

2.2. On the numerical solution. For the numerical solution we
propose to use the Nystrom method as described in [6] for boundary
value problems for the Laplace equation. For simplicity we assume that
D is of class C? with a regular parameterization

(2.20) OD = {z(t) : t € [0,2x]}

with [2/(¢)] > 0 for all ¢t € [0,27] and counter clockwise orientation.
We introduce an integral operator A : H51/2[0, 2] — H51/2[0, 27] in
terms of the kernels

(2.21) L(t,T) = % {2(1) — 2()} - [Z'(B)]* |2 (7)]

and

(222) L) =+

for t, 7 € [0, 27] by

2w

(2.23)  (Ay)(t) := {L(t,7) + Le(t, 7)} o(r) dr,  t€[0,27],

0

and the parameterized right-hand side
(2.24)
T e a0) FOF e -0}
Mz, ) : MO[ EO -z POl RO - 2Pl 0)
),z

for t € [0,27] where [2/(t)]* = (25(t), —21(t)) for 2(t) = (21(t), z2(t)).
Then the integral equation (2.15) assumes the parameterized form

(225) 11[) - NA’(,ZJ = 2/.1)\(',37+,£L'7)
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for ¢ := ¢ - z. The kernels L and L, are continuous with the diagonal
term of L given by
1 2"(t) - [&(1)]*

L(t,t) = —

27(‘W’ t e [0,271']

For analytic boundaries both kernels turn out to be analytic. Now the
Nystrom method with the composite trapezoidal rule can be applied
for (2.25) with exponential convergence for analytic boundaries.

2.3. The half plane case. In the case where 2 is either the upper
or lower half plane we are seeking for a function u € H} () and in the
formulation (2.4)—(2.8) of the transmission problem the normalization
condition (2.8) has to be replaced by the decay condition

(2.26) u(z) — 0, |z| = oo,

uniformly for all directions in 2. For each z = (z1,72) € R? we denote
by T = (x1, —x2) its mirror point at the z;-axis. Then we note that

the function
() u(z) x e,
u(z) := —
u(z) =€ R?\Q,

is continuous across I' = 0N and so is its normal derivative because
of the homogeneous Neumann condition (2.5). Hence, @ is harmonic
outside some sufficiently large disk. This implies that the condition
(2.26) is equivalent to

u(z) = o(%), grad u(z) = o(ﬁ), |z| = oo,

(see [6]). Therefore (2.26) can be seen to ensure the existence of the
integral [, o|grad u|? dz from the proof of the uniqueness Theorem 2.1.

For the existence analysis we replace (2.9) by

(2.27) D (x,y) = 2(z,7).
Then
(2.28) {@(z,y) + Cc(z,y)} =0, z€l, ye.

ov(zx)
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With this modification the analysis from the case of the disk immedi-
ately carries over to the half plane case and, in particular, Theorems
2.2 and 2.3 and Corollary 2.4 remain valid. For the numerical solution
the expression (2.22) for the kernel L. has to be replaced by

1) -0} F O )
(2.29) Lbn) = = o -20r 700

for ¢,7 € [0, 27].

3. The inverse algorithm. We recall that the inverse problem
consists in applying for each adjacent pair of electrodes ¢, and ¢, a
current I, and recover an approximation of the shape of the inclusion
D from the measured voltages V4 between the other pairs of electrodes
lq and {41 for g ¢ {p — 1,p,p + 1}. For the sake of simplicity, we will
use the same current [ for all p=1,... ,n. Furthermore, in this initial
investigation of our approach we consider the conductivities as known.

For the evaluation of (2.17) we note that

(3.) (Sep)(x) = (Sp)(a), = €T,
as consequence of
2
iyl o — £
lyl o 2
T - | - y|

for all z € I and y € ). Therefore, in view of Theorem 2.1, the inverse
problem is equivalent to solving the system of integral equations

0
(3.2) op = 1Koy — pKopp = 20 5 Al 2, Tpia)
and
(3.3) 2(S0p)(24) = 2(S0p) (T411) = Vg

forg=1,...,n,9g ¢ {p — 1,p,p+ 1} and p = 1,... ,n, where we
abbreviated

Vog := Vpg = Mg, Tp, Tpy1) + A(Tgi1, Tp, Tpy1)-
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For obvious reasons we denote (3.2) as the field equations and (3.3) as
the data equations.

From the various options for an iterative solution of (3.2) and (3.3)
following ideas suggested by Johansson and Sleeman [4] in inverse ob-
stacle scattering we propose the following alternating iteration proce-
dure. Given an approximation for the boundary 90D for p = 1,... ,n
we can solve the well-posed integral equation of the second kind (3.2)
for the densities ¢,. Then, keeping the densities ¢, fixed we linearize
the equation (3.3) with respect to 0D to update the boundary ap-
proximation. This slightly deviates from the approach in [1, 2, 7] to
linearize both equations simultaneously for 0D and ¢, and avoids the
need to adjust regularization parameters both for the boundary and
the densities.

Since the right hand side of (3.3) represents only a finite number,
that is, n(n — 3) voltage measurements we need to restrict the param-
eterizations z to some finite dimensional subspace Vs of dimension M
of smooth 27 periodic functions from R into R?. We redefine the oper-
ator from (2.23) as an operator A : HJID[O, 2l x Vy — H(;l/z[O, 27]
as
(3.4)

2

(A(y,2)) (t) :== | {L(t,7;2) + L(t,752)} (1) dr, t€]0,27],

where we indicate the dependence of the kernels (2.21) and (2.22)
on the parameterization z of dD. We also write A\(-,zy,z_;z2) for
the right-hand side in (2.25). Further, we introduce the operator

B: Hy 20,21 x Viy — L2(T) by

(35)  (B(w,2)) (z) = 1/0 wlnﬁ|z'(7’)|1/1(7’) dr, zel.

™ 2(7)
Then the parameterized versions of (3.2) and (3.3) assume the form
(3.6) Yy — AWy, 2) = 2uA(-, Tp, Tpt1; 2)

and

(3.7) (B(¥p,2)) (zq) = (B(¥p,2)) (Tq41) = Vpg-



208 FABRICE DELBARY AND RAINER KRESS

From [9] we know that B is Fréchet differentiable with respect to z
with the derivative

(d-B(¥,2)(€)) (x)

L) e )
| S ) dr

™

_l/owwm(z(f)—mw(ﬂdﬂ zel.

™ |2 (7)]

Now our iterative scheme proposed for the solution of the inverse
problem is as follows. Assume that the curve with parameterization z
is an approximation 0D.

1. For p = 1,... ,n the well-posed boundary integral equation (3.6)
is solved for densities ¥, = ¢ 0 z.

2. Keeping the densities fixed (3.7) is linearized, that is, we find
& € Vi as a solution to the linear equations

(3.8)  (d:B(¥p,2)(§)) (2q) = (d= B (1, 2)(€)) (wq41)
= Vog = (B(¥;2)) (zg) = (B(¢; 2)) (241

forg=1,...,n,q¢{p—1,p,p+1}andp=1,... ,n.
3. The curve z is updated by z + &.
This scheme is iterated until some stopping criterium is satisfied.

In terms of a basis zi, ..., zy of 27 periodic functions z, : R — R?
for Vs we represent

M
(3.9) &= Z AmZm
m=1

with real coeffizients a,,. Then after approximating the integrals in B
and d,B by the composite trapezoidal rule, the linear system (3.8)
reduces to an n(n — 3) x M linear system for the coefficients a,.
There are redundancies in the voltage data since for all p and ¢ with
p—q ¢ {—1,0,1} by reciprocity we have

Vog = Vap = L In

TOo)

Lp — Tg4+1

Tqg — Tp+l
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(which is zero for equidistant electrodes). Hence the linear system is
overdetermined only if n(n — 3) > 2M. For our numerical examples
we used for Vs the space of trigonometric polynomials of degree less
than or equal to N (mapping R into R?), that is, a space of dimension
M = 4N + 2.

Since the linearized equation (3.8) inherits ill-posedness from the
original nonlinear inverse problem, regularization is required. For this
we applied Tikhonov regularization with the regularization parameter
a chosen by the concept of a quasi-solution [6]. To explain the idea we
rewrite (3.8) in the form

dF(2)§ =V — F(2)

where F : Viy — R™"~3) with Fréchet derivative dF and V € R™("3),
In the case of perturbed data Vs with ||[Vs — V|| < § and a noise level §
this is replaced by

(3.10) dF(z)§ = Vs — F(2).

Assume that ||F(z) — Vs|| > ||6]| which is reasonable since it does
not make sense to reduce the residual under the noise level. The
regularization « should be appropriate if we can ensure an approximate
solution &, such that ||[F(z+4 &) — V5| is minimal under the restriction

|F(z+ €a) — Vsl|| > 6. For this we choose

_IF) - Vsl =
JdFG)]

(3.11)
Then for each ¢ with ||€]| < p we have that
|1F(2) = Vsl — ldF (2)€]| = 6,
and consequently
I1F(2) = Vsl|* = 2|F (2) = Vsl [|dF (2)€]| + [dF (2)€]|* > 6°.

From this, using the Cauchy-Schwarz inequality, we deduce that

1F (= +&) = Vs* = |F(2) + dF (2)€ — Vs]|* > 6°.
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Hence, it seems to be reasonable to choose the regularization parameter
in the Tikhonov regularization

afa + [dF (2)]"dF (2)§ = [dF (2)]"[Vs — F(2)]

such that the solution £, is the quasi-solution of (3.10) with con-
straint p.

We conclude this section by noting that after the modification (2.27)
for ®. the inverse scheme for the case of the half space as background
medium is exactly the same as for the disk.

® Electrodes ® Electrodes
Inclusion Inclusion
Initial guess Initial guess
= = = Reconstruction = = = Reconstruction

"
N '
'
b 1
'

FIGURE 1. Reconstruction of kite-shaped domain (4.1) without noise (left) and
2% noise (right).

® Electrodes © Electrodes
Inclusion Inclusion
Initial guess Initial guess
- - - Reconstruction - - - Reconstruction

@) (&

FIGURE 2. Reconstruction of bean-shaped domain (4.2) without noise (left) and
2% noise (right).
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4. Numerical examples. We now present some numerical recon-
structions based on synthetic data. For these the radius of the disk
Q is chosen R = 4, the values of the conductivities are 9 = 1 and
o1 = 2. The number of the equidistantly spaced electrodes on I' was
chosen as n = 16. To start with we tested three configurations for
the inclusion D, each of them without noise on the synthetic data and
with 2% Gaussian noise. In the figures the exact boundaries are in full
(black) lines and the reconstructions in dashed (blue) lines. The initial
guess is indicated in dashed-dotted (green) lines.

The first example in Figure 1 is a kite-shaped domain with boundary
parameterization

(4.1) 2(t) = (—0.65 + cost + 0.65 cos 2t,1.5sint), ¢t € [0, 2m].

The second example in Figure 2 is given by a bean-shaped domain with
boundary

0.5+ 0.4cost+ 0.1sin 2t
1+ 0.7cost

(4.2) =2(t) =25 (cost,sint), t e [0,2m].

The third example in Figure 3 is a square with the corners (1.5,0), (0,
1.5), (-=1.5,0) and (0,—1.5). For creating the synthetic data for the
square the Nystrom method was adjusted to cope with the corner
singularities. In each case the degree of trigonometric polynomials
was chosen as N = 8. For the kite-shaped domain, the initial guess
is the circle of radius 1.5 centered at (—0.65,—0.5). For the bean-
shaped domain and for the square, the initial guess is the circle of
radius 1.5 centered at (—1, —1). Each reconstruction required less than
ten seconds and though we ran thirty iterations in each example, the
error level was reached between the twentieth and thirtieth iteration.

In order to test the inverse scheme for larger inclusions, in Figure 4
we present numerical results for a larger kite with parameterization

(4.3) z(t) =1.25 (—0.65 4+ cost + 0.65cos 2¢, 1.5sint), t € [0, 2],

and a heart-lungs-shaped domain with parameterization
(4.4)

z(t) = 2(cost, 2sin 25)\/0.992 cos 2t + V1 —0.992sin? 2¢, t € [0, 2n].
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© Electrodes © Electrodes
Inclusion Inclusion
Initial guess Initial guess

- - -Reconstruction - - -Reconstruction

FIGURE 3. Reconstruction of square without noise (left) and 2% noise (right).

® Electrodes ® Electrodes
Inclusion Inclusion
Initial guess Initial guess
= = = Reconstruction = = = Reconstruction

FIGURE 4. Reconstruction of kite-shaped domain (4.3) and heart-lungs-shaped
domain (4.4) with 2% noise.

All other parameters are kept to be the same with the exception
that the number of iterations for the heart-lungs-shaped domain has
beenincreased to 50 with the initial guess a circle of radius 2 centered
at the origin. Both reconstructions are with a 2% Gaussian noise on
the synthetic data.

The next example illustrates that with appropriate modifications the
method also can be applied to the reconstruction of more than one
inclusion. Here the disk 2 has radius R = 6 and contains a kite-shaped
and a bean-shaped inclusion. The background conductivity is og = 1
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and the conductivities of the inclusions are oyite = 2 and ophean = 3.
The parameterizations of the inclusions are given by

(4.5)  zkite(t) = (2.5, —1.5) + (—0.65 + cost + 0.65 cos 2t, 1.5sin t)

and

0.5+ 0.4cost + 0.1sin 2t
1+ 0.7cost

(4.6) 2bean(t) = (2.5,1.5) + 2.5 (cost,sint)

for t € [0, 27]. Deviating from the previous examples the approximation
space Vs is chosen as cubic splines with 26 Bézier points for each of
the two unknown boundary curves. The initial guess consists of two
circles of radius 1 centered at (—1,—3) for the kite and (1,3) for the
bean. The result after 12 iterations is illustrated in Figure 5.

We conclude with examples for reconstructions with the background
medium the lower half plane. Here, the 16 electrodes on I' are spaced
equidistantly in [-8,8] x {0}. Again in Figure 6 we consider a kite-
shaped domain

(4.7) z(t) = (—0.65 + cost + 0.65cos2t, —3 + 1.5sint), t € [0,2n],

in Figure 7 a bean-shaped domain

0.5+ 0.4cost+ 0.1sin2t
1+ 0.7cost

(4.8) z(t) =3 (cost,sint)—(0,3), t € [0,27]

and in Figure 8 a square (1.5, —-3), (0,—1.5), (—=1.5,—3) and (0, —4.5).
The initial guess is the circle of radius 1.5 centered at (—0.65, —4.5) for
the kite-shaped domain, the circle of radius 2 centered at (—0.65, —3.5)
for he bean-shaped domain and the circle of radius 1.5 centered at
(—1,—1) for the square. All the other parameters are the same as in
the case of the disk as background medium.
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® Electrodes
Inclusion
Initial guess

= = = Reconstruction

FIGURE 5. Reconstruction of two inclusions (4.5) and (4.6) with 1% noise.

© Electrodes © Electrodes
Inclusion Inclusion
Initial guess Initial guess

- = - Reconstruction - = - Reconstruction
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FIGURE 6. Reconstruction of kite-shaped domain (4.7) without noise (left) and
2% noise (right).
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© Electrodes © Electrodes
Inclusion Inclusion

- - Initial guess ~ - Initial guess

= = = Reconstruction - = = Reconstruction

FIGURE 7. Reconstruction of bean-shaped domain (4.8) without noise (left) and
2% noise (right).

© Electrodes © Electrodes
Inclusion Inclusion

~ - Initial guess ~ = Initial guess

- = = Reconstruction = = = Reconstruction

20

FIGURE 8. Reconstruction of square without noise (left) and 2% noise (right).
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