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Recently various theorems on bounded analytic functions have
been generalized to the case o f a multiply connected domain by
several authors. For instance, the well-known Schwarz's lemma
has been generalized by Ahlfors, Garabedian and N e h a r i. The
theory of complete orthonormal system o f analytic functions and
of Szeg6 kernel function play important rôles in such generaliza-
tions. The objectives of this paper are to generalize Hardy's
theorem on bounded functions (sec. 1 -3 ) and to give a radius of
univalence for a certain class of bounded functions (sec. 4-6).

1 .  Let D be a finite domain in the complex 2—plane, bounded
by n  closed analytic curves /'„ (i=1, n ) .  We define the class
A of all functions f ( z )  satisfying the following conditions :

(i) f ( z )  is single-valued and regular at z  E D,

(ii) f ( z )  has an integral F ( z )  = f ( t ) d t  ( Zo E  D ) which may
zo

have additive moduli if z describes a closed contour in D but which
is continuous in the closed domain D  D  +  (I' =1] Pi) ,

(iii) for every function f ( 2 )  there corresponds a summable
function p ( t )  on I '  with its square of absolute value ip r, such that
for any two points t ,  and t, on the same boundary curve I (i=1,

n)
t2

F(1-2 ) — F(t,)= f  p (t)dt

holds for the right determinations of the multivalued function F(2).
p ( t )  is called the associate function on /' of the function f ( 2 )  in
D .  It is evident that if f ( z )  is regular in D and continuous in D,
it belongs to the class A  and its associate function /2 (0  is given
by the boundary value f ( t )  of f (z ).

We consider the space A  and introduce in A  the metric
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Ilf112 -= 111(1)19 ds= p(t) • p(i -j-ds ,
1'

where s  denotes the arc-length o f P . By the well-known methods
of orthonormalization of regular functions we construct a complete
orthonorm al system If; (z )1  (i =0, 1 ,...) by which each function
f ( z) E A may be represented in the form of absolutely and uniformly
convergent series in any closed subdomain of D,

f (z ) 1,f (2 ) , (f, ( f , ) ) 11' i

where the scalar product of two functions j  and g  is defined as
(f, g) §  p (t)  -v ( t)d s , p (t)  and v(t) being the respective associate

functions of f  and g .  N. Aronszajn" and M. Schiffer' proved that
every  function o f  a  com plete orthonorm al system  if  (z )1 m ay  be
chosen to be regular in  D . In the following section we consider
only such a regular system.

2 .  In this section we shall prove the following
Theorem I. Every  bounded regular function in  D  belongs to

the class A.
P ro o f  For our purpose it is sufficient only to prove that any

bounded regular function f ( 2 )  (If I < 1 )  satisfies the conditions (ii)
and (iii).

Let to be an arbitrary point on the boundary curve Pi , 2, and
22 be any two points of D  in the neighborhood o f to . Next we
map conformally the simply connected domain D i (D  D ) bounded
only by P, onto the unit circle in C-plane. Denote the mapping
function by := 5 0 ( 2 ) .  Let 70, C, and C 2  be the respective images of
to , z , and 22 . Then we obtain

. 2

(1 ) F(z 2 )  —  F(z ,)= f (t)d t= 1v - ' (C) H9 - 1 (C)1 .
ti

By using Cauchy's theorem and the boundedness of f ( z )  in (1),

( 2 ) I F ( 2 2) — F (21 ) I -5- MI :2—  C1I
M  being a constant such that I{c (C ) }  -=  ç o ' (z) I / lf in  D.
Indeed, there exists the constant M by Schwarz's reflection principle.
Denote by Do a portion of a neighborhood o f to contained in D
whose image in C-plane is a common part of the unit circle and
a neighborhood of r o defined by IC-70 1 < e/2M , €  being an arbitrari-
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ly chosen positive number. Hence, corresponding to c>  0 we can,
by (2), determine a portion D , such that there always holds the
inequality

( 3  ) I -  F(2,)1 <E,

provided that 2, and 2, belong to D , .  Accordingly lim F (z) must
(:VB)

be finite and determinate except additive moduli. Thus we have
proved that the condition (ii) is satisfied for f (z ).

By the well-known theorem of Fatou every bounded regular
function f ( z )  has a finite boundary value (non-tangential) almost
everywhere on P. We define the associate function p ( t)  of f (2 )
by such finite boundary value except a set of null-measure on I'.
On such an exceptional set we define properly, say, p(t) =0. By
the theorem of Lebesgue integral o f bounded function, p ( t)  and
/1 (t)12 are summable on P .  Next let t, and t, be arbitrarily fixed

points on the same boundary curve Pi, and 0 2 be the respec-
tive images in and denote a  sequence of arcs in D  con-
verging to the arc t, t, by 7iv)(1)=1, 2,...) whose images in e-plane
are the sequence o f  concentric circular-arcs re '", r,ez e=(r i,
v c / 3 ) .  Then it follows from (1) that for the right determination
of F(z)

F(i2' ) ) -  F( 4v ) )  = f ( t )d t
r (1.)
02

= Jf { (r, e")} • {io - l(r,e")} ' • ir,e'd0 (C r, ele)

where 4" and i» are the endpoints of 7-' ) and tend to  t, and t„
respectively as 1).- œ. Letting 1) a n d  using the theorem of
Lebesgue integral of a sequence of functions, we observe that

t2

F(1.
2 ) - F(t,)=-- p(t)dt ,

because f {50- 1 (r,e")}  p  {99-1 ( e ' ° ) }  as '-+ co a. e. on I I = 1 .  Thus
the theorem is proved.

3 .  By means of the above result we shall now generalize the
following classical Hardy's theorem to the case of a multiply con-
nected domain.
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CO

Hardy's theorem. Let f (z )  = E a ,e  be bounded and  regular inb=0
the unit circle lz1 <1, and define a function M ( r ) =  lad (z=re").
T hen it follow s that M(r)=-0(1/ (r —*1).

For the sake of brevity we shall use the same notation with
that of sec. 1  and 2 .  Let f (2 )  be again single-valued, regular and
bounded in a  finite multiply connected domain D  and by means
of the above result expand f ( z )  in a series of a regular complete
orthonormal system if , (2 ) }  in the form

CO

f (z) =E a, f i,(z), a„= (f, J;) ,

where the right-hand side is uniformly and absolutely convergent
in any closed subdomain of D .  Analogously to M (r )  in Hardy's
theorem, we define a  function M (2) If (z ) I. T h e n  w e
obtain the following.

Theorem. II. For every regular and  bounded function f ( z )  in
a  m ultiply  connected dom ain D , there holds M (2)=0(1/ vd(z)),
when z tends to an  arbitrary  boundary point, d(z) being the shortest
distance from  z  to the boundary P  of  D.

Proof.

M(z) —E 1(41 (z) I

1 Om + I
lad Ifv(z) I +i 1(41 IL(z) I

• (  4 ) .M.-14 I a l If(z)I 2f , ,  (2) )
10= 0 u=n14-1 1 =ne+1 z e D

5 )- 1 lad -M,+ 4/ E lad 2 E lf,(z)1 2

v = 0 u = m + 1 u = 0

la.I -X+ il E la,I 2 VIC(2, z),v=0

where K(2, C) =>._11.,,(2).1",(c) (2, C€ D )  is called  the Szeg6 kernelv=0
function" of the domain D .  It is well-known that at any interior
point z of D

4)

( 5 ) K(z, z) 1  
27rd(z)

By introducing (5 )  into (4 )  we obtain
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?It

M (2)<_]la 
-v2rd(z )

Since Eia,I2 If (z) §Ip(t) 1 2  cls < co by P arseval's theorem, for

an arbitrarily chosen e> 0 , we can determine a positive integer m
such that

CO

E la,1 2 <27r62 .
1=m-1-1

Therefore
7,6

CO • M  (2) <  ( E df i) +6 •
1., ••■0

Hence it follows that for a fixed m

urn V d(z ) • M (z )<6
z-ot

e 7))

for any boundary point t. The left-hand side is independent of m.
Thus we obtain the required result

( 6 ) M (z )  - -o ( -  1 — -) , (z .-+  t).
d(z)

Particularly let D  be the unit circle jzI < 1. Then we can
choose as the complete orthonormal system f ( z )  = z / V  ( v = 0 ,
1 , . . . )  and hence obtain M (2)---E  v2r• la l,j(e/  v -27r) re") forv=-0
f ( z ) =  a B y  the above theorem M(2)=-0(1/ -V 1—  r) (r-4 ).

,-0
Thus Hardy's theorem has been generalized to the case of a multiply
connected domain.

4 . We shall now retain the same assumptions concerning the
71.

domain D  and its boundary T'=>1- 1 T'i as the preceding sections.
Furthermore le t a  function 2 (z )  be defined to be positive and
continuous on each T'i . Then, according to N ehari,"  there exist
two functions KA (z, C) and LA (z, C) such as follows :  for an arbitrari-
ly chosen interior point o f  D,

(i) K A (2, C) and L À (z, C) —1/27r(z—C) are regular functions
of z  in D,

(ii) I K (z, C) I is continuous in D + P, IL ,(z , C)I continuous in
D + T'—G ,  G  being any sufficiently small neighborhood of c,

(iii) K A  (z, C) and LA (z, C) are connected by an identity
1

( 7  ) 2(z ) K A (2, c)dsz =--.— L,(2, C)dz, z E 1',
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ds,----1d21, being the linear element o f /'.
It is known that both functions K,(2, C) and L,(z, C ) are

uniquely determined by the above three conditions ( i) ,  ( i i )  and
(Hi). Moreover, for every regular function f ( z )  in D  such that
f A(z) I f(z)1 2ds <cc  (in the Lebesgue sense), there arises the relation

( 8 ) f 2(z)f(2)KA (2, C.) dS¢

 -=f(C)

which is called the reproducing property of the function K,(2, C).
5 .  By means o f two domain functions KA (.2, C) and LA  (z, c)

we shall now construct a theorem on the radius of univalence of
the function f ( z )  belonging to a certain class. Without loss of
generality we assume that the domain D  contains the origin.
Consider a class S A which consists of every function f (z ) satisfying
the following conditions ;

(a) log(f(z)/z) is single-valued and regular in D,
(b) Ern log(f(z) / z) À ( t )  for every boundary point t  on /'.

Instead of LA (z, C) connected with the function ) (z )  we construct
another domain function L,(z , C ) connected with the function
p(z)---1/2(2)(> 0 ) which can be expanded by ( i )  in the form

( 9 ) L ,(2 , C ) 1  
2 2 T  ( 2 —  C )  

+(zw(C) + 0 (1z —c1).

Moreover we introduce a new function Q(z, C) by using
and K,

(10) Q(2, C) —470(L,(2, C) —'(C)  K
Â

(2
'  C)   )

2

(C, C)
(K,(C, C)> 0 c.f. 5))

which is expanded in the neighborhood of in the form
1 

(2—C)2 + 
regular part.

By the residue theorem we obtain for every function f(z) E S,

(11) f' (c) 1 1
f(C ) C

f log -
1 e (2 )

  Q(z, C)dz ,
27ri r 2

and by the definition of the class S A

(12) (C) 1
AC) c

G  1
 42) • IQ (2, C) I cls

—
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—27 di(2) .(14,( 2 , 012_,(C)  K (z , C)L ,(2,
(C,

(c) K ),( 2 , C. ) Lik(Z) C) up:(c..) 12  1K),( C) ) (/ .3  .
KA (C, C) KI(C7 r ) 2

Here we obtain from the identity (7) for p (2) instead of 2(2)

C)=ip(z)K ,(z , C)( d
d
s; )

(7')

= K,(z , C)( ds,  —1 on I') dz  
2 (4 ds, dz
. 1 2(z) .4(z, C)ds,=Kz(z, C)dz

Therefore we observe that by (7')

(13) (z) IL, (z, C) rds.= C)L(2, C)dz
r

=K ,(C , C ) (by residue theorem),

f-,.(c) .2(0  K),(z, C)L,,(z, c) ds„
ifx(C, C)

i a , ( C )  K ),(z, C) Kw ( z ,  n t h
Kx(C, C) r

= 0  (by Cauchy's theorem),
similarly

(15) (6 up. (C) 2 ( 2 ) C )   dsz —  0 ,
c)

f(16) 1 (c)122(z)  11f),(z,
) -),(C,

cc)
 12 d&

r K
la , (C) 12, i ( z ) K , ( z ,  c)K ),(z, C)ds,

Kx(C, C) 2 r
=  1 ay. (C) 12( b y  reproducing property (8)).

Kx(C, C)
Introducing (13), (14), (15) and (16) into (12), we obtain

<27c[Kii(c, ±   i ( C ) I 2  

Kx(C, C)

<271c1[K,(c, c) 1",...(C)12  

K),(C,

(14)
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Accordingly there holds

(18) Rek  -RC )   1> 0

within the largest circle in ID af b(Co)ut ) the origin in which the in-
equality

271Ci [Kp.(C, +  
l a ( C ) 2

 ] S 1
Kx(C, C )  —

is satisfied. Hence, by Kobori's theorem, we obtain the following
Theorem III. Let f (z )  be in  S A , then  f ( z )  i s  univalent (and

yet star-like) in  the largest circle about the origin all of  whose Points
satisfy the inequality

(19) 271- ICI [Kw (C, C) + ( C)
 12 _<  1 , (2  (z)

K),(C, C) —
Thus, by our theorem, the radius of univalence for every function
E  S A can be estimated by domain functions K A , X L, and up,.

Particularly consider the case where p(z) =1/M (a positive
const.) everywhere on I'. In this case it follows that

K o ,(z, =MK(z, C)
(K(z, C) denotes Szega kernel function described in sec. 3)

and

(z, = 1+ 0 ( 1 2 — c p
27r (2 —

j. e. (2,1,(c)=-- 07 ) (c  E D ) .  Therefore our theorem reduces to the
following

Nehari's theorem» Let S be a  class of  regular functions f(z )
which satisfy the conditions that ( i )  log(f(z)/z) is single-valued and
regular in  D  a n d  (ii) lim  i

 l o g ( f ( z ) / z )
 I _<__M  f o r every boundary

point t. Then every  function f(z ) E S  i s  univ alent in the largest
circle about the origin all of  whose points satisfy.

(20) 27121 K(z, 2)5 .

In  his proof it is shown that this value of the radius of
univalence is the best possible. We cannot, however, assert that
our theorem in the more general case also gives a  best possible
value of the radius for every function f(z ) E SA .

6 .  Instead o f using the function KA (z, C)/KA (C, C) in (10) of
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the previous section, we may use an arbitrary function g(z ) which
is regular in D, g(C) = 1  a n d  2(z) Ig(z)eds and construct a
function similar to Q(z, C) by lf ,„ o . and g .  By the same method
of estimation as in the sec. 5 it follows that f(z ) E S A is  univalent
in the largest circle about the origin, all of whose points satisfy
the inequality

(21) 21C1 . [Kw.(:, C)+1"1.(C)1 2 .- 11g(z) ,

where lIg(z)H 2 -, _ 2(2)1g(2)1 2d s .  On the other hand, Nehari 9 ) proved

that

(22) 11,g-(2) 1r 1>
(z, C)and yet the equality in (22) is possible only for g(z)-=

K A

Kx(C,C)
By considering Nehari's theorem and comparing the inequality (19)
with (21), we observe that the radius of univalence determined
by (19) is not smaller than that determined by (21). Therefore,
in direction of our approach, it is preferable to use the function
K,(z, K x(c, C) in the estimation of the radius of univalence.

At the end I wish to express my hearty thanks to professor
T. Matsumoto for his kind guidance during my researches.

August 1952
Kyoto University
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