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FREE RESOLUTIONS OF
SOME EDGE IDEALS OF SIMPLE GRAPHS

RACHELLE R. BOUCHAT

ABSTRACT. The goal of this paper is to study the struc-
ture of the minimal free resolutions associated to a class of
squarefree monomial ideals by using the one-to-one correspon-
dence between squarefree quadratic monomial ideals and the
set of all simple graphs. In [6], Hd and Van Tuyl demon-
strated an inductive procedure to construct the minimal free
resolution of certain classes of edge ideals. We will provide a
simplified and more constructive proof of this result for the
class of simple graphs containing a vertex of degree 1. Further-
more, by using the graphical structure of a tree, we provide a
comprehensive description of the Betti numbers associated to
the corresponding edge ideal along with providing an imple-
mentation of this graphical method coded in Python for use
in SAGE. Furthermore, for specific subclasses of trees, we will
generate more precise information including explicit formu-
las for the projective dimensions and Castelnuovo-Mumford
regularity corresponding to the associated edge ideals. Al-
though the methods discussed to study the edge ideals of sim-
ple graphs rely on the graph having a vertex of degree 1, we
show how these methods and results can be used to gain in-
formation about the edge ideals of graphs that do not have a
vertex of degree 1 by studying the class of edge ideals associ-
ated to cycles.

1. Introduction. By a graph G, we mean a vertex set Vg =
{zo,... ,z,} along with a set of edges Eq¢ C Vg x Vg. Moreover, if
{zi,z;} € Eg we will say x; and x; are connected by an edge. A graph
is called simple if it is undirected and contains no loops or multiple
edges. In this paper, we will restrict ourselves to the class of simple
graphs, thus enabling a one-to-one correspondence between the set of
simple graphs and the set of square-free quadratic monomial ideals.
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For a given graph G and the corresponding edge ideal I, we consider
the relationship between the graphical structure of G and the algebraic
properties of the minimal free resolution of Ig.

1.1. Edge ideals. Given a simple graph G on the vertex set
{zo,... ,zn}, we would like to study the ideal whose generators are
formed by the edges of the graph. This ideal will reside in the
polynomial ring with variable set corresponding to the vertex set of
the graph, namely, k[zg, 1, ..., ;] where k is an arbitrary field.

1.1.1. Definition. For a graph G with vertex set {zg,... ,2,}, the
edge ideal of G is the ideal

Ig := (viz; | {=i,x;} € Eg) C S :=k[zo,... ,x,)

Edge ideals were first introduced by Villarreal in [12] and are a
current topic of study in algebraic combinatorics. Connections between
the algebraic properties of the edge ideal, I, and the combinatorial
data associated to the planar graph, G, are an area of active research
(see [1-4, 6, 7, 9, 10, 12, 13]).

1.2. Graded free resolutions. It is often beneficial to record
more detailed information in a module’s free resolution by considering
graded modules and graded resolutions. Letting A = (A4, +) denote
an abelian group, we will often use the suspension notation, M(a),
to denote the A-graded translate of a free R-module M that satisfies
[M(a)]y = [M]aqs for all a,b € A. The following example illustrates
the two gradings considered in this paper.

1.2.1. Example. Let us consider the polynomial ring S =

k[il,'(), e ,:En].
(1) Let A = Z,+). Then the standard grading (or coarse grading) of S
is defined by deg (x?) = ap+a1+- - -+a, for each a = (ag, a1,... ,a,) €

Z" 1, If we let S = k[zo, T1, T2, T3], then deg (ziz223) = 2+0+1+3 =
6 in the standard grading.
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(2) Let A = (Z"™',+). Then the fine grading of S is defined
by deg(x®) = a for each a = (ag,a1,...,a,) € Z™"t. Thus for
S = k[zg, T1, T2, T3], deg (z3z273) = (2,0,1,3) in the fine grading.

The previous example illustrates that the fine grading carries infor-
mation of the standard grading along with a detailed description of
the variables contributing to the overall degree of the monomial. In
general, we would like to consider monomials in the fine grading, but
it often takes considerably more work to keep track of all the degree
shifts. For this reason, in the cases where we do not need all of this
extra information the standard grading will be used.

We would further like to consider maps between graded modules; and,
in particular, graded free resolutions of graded modules. To do this we
must first make the following definition.

1.2.2. Definition. Let M, N be A-graded modules with a € A.
Then an A-graded homomorphism of degree a is a homomorphism
¢ : M — N such that for all homogeneous m € M

deg (¢(m)) = deg (m) + a.

If a = 0, then ¢ is called degree-preserving.

Furthermore, a graded free resolution for a finitely generated graded
module M C S, is a free resolution of M

pr—1 2 1 $o

0—F Iop_ 3. 2p S0

in which each map, ¢;, is degree preserving.

Section 2 will focus on the minimal free resolutions of edge ideals
associated to trees, i.e., simple, connected graphs containing no cycles.
When considering trees as a subclass of simple graphs, we notice their
relatively simplistic structure. Transferring to the study of the edge
ideals of trees, we would expect that the corresponding minimal free
resolutions would be relatively simple. However, in [9], Nagel and
Reiner show that for the class of edge ideals associated to trees, the
Betti numbers corresponding to these edge ideals can be as complicated
as desired. For certain classes of ideals associated to simple graphs, Ha
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and Van Tuyl introduced in [6] an inductive procedure to compute the
minimal free resolution of such ideals. In Theorem 2.1.1 we will restrict
to the class of trees and show a simplified development of this inductive
procedure for this case. Furthermore, we will prove in Theorem 2.2.7
the following description of the Betti numbers for the edge ideal of a
given tree.

Theorem. Given a tree T on the vertex set {xg,...,x,} and a
vector a € N™" 1 the following are equivalent.

(1) Bi a(S/Ir) =1 for some i.
(2) The subforest of T' defined by a is mazimal.

When the above theorem is combined with Theorem 2.2.2, a compre-
hensive description of the multi-graded Betti numbers for the edge ide-
als of trees is obtained. It should be noted that in the above theorem,
the property of maximality is an algebraic property of the correspond-
ing edge ideal Ir that will be introduced in Definition 2.2.3. The proof
of this theorem leads to an implementation in the open-source mathe-
matics software SAGE [11]. The code for this implementation is writ-
ten in Python and provided at the end of Section 2.

Due to the complexity of minimal free resolutions of the edge ideals
of trees, the edge ideals of paths and a class of graphs that occur as a
natural extension of the class of paths is considered in Section 3. For
these special cases we will generate more specific results concerning the
minimal free resolutions of the corresponding quotient rings to the edge
ideals. Specifically in Proposition 3.1.1, the following results concerning
the minimal free resolutions of the edge ideals of paths are proven.
It should be noted that Zheng also studied the Castelnrovo-Mumford
regularity of the edge ideals of trees in [13] from a different viewpoint
by considering the pairwise disconnected edges of the graph.

Proposition. Let P, denote an n-length path. Then
(1) the length of the minimal free resolution for S/Ip_ is [(2n)/3].
(2) the Castelnuovo-Mumford regqularity of S/Ip, is [n/3].



SOME EDGE IDEALS OF SIMPLE GRAPHS )

In particular, this proposition shows that even in the case of the
extremely simplistic graphical structure of paths, the minimal free
resolutions of the corresponding edge ideals are relatively complicated.
Taking Hilbert’s syzygy theorem into consideration, they have roughly
two-thirds of the maximum length of a minimal free resolution of an
ideal in the same polynomial ring. Furthermore, in Corollary 3.1.3 the
following result concerning the rank of the last module in the minimal
free resolution of an edge ideal for a path is obtained.

Corollary. For a path of length n,

1 if3tn

Breany/s1(8/1r,) = { (n/3)+1 if3|n.

Both of the above results concerning paths clearly demonstrate the
integral role that divisibility of a path’s length by 3 plays in the
algebraic structure of the minimal free resolution of the edge ideal.
Since trees can be inductively constructed from paths, Theorem 2.1.1
shows that divisibility by 3 also plays an important role in the algebraic
structure of the edge ideals of trees.

In Section 4 the minimal primary decomposition of the edge ideal of
an arbitrary simple graph is considered as it relates to the set of all
minimal vertex covers of the planar graph. In particular, the following
one-to-one correspondence is used to determine an explicit formula for
the number of associated prime ideals corresponding to the edge ideal
of a path.

Minimal vertex covers of | 1.1 [ Associated prime
a simple graph G ideals of I )

This one-to-one correspondence enables us to easily determine whether
a given prime ideal is indeed an associated prime ideal of the corre-
sponding edge ideal.

The results that we obtain for the edge ideals of trees will be used
in Section 5 to generate information concerning the minimal free
resolution of cycles and more general graphs. In Proposition 5.0.6,
we will provide an explicit formula for the length of the minimal free
resolution corresponding to the edge ideal of a cycle. In particular, we
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will see that it is very closely related to the length of the minimal
free resolution corresponding to a path. It should be noted that
Theorem 2.1.1 does not apply to the class of edge ideals of cycles,
because the procedure is dependent upon the existence of a vertex of
degree one.

2. Edge ideals of trees. Ha and Van Tuyl describe in [6] a method
to decompose edge ideals of particular simple graphs to generate infor-
mation on the minimal free resolutions of the corresponding quotient
rings S/Ig. The decomposition that is used is based upon the concept
of splittable monomial ideals which were originally defined by Eliahou
and Kervaire in [1].

2.0.3. Definition. Let I be a monomial ideal in S = k[zog, ..., Z,],
and let G(I) denote the minimal set of monomial generators of I. Then
1 is splittable if I is the sum of two nonzero monomial ideals J and K,
ie., I = J+ K, such that

(1) G(I) is the disjoint union of G(J) and G(K); and
(2) there is a splitting function

G(JNK) — G(J) x G(K)
w i ($(w), P(w))

satisfying

(a) for all w € G(J N K), w = lem (¢(w), ¥ (w)); and

(b) for every subset S C G(J N K), both lcm (4(S)) and lem (4(S))
strictly divide lem (.5).

If J and K satisfy the above conditions, then we say that I = J + K
is a splitting of I.

In this paper, we will avoid this complex definition and provide a more
constructive approach to the development of minimal free resolutions
corresponding to the edge ideals of certain classes of simple graphs by
using the mapping cone construction for a short exact sequence.
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2.1. Mapping cone decomposition. In [6], Hd and Van Tuyl
remarked that if the simple graph G has a vertex of degree 1, say g,
then the edge formed by x and its neighbor, x,,, form a splitting edge
of Ig, ie., Ig = (zxTn) + IG\{ay,0,} forms a splitting of Ig. In this
case, we can also recover the inductive result concerning the minimal
free resolutions of the corresponding quotient rings as proved by Ha
and Van Tuyl (see [6]) using more of a constructive approach.

2.1.1. Theorem. Let G be a simple graph with verter set Vg
{zo,... ,zn} and the added restriction that G has a vertezx of degree
say T,. Furthermore, let x, 1 be the neighbor of z,, and set (—2)
(0,...,0,—1,-1). Then the mapping cone procedure applied to the
sequence

=l

Tn—-1Tn

Oﬁ(S/IG\{mn,l,zn} : (.’L‘nflxn))(—z) — S/IG\{zn,l,mn} —)S/IG —0
provides a minimal free resolution of S/Ig, where

Io\{zn_1,20} = (@i | 525 is a generator of Ig and x;xj # Tp12y),
i.e.,

Bia(S/1a) = Bia(S/Ig\{zn 1,2n})
+ Bi—l,a(S/IG\{wn,l,zn} : (xn—lxn)(iz))

for all a € N"*1,

Proof. Since ,, does not divide a minimal generator of Ig\(z, ; 2.}
IG\{zn_l,zn} : (xnflmn) = IG\{zn_l,zn} : (mnfl)-
However, this implies that the exact sequence
0— (S/IG\{zn,l,zn} : (mn_lmn))(—2) %S/IG\{znq,wn} —)S/IG —0

factors as

Tn—-1Tn
0—)(S/Ig\{zn71,zn} : (wnflzn )(—2) E—— S/IG\{In—lamn} —)S/IG—)O

an Tn—1

(S/Ie\ {212} : Tn=1)(0,...,—1,0)
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Furthermore, let

F:0—F —F._4—-—F—38
RN S/IG\{zn_uiEn} : (mnflmn) — 0

be a minimal free resolution of
S/ a\(zp 1,20} (Tn-1%0n) = S/Ig\ (01,20} * (Tn-1),
and let
G:0—G —G1— - — G —8—5/Ix\(2, 1,2,} — 0
be a minimal free resolution of Ig\{s, ,,}- Then the matrices

representing the maps d; : F; — G; cannot contain a unit entry; and
consequently, the mapping cone construction applied to the sequence

0— (S/Ig\{zn717wn} : (wn_lxn))(—2)
— S/IG\{wn_1,zn} — S/IG — 0

provides a minimal free resolution of S/Ig. Therefore,

Bia(S/1a) = Bia(S/Ia\{zn_r,2n}) + Bi-1,a(S/Te\fz0_1,2n}
(mnflmn)(_z))

for all a € N**1, O

Examining S/Ic\ (2, 1.} (Zn—1%5) more closely, we can see that

IG\{wnflyzn} : (:cn_lacn) =a++ (:Eo, . ,:Es)
where {z,,zo,... ,2zs} are the neighbors of z,,_; and the generators
of a are square-free quadrics in k[Zs41,...,2Zn 2] This shows that

Ie\{zn_1,2,} * (Tn—12y) can be realized as a subgraph of G.

If we further restrict ourselves to a subclass of simple graphs where
each graph in the class has at least one vertex of degree 1, then we will
obtain an inductive construction for the minimal free resolution of the
corresponding quotient rings.
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I, x,,}:(xn—lxn)

= T xa

FIGURE 1.

2.2. Multi-graded Betti numbers of the edge ideals of trees.
By definition, every tree has a leaf. Hence, in the case of the edge
ideals of trees, Theorem 2.1.1 provides a comprehensive description of
the corresponding minimal free resolutions, because the quotient ideal
I\{zn 1,20} ¢ (Tn-12,) can be realized graphically as a subforest of
Ig, i.e., a disjoint union of trees. Figure 1 illustrates the relationship
between Iq, I\ {z,_1,e,} a0 IG\{z, 1,20} * (Tno1Zn).

Furthermore, the minimal free resolution of the edge ideal of a forest
can be obtained by tensoring together the minimal free resolutions of
the edge ideals of each component tree in the forest.

We would also like to take a closer look at the finely graded Betti
numbers associated to the edge ideal of a tree. Hochster proved the
following result concerning the possible degree shifts for Betti numbers
in a minimal free resolution corresponding to a monomial ideal. A
proof of this result can be found in the book by Miller and Sturmfels
(see [8]).

2.2.1. Proposition (Hochster’s formula (dual version)). The non-
zero Betti numbers of a squarefree monomial ideal I C S lie only in
square-free degrees, i.e.,

Bi+1.a(S/I) =0 if a; > 2 for some i € {0,... ,n}

where a = (aq, ... ,a,) € N1
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Using Theorem 2.1.1 and Hochster’s formula, further limits can be
placed on the Betti numbers corresponding to the quotient rings of edge
ideals of trees.

2.2.2. Theorem. LetT,, denote a tree with n edges. Then the finely
graded Betti numbers

Bi.a(S/Ir,) € {0,1}

for all a € N™*1,

Proof. Proceed by induction on the number of edges n. If n =1, then
I7, = (zoz1) and the claim is clearly true. Consider a tree T,, with n
edges; then by removing a leaf, say x,, the remaining subtree is a tree
with only n — 1 edges. Denote it by T;, ;. Without loss of generality,
assume z,_1 is the neighbor of z,. Set (-2) = (0,...,0,-1,—1).
Then we have the exact sequence

0— S/(ITn—l : (mn—lwn))(_z) — S/ITH,I — S/ITn —0.
Moreover,
Iz, (zpo12n) = (z0,... ,2s) + Ir, +---+1Ir,,

where {xo,...,zs} is the set of neighbors of z,_; and {Tp,, +---+Tn, }
is the set of subtrees of T}, occurring in the graphical representation
of the quotient ideal I, _, : (z,_12,) as a subforest of T},. By the
induction hypothesis

,Bi,a(S/ITnj) € {0, 1} for j=0,... k.

Bi.a(S/(xo,...,zs)) € {0,1} since S/(zo,...,xs) is resolved by the
Koszul complex. Moreover, since the generators of (z,...,zs) and
IT"j are disjoint for 5 = 0,...,k, the minimal free resolution of
S/((zo, ... ,xs) + Ir, + -+ I, ) is resolved by the tensor product
of the minimal free resolutions of S/(zo,...,zs) and S/ITnj for j =

0,...,k. Hence,

Bia (8/((0,- - @) + Ir,, + -+ Iz, )) € {0,1}.
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Thus the mapping cone provides

Bi,a(S/Ir,)
= Bia(S/Ir,_,) + Bi-1,a(S/ (%0, ... ,x5) + I, + -+ + Ir, )(=2)).

Assume to the contrary that 3; 2(S/Ir,) = 2, i.e.,

/Biya(S/ITn—l) = ﬂi—l,a(s’/((xoa s 7375) + ITnO +teet ITnk)(fz)) =1L

Then Hochster’s formula (2.2.1) implies that a = (a1,...,a,41) €
{0,1}"*1. Thus we obtain the following two cases based upon the
value of ay41.

Case (i). Let a = (... ,1). Then §;a(S/Ir,_,) = 0, because z, does
not divide any generator of I, _,.

Case (ii). Leta = (... ,0). Then B;—1,a(S/((z0, ... ,zs)+ 17, +---+
Iz, )(—2)) = 0, because the shift of (—2) says that any contribution

from the minimal free resolution of (S/((wo,...,zs) + Ir,, + - +
It, ))(—2) will be in a shift with last two entries (...,1,1).

Therefore 3;.a(S/Ir,) € {0,1}. o

We would like to provide a comprehensive description of the Betti
numbers that occur in the minimal free resolution corresponding to
the quotient ring of an edge ideal of a tree. To do this, we make the
following definition.

2.2.3. Definition. Let T be a tree. Then T is called mazimal if

ﬁpd (S/IT),d(S/IT) =1 Where d. = (1, 1, . ,1),

i.e., if the minimal free resolution of S/Ir has the maximal shift.

From the definition, the property of maximality is purely an algebraic
property dealing with the leftmost Betti number of the minimal free
resolution for S/Ir.

2.2.4. Example. Consider the path of length 2, P,. Then

Ip, = (zox1, z122) and a finely graded minimal free resolution for S/1p,
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is given by

5(-1,-1,0)
S
0—S(-1,-1,-1) — S(0,-1,-1) — S — S/Ip, — 0

and P; is a maximal graph. Now, let us consider the path of length
3, P;. Then Ip, = (zox1, 122, Tax3) and a minimal free resolution for
S/Ip, is given by

S(-1,-1,0,0)
©®
S(-1,-1,-1,0)  S(0,—1,-1,0)
D S¥
0— S(0,-1,-1,-1) — S5(0,0,-1,-1) — S — S/Ip, — 0.

and hence P; is not maximal.

When considering the above example, we start to see that the length
of a path affects its maximality. In particular, we will see in Section 3
that a path is maximal if and only if its length is not divisible by 3.
Additionally in Section 3, we will describe how to determine maximality
by decomposing the planar graph 7" into smaller subgraphs.

2.2.5. Remark. The above definition of maximality also applies to
a forest F'. Specifically, a forest is maximal when all of its component
trees are maximal.

For a given tree T on the vertex set {zy,... ,z,} we can talk about
the subforest of T defined by a vector a € N1, This subforest is
obtained from 7' by removing all vertices z; that have a 0 in the ith-
entry of a.
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Xo
X X2
X3 Xy Xs
Xe X7 Xg X9
FIGURE 2.
X1 X2
X3 X5
o
X7 X9
FIGURE 3.

2.2.6. Example. Consider the tree T’ depicted in Figure 2. Then the
subforest of T' defined by (0,1,1,1,0,1,0,1,0,1) is given by Figure 3.

Using this idea of a subforest of a tree defined by a vector, we can
determine when a particular Betti number will occur in the minimal
free resolution corresponding to the quotient ring of the edge ideal of
the tree.
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2.2.7. Theorem. Given a tree T on the vertex set {zg, ... ,z,} and
a vector a € N"t1 the following are equivalent.

(1) Bi,a(S/Ir) =1 for some i.
(2) The subforest of T defined by a is mazimal.

Proof. Induct on n, the number of edges in the tree. For n = 1,
S/Ir, = S/(zox1), and the claim clearly holds. Let T;, denote a tree
with n edges. Without loss of generality, we will assume that x,, is a
leaf of the tree T, with neighbor x,_1.

Assume (; o(S/Ir) = 1. Consider the subforest of 7" defined by a,
denote it by F,. Notice that starting from F, we can add vertices one at
a time as leaves to reconstruct the original tree 7. Then Theorem 2.1.1
provides that

(1) Bia(S/Ir) =1 <= Bpa(s/1r,),da(S/IF.) = 1,

where dy = (1,1,...,1) and has entries corresponding to a. Further-
more, (1) implies that F, is maximal. Hence, a defines a maximal
subforest of T'.

Conversely, let us assume that a defines a maximal subforest F' of T,,.
Theorem 2.1.1 provides that a # (... ,0,1).

Case (i). Ifa = (...,1,0), then a defines a maximal subforest of
the subtree of T' corresponding to T\ {zn—1,2n}. It follows from the
induction hypothesis that £;a(S/Ir\{z, ,,2,}) = 1. Furthermore, the
mapping cone procedure and Theorem 2.1.1 imply that §; o(S/Ir) = 1.

Case (ii). If a=(...,1,1), then from the definition of maximality,
we see that a tree T' is maximal if and only if the subforest of T" defined
by I'm (s, 1.2.} ¢ (Zn_12y) is maximal. Hence if a = (... ,1,1) defines
a maximal subforest of T', then a’|p = [a— (0,...,0,1,1)]F defines a
maximal subforest of F' where

It\{zn 100} ¢ (Zn-1T0) = (20,... ,2) + F.
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Furthermore, the induction hypothesis implies that for some j,

Biarle(S/1r) = 1.

Hence,
/Bi,a’(S/IT\{znA,zn} H(Tpamn)) = 1,

which implies that

/Bi7a(S/IT\{zn—17zn} : (itnfl.’ll'n)(o, .., 0,1, _1)) =1L

The mapping cone procedure and Theorem 2.1.1 then imply that

Bi+1,a(S/Ir)=1. O

The above proof leads to an algorithm for determining when a given
Betti number occurs in the minimal free resolution of the associated
quotient ring that can be implemented in Python for use in the open-
source math software SAGE (see [11]) via the following code where the
inputs are the tree T', stored as a dictionary of lists; and the maximum
number of times the process should run, depth.

def MaxTest2(T,depth):
if depth<O0:
raise ValueError
for 1 in T:

if len(T[1])==1: #Find the first leaf of the tree
n=T[1][0] #Let n be the neighbor of the leaf
break
try:
T.pop(1l) #Remove the leaf
except NameError: #Return error if no leaf is found,

#i.e. if the graph was not a tree
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raise TypeError , "Graph contains a cycle-—-Not a tree"
e=T[n] #Neighbors of n
T.pop(n)
e.remove(l) #Remove the leaf from the list of neighbors of n
for v in e:
templ=T[v]
templ.remove (n) #Remove the neighbor from the lists of
#its neighbors
T.pop(v)  #Remove the neighbors’ neighbor from the list
for w in templ:
temp2=T [w]
temp2.remove (v)
if len(temp2)>0: #Remove the vertex v from w’s list
T[w]=temp2
else:
return False #Removing the neighbor, n, left a
#floating vertex (path of length 0)
if len(T)==4: #Forest is either a 3-path, K_{1,3}, or two
#disjoint 1-paths
for x in T:

if len(T[x])==3: #K_{1,3}
return True
if len(T[x])==2: #3-Path

return False
return True
if len(T)<4:
return True
return MaxTest2(T,depth-1)

It should be noted that the combinations of Theorems 2.2.2 and 2.2.7
provide a comprehensive description of the Betti numbers occurring in
a minimal free resolution of the corresponding quotient ring to an edge
ideal of a tree. In particular, Theorem 2.2.7 tells us when a particular
shift occurs in the minimal free resolution, and Theorem 2.2.2 tells us
that if the shift occurs the corresponding Betti number must be 1.

3. Specific classes of edge ideals of trees. In this section we
will look at the subclass of trees known as paths as well as look at
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a graphical approach to the comprehensive description of the multi-
graded Betti numbers provided in Section 2.

3.1. Minimal free resolutions of the edge ideals of paths. By

a path of length n on the vertex set Vg = {xo, ... ,2,}, we mean a graph
with edge set given by Eq¢ = {{zo,z1}, {z1,22},... , {Zn-1,2n}}, and
the corresponding edge ideal is given by Ip, = (2oZ1, T1%2, ... , Tn_1Ty).

By restricting to the class of paths, we are able to explicitly write down
the projective dimension and regularity of the corresponding quotient
ring in terms of the path’s length.

3.1.1. Proposition. Let P, denote an n-length path. Then
(1) pd (5/1p,) = [(2n)/3].
(2) reg (S/Ip,) = [n/3].

Proof. Proceed by induction on length of the path, n. For n =1 the
associated edge ideal is Ip, = (zox1), and it is clear that pd (S/Ip,) =
1 = [(2(1))/3] and reg(S/Ip,) = 1 = [1/3]. Consider Ip, and the
following short exact sequence

0— (S/Ipn71 : (.’L’nflxn)) (—2) — S/IPn71 — S/Ipn — 0.

From the mapping cone construction and Theorem 2.1.1 we obtain
(2)
pd (S/Ip,) = max {pd (S/Ip,_,), pd (S/Ip,_, : (®n-125)) + 1}

and
(3)
reg (S/Ip,) = max {reg (S/Ip,_,), reg(S/Ip,_, : (Tn_12n)(—2)) — 1}.

Furthermore, we notice that Ip, , : (z,—12,) = (®p—2) + Ip, ,. Then
the induction hypothesis provides the following information

pd (8/Ip,,) = | 2572 | pd ((S/Ip,_, (@0 120) (=2))) = [%] 1
reg (S/Ip, ) = ["5+] reg ((S/Ip,_:(zn-120)(=2))) = [*5°]|+2.

Therefore, from (2) we conclude that

pasiir, ~mas {20520, [5]} - [5]
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and from (3) we conclude that

e e A e
{5 [

Hilbert’s syzygy theorem states that the longest a minimal free
resolution for S/Ip, could be is n + 1. However, we see that even
though a path appears to be rather simple, the projective dimension
is already [2n/3]. Examining the previous theorem more closely, we
see that divisibility of the path’s length by 3 has an effect on both the
projective dimension and the regularity of S/Ip . Furthermore, since
trees can be constructed inductively from paths by the addition of the
appropriate leaves, we see that divisibility by 3 also plays an important
role in the minimal free resolution of the edge ideal of a tree as shown
in the following example.

3.1.2. Example. Let us consider the addition of one leaf to the
path of length 7, P; by first adding a leaf to the third vertex of P;
(Figure 4). Then the corresponding edge ideal is

I = (zo717172, T23, T3T4, T4Ts5, T5T6, T6TT, T2Ts8),
and the minimal free resolution for S/I is given by
0881 58% 582 568 585 85/1—0.

Now let us consider the addition of a leaf to the fourth vertex of P;
(Figure 5). Then the corresponding edge ideal is

J = (CE()JJlCL'liEQ, ToL3y X3T4, XaL5, T5L6, LELTy 1735138),

Xo X; X, X3 X, X5 X4 X,

X3

FIGURE 4.
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X, X, X, X3 X, Xs X4 X,

Xg

FIGURE 5.

and the minimal free resolution for S/.J is given by

0—+8—8% 818 8% 562 6% 285 5/J—0.

Let us now take a closer look at the minimal free resolution of S/Ip,
and provide more detailed information about the last module in the
minimal free resolution courtesy of Theorem 2.1.1.

3.1.3. Corollary. For a path of length n,

1 if 3tn

Brany31(S/1p,) = { (n/3)+1 if3|n.

Proof. Induct on the length of the path n. For n = 1, Ip, = (zoz1)
and 31(S/Ip,) = 1. Consider the coarsely graded short exact sequence

(4) 0-— (S/Ip, ,: (zp-12n)) (-2) — S/Ip, , — S/Ip, — 0.
However, Ip,_, : (zp—12s) = Ip,_, + (Zn—2), and hence (4) becomes
(5) 0-—(S/(Ip, 4+ (wn-2))) (-2) — S/Ip, , — S/Ip, — 0.

Since the generators of Ip,_, and (z,_2) are disjoint, the minimal free
resolution for S/(Ip,_, + (zn—2)) is formed by the tensor product of
minimal free resolutions for S/Ip, ., and S/(x,_2). Then by consider-
ing the mapping cone construction and applying Theorem 2.1.1 to (5),
we obtain

Brany31(S/1p,) = Brans31(S/1p,_,) + Brans31-1(S/1Ip,_5)

6
(6) + Bran/31-2(S/1p, _5)-
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Moreover, the induction hypothesis along with Proposition 3.1.1 (1)
provides

0 if3J(n_{O if3tn
Bragn-1y/31(S/Ip,,) if3[n |1 if3]|n.

Furthermore, the induction hypothesis coupled with Proposition 3.1.1
(1) also provides that

Bran/31-1(S/1p, _3) = Bram-3)/31+1(S/1Ip, 5) =0

Branys1 (S/Ip,_) = {

and
Branss1—2(S/Ip,_5) = Bram—3)/31(S/1p, )

1 if3tn
:{(n—3)/3+1 if 3] n.
Then if follows from (6) that
0+0+1 if3tn
ﬂ”"/31(s/jp"):{1+o+(n3)/3+1 if 3| n
1 if3tn
:{(n/3)+1 i£3]n. o

Furthermore, if we would like to consider when an n-length path
is maximal, we can consider the finely graded Betti numbers. Then
Theorem 2.1.1 provides the following result.

3.1.4. Corollary. For a path of length n,

0 if3
Bran/31,a(S/1Ip,) = {1 Z3)|(Z

whered = (1,1,...,1).
Proof. Induct on the length of the path, n. For n =1, Ip, = (zoz1),

and $31,1,1)(S/Ip,) = 1. Set (=2) = (0,...,0,—1,—1), and consider
the exact sequence

(1) 0—(S/Ip,_, : (xn—124))(—2) — S/Ip,_, — S/Ip, — 0.
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However, Ip,_, : (zp—12n) = Ip,_, + (Zn—2), and hence (7) becomes
(8) 0— (S/Ipn73+($n72)) (—2) —>S/Ipn71 —)S/Ipn — 0.

Considering the leftmost module in the minimal free resolution for
S/Ip, and the degree shift (d) = (1,...,1), the mapping cone con-
struction and Theorem 2.1.1 applied to the short exact sequence (8)
provide the following relationship among Betti numbers.

Bransa1,a(S/1Ip,) = Branss1,a(S/1p, )

©)  Branjara (S/Ip_ + (2a—2)) (~2).

Furthermore, since no minimal generator of Ip, , is divisible by x,,

Brans31,a(S/Ip,_,) =0

and (9) becomes

(10)  Brans31,a(S8/Ip,) = Bransaa (S/Ip,_; + (zn—2)) (—2).

At this point we break into two distinct cases based upon the divisibility
of the paths length, n, by 3.

Case (i). If 3 | n, then 3 | (n—3). Applying the induction hypothesis
to (10) provides
Brans31,a(S/1Ip,) = 0.

Case (ii). If 31 n, then 3 1 (n—3). Applying the induction hypothesis
to (10) provides
Branss1,a(S/Ip,) =1. O

In particular, the previous theorem states that paths are maximal
precisely when their length is not divisible by 3. Even though we have
not previously considered a path of length 0, i.e., the graph consisting
of a single vertex, such a graph will be considered not maximal by
requiring that the polynomial ring S have at least 2 variables.

The algorithm presented at the end of Section 2 is based upon the
decomposition of the original graph into smaller known graphs, in
particular into paths and complete bipartite graphs K ,,. Then using
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that Ky, is maximal for all m > 1 and paths are maximal when 3 { n,
we are able to deduce when an arbitrary tree is maximal. This idea was
used in the development of the algorithm shown at the end of Section 2.

FIGURE 6.

FIGURE 7.

3.1.5. Example. We want to determine whether the tree, T, is
maximal (Figure 6). Select a leaf of T', say z9; and then recall that T is
maximal precisely when the subforest defined by Iy (25,20} : (Z529) is
maximal. Call this subforest F; and consider its maximality (Figure 7).
Now select a leaf of Fi, say xg; and notice that for F; to be maximal,
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Ip\{ws,26} * (Z376) must be maximal. Then consider the subforest of
Fy defined by Ip\ (5,2} : (326), and denote it by F5 (Figure 8).

o
X4
X
X7
X0 X1
FIGURE 8.

Recall that, for a forest to be maximal, each component tree of the
forest must be maximal. However, the vertex zy forms a component
tree of F5 that is not maximal. Therefore, the original tree T is not
maximal. To verify this, consider the following Betti diagram for S/Ir
obtained from Macaulay 2 (see [5]).

Total: |1 11 38 68 70 42 14 2
o:|r - - - - - - -
/- 1 15 6 1 - - -
2:1- - 23 50 37 11 1 -
3] - - - 12 32 31 13 2

From this Betti diagram we see that the leftmost module in a minimal
free resolution for S/Ir is of rank 2 and has both copies of S in the
coarsely graded shift 3 + 7 = 10. However, for T to be maximal, this
leftmost module must have a shift of 11.

In the previous example, we notice that there can be a great advan-
tage in this algorithm by choosing to remove the leaf whose neighbor
has the highest degree. However, this is not always the best choice. For
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FIGURE 9.

instance, in the previous example xy would be the leaf whose neighbor
has the highest degree, namely 4, but removing xy would still result in
more than one step to determine whether or not 7' is maximal. How-
ever, if we were to first remove vertex 19, the subforest of T" defined
by I\ {eg,210} * (T8T10) is depicted in Figure 9. After this one step, we
can already see that the original tree 7' is not maximal, because z1;
constitutes a path of length 0 and hence is not maximal.

We would next like to consider when a path is level, i.e., when the last
module in the minimal free resolution for S/Ip, has only one degree
shift.

3.1.6. Proposition. Let P, be a path of length n. Then the
corresponding edge ideal, Ip, , is level with level shift given by
n+l if3tn
n if 3| n.

Proof. We will proceed by induction on the path’s length, n. For
n = 1 and n = 2, the claim follows from Corollaries 3.1.4 and 3.1.3.
For n = 3, Ip, = (zox1,2122,2223) is level with level shift 3. For
n > 4, we have the following exact sequence as in Theorem 2.1.1.

0 —S/(Ip,_, + (xn—2))(—2) — S/Ip,_, — S/Ip, — 0.
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Moreover, Proposition 3.1.1 provides that
(S (Ip.s + o0 2)) = | 5] -1

and

pd (S/Ip, ) = —2”3* 2} .

Then we have the following two cases based upon the divisibility of the
path’s length by 3.

Case (i). If 3 t n, then pd(S/(Ip, , + (zn—_2))) = pd(S/Ip, ,).
Furthermore, by the induction hypothesis Ip, _,+(z,—2) is level. Hence
S/Ip, is also level with level shift (n —3)+1+1+2=n+ 1.

Case (ii). If 3| n, then pd (S/Ip,_,) =pd (S/(Ip,_, + (n_2))) +1.
Moreover, the induction hypothesis provides that both Ip,_ . + (z,_2)
and Ip are level with

n—1

level shift of S/(Ip, ; + (Tn—2))(-2)=(n—-3)+1+2=n
level shift of S/Ip, , =(n—1)+1=n.

Therefore, S/Ip, is also level with level shift n. O

3.2. Minimal free resolutions of the edge ideals of 3-spiders.
It seems natural to extend from paths to the class of graphs resembling

X0
X1 Xa+l Xatb+1
X2 Xa+2 Xat+b+2
L[] L] L]
L] L] L]
L] [ ] L]
Xa O O Xa+b O Xatb+c

FIGURE 10.
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Since this graph resembles a spider with 3 legs, we will call it a 3-spider.
This is a natural extension from the class of paths, because if we delete
the rightmost leg we would be left with a path of length a + b.

Using Proposition 3.1.1 and the mapping cone construction presented
in Theorem 2.1.1, we can write an explicit formula for the length of a
minimal free resolution corresponding to the quotient ring of a 3-spider.

3.2.1. Proposition. Let G be the graph of a 3-spider. Then for

c=1:pd(S/Ig) = Pag_l—l + {%T_l] +1
AR fab=lmods

c=2:pd(S/Ig) = "2(a3—1)—‘ n [2(1’3—1% +2 else

c>3:pd(S/Ig) = {M—‘ +(-1)"r

where r = min{a mod 3,5 mod 3, ¢ mod 3}.

Proof. Consider the following short exact sequence

0— (S/IG\{ma+b+c—lvza+b+c} : ($a+b+0*1wa+b+c)) (_2)
— S/Ig\{wa+b+cil7wa+b+c} — S/IG — 0.

Then the mapping cone construction and Theorem 2.1.1 imply that

pd (S/IG) = ma‘x{pd (S/IG\{Ia+b+C_1,$a+b+c})7
pd (S/IG\{za+b+c—17wa+b+c} S (Tatbre—1Tatbre)) + 1}

However, we can consider I\ (.., o 100150} (Tatbte 1Tatbic) graph-
ically as follows.
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Xo
X1 Xa+l Xa+b+1
X2 Xa+2 Xat+b+2
) . L]
L] . L]
L] . L]
Xa ) ¢) Xa+b (:) Xat+b+c-3
|
¢ Xatb+e-2
Xa+b+e-1
Xa+b+c

FIGURE 11.
We will proceed by induction on the length of the third leg, c.

o= 1:pd (/1) = max {252, [272] 4 [2452] 4 5]
= [0 + [252] 41

] 4[24, }

c=2:pd(5/Ig) Zmax{ ( [2(?1)} + P(”;ﬂ +2

[2a=17 4 [221] 41 ifa,b=1mod 3
{ [2((13_1)—‘ + [Q(b‘;l)—‘ +2 else
max{[%] + {L;l] +1, [@-‘ + 2}

ifa,b=1mod 3

o {252« [252] . [252] 2

else

c=3:pd(5/Ig) =

_ ’72(a-gb+c) " _

Assume the statement is true for the third length having length ¢ — 1.
Then

pd (§/1I) = max { | 2etbie )| o (1), [2epa| 4 (—1yr

where ' = min{a mod 3,b mod 3, (¢ — 1) mod 3}.
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Case (i). If ¢ = Omod3, then (¢ —1) = 2mod3 and ' =
min{a mod 3,b mod 3}. However, regardless of the value of r', we see
that 2 b o)

a+0+c
pd (5/16) = {7] .

3

Case (ii). If ¢ = 1 mod 3, then (¢ — 1) = 0 mod 3 and ' = 0. Fur-
thermore, since (¢—1) = 0 mod 3 implies that [(2(a + b+ ¢ —1))/3] =
[(2(a4+b+¢))/3] — 1, we obtain

pd (S/15) = [ww 4 (-1

Case (iii). If ¢ = 2 mod 3, then (¢ — 1) = 1 mod 3 and ' € {0,1}.
However, for either value of 7’ we see that

2(a+b+c)

pd (/1) = | 25

w +(-D"r. O

4. Minimal primary decompositions. For a simple graph
G, consider the minimal primary decomposition of Ig. The prime
ideals occurring in the decomposition of I can be realized as minimal
vertex covers of the planar graph G via the following one-to-one
correspondence.

{ Minimal vertex covers of} 11 { Associated prime }

a simple graph G ideals of I

4.0.2. Definition. Let G be a simple graph on the vertex set
Vo = {zo,... ,zn} such that G possesses no isolated vertex, i.e., for
each vertex x; there is an edge e of G with x; € e. A vertex cover of
G is a subset C' C Vg such that, for each edge {z;,z;} of G, one has
either z; € C or z; € C'. Such a vertex cover C is called minimal if no
subset C' C C with C" # C is a vertex cover of G.

The above one-to-one correspondence provides a way to quickly
determine and verify the prime ideals present in the minimal primary



SOME EDGE IDEALS OF SIMPLE GRAPHS 29

decomposition of I using the graphical concept of a minimal vertex
cover. Furthermore, if we restrict to the class of paths, the number
of minimal vertex covers of P, (and correspondingly the number of
associated prime ideals of Ip ) can be determined by the following
recursive formula.

4.0.3. Proposition. Let P(n) represent the number of minimal
vertex covers of P,. Then

P(n) = P(n—2)+ P(n - 3).

Proof. Proceed by induction of the length of the path, n. The
following table illustrates the base case.

Minimal Vertex Covers | P(n)
{wo} 1
{zo}.{z1} 2
{z1},{zo, z2} 2
3

{zo, z2}, {71, 22}, {21, 73}

W =IO S

Thus, P(3) = P(1) + P(0). Assume the claim is true for P,_;. We
make the following definition.

q(n) := |{Minimal vertex covers of P, that include the vertex z,}|.

Notice that the above definition for ¢(n) also means that z,_; is not
chosen. Furthermore, we have the following equality.

(11) P(n) = q(n) + P(n—2).
Moreover,
Choose =
Ch . ( n
Py = (o) ( Can o ) [,

Can’t choose ., Have 7t° choose 2 Choose ©p_3
Don’t choose x,,_3

= P(n—2) + q(n—2) + g(n—3)
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Using (11) we obtain

Finally, applying the induction hypothesis to P(n — 2) provides the
claim, namely that

P(n)=P(n—-2)+P(n—4)+ P(n—5)— P(n—4)
+P(n—3)— P(n—05)
=P(n—2)+ P(n-3). u]

This recursive formula leads to the following explicit formula for the
number of prime ideals in the minimal primary decomposition of Ip, .

4.0.4. Corollary. The number of associated prime ideals for Ip, is
given by

where r1, 79, and r3 represent the 3 distinct roots of 3 + x2 — 1.

Proof. The proof follows from Proposition 4.0.3 and uses standard
techniques of ordinary differential equations. ]

5. Edge ideals of cycles. In the previous sections, simple graphs
that contained a vertex of degree 1 were considered. It is natural to
ask when the previous results can be extended to generate information
about the edge ideals of simple graphs that do not contain a vertex of
degree 1. The simplest of these is a cycle of length n which can be
depicted as in Figure 12.



SOME EDGE IDEALS OF SIMPLE GRAPHS 31

FIGURE 12.

FIGURE 13.

Comparing an n-cycle, denoted C,,, to a path of length n — 1, we see
the relationships among both the graphs and the corresponding edge
ideals (Figure 13).

It is tempting to assume that the mapping cone construction used
to obtain the inductive construction for the minimal free resolutions
corresponding to paths also applies to cycles. However, the following
example illustrates that the mapping cone construction does not nec-
essarily produce the minimal free resolution in the case of cycles.
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5.0.5. Example. Consider the edge ideal of the cycle of length 5,
Ic, = (®ox1, T1T2, T2T3, T3Ta, Toxa) C S = k[To,... , Ta].

Set J = (zoz1, 172, 223, 324 ), and consider the following short exact
sequence.

0 — S/J: (zoxs)(—2) 2% S/J — S/T — 0.

Then the mapping cone procedure using Z-graded minimal free resolu-
tions of S/J : (zoz4) and S/J provides the following free resolution of
S/Ic,.

00— 5/J : (zoz4)(-2) S/J S/1c, 0
5(-2) s s
§*(=3)] 54(-2) 5°(-2)

R —
-———->

S(—4) S3(—3) @ S(—4) S%(—3) @ S(—4)
0 S(-5) S(—4) @ S(—5)
0 0

However, the above resolution of S/I¢, is not minimal. The minimal
free resolution for S/I¢, is given by

0 — S(—5) — S°(-3) — §°(-2) — S — S/Ig, — 0.

Fortunately, using this relationship between paths and cycles we can
still obtain an explicit formula for the length of a minimal free resolution
corresponding to C,. We will mimic the procedure used for trees
by removing an arbitrary edge, say {z,_1,2o}. Upon removing edge
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{Zn—1,x0}, we are left with P,_; as shown above in Figure 5. We must
be careful though, because Theorem 2.1.1 no longer applies.

5.0.6. Proposition. Let C,, denote a cycle of length n. Then

5] sl
pd (S/Ic,) = [@] if 31 (n—1).

Proof. Consider the exact sequence
(12) 0— (S/Ip, , : (@n—120)) (—2) — S/Ip, , — S/Ic, — 0.
Moreover,
Ip, | :(zp—120) = (21, Tp—2) + (X223, T3Ta, ... , Tp—aTp_3).

Hence, (12) becomes

(13)

0— (S/((a:l, ZL‘n,Q) + (1,'2373, T3Tgy-- -, a:n,4:vn,3))) (—2) — S/Ipn71
— S/Is, — 0.

It should be noted that (zoz3, 2324, ... ,Tn_aTn_3) C k[Ta,... ,Tp_3]

is isomorphic to Ip, . C K[z, ... ,Zn—5], and so we shall set

IPTIL—S = (1‘21‘3,1‘31‘4, e ,l‘n_4$n_3).

Consequently, Theorem 3.1.1 provides that

pd <S/((a:1,:vn72) + IP£_5)> =2+ [2(713— 5)-‘ _ {2(713— 2)-‘

and
pd (S/Ip, ,) = {yw |

From the mapping cone construction, we obtain that

pd (8/Ic,) < max {pd (S/((21,2n 2) + Ip; ) +1,pd (8/Ip,,) }
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We will proceed by showing that the last module of the free resolution
for S/Ic, obtained via the mapping cone construction cannot cancel,
i.e., that

pd (8/Ic, ) = max {pd (5/((m1, Tn_a) + IPT/L_5)) +1,pd (S/Ip, ) } .

Case (i). If 3| (n— 1), or n = 1 mod 3; then P, _; is not maximal.
However, in this case, P, 5 is maximal. Additionally,

pd (/((w1,2n2) + Ip; ) =d (S/1Ip, ),

and hence there can be no cancelation in the last module of the
free resolution for S/I¢, formed from the mapping cone construction.

Therefore
i (51 = [200] a2 2],

Case (ii). If 31 (n —1), or n = 0,2 mod 3; then P,_; is maximal.
Also
pd (S/((@1, 20 2) +Ip;_,)) = pd (/Ip, ) ~ 1.

Furthermore, the copy of S with the maximal shift in the last module
of the free resolution for S/Ic, obtained via the mapping cone con-
struction cannot cancel, and consequently

pd (8/16,) = | 22|

The above proposition says that the length of a minimal free reso-
lution corresponding to C),, agrees with the length of a minimal free
resolution of P,_; as long as 3 { (n — 1). However, in the alternate
case, namely when 3 | (n — 1), we see that the length of the minimal
free resolution corresponding to C, agrees with the length of a minimal
free resolution for P,.

In general, we notice that simple graphs are composed of trees and
cycles. As seen in the case of cycles, even though Theorem 2.1.1 does
not apply to a general simple graph G, we can still use the short exact
sequence

Tp_1Tpn

O—)(S/Ig\{zn717mn}Z(Qﬁn,lxn)) (—2) — S/Ig\{zn717mn}—>5/fg—>0,
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where {x,_1,2,} is an arbitrary edge of the graph G. Since a simple
graph G can be constructed by the addition of edges to subgraphs of
G that are paths and cycles, the above results can be used to generate
estimates on the projective dimension of the more general module S/ 1.
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