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1. Theorem. The principal part of the possibility of the
prolongation of solutions of the ordinary differential equation of
the second order,

d’y _ dy
(1) 3= (x.9,50).
is on the evaluation of the derivatives of the solutions. On this
subject Prof. Nagumo has given a sufficient condition in Proc.
Physico-Math. Soc. of Japan, 3rd Series. Vol. 19 (1937), and the
late Prof. Okamura has obtained a more general and easier result
in Functional Equations (in Japanese), Vol. 27, but it is also a
sufficient condition.

Recently we have obtained a necessary and sufficient condition
for the evaluation, by aid of the D-function having the properties
like the distance has which Okamura had utilized in his research
of necessary and sufficient conditions for the uniqueness of solu-
tions in the Cauchy-problem.

Our theorem runs as follows.

Let £ be a bounded closed domain in xy-plane and £* be a
three dimensional domain of (x, y, '), where (x, y) e and —
<y <+oo. Letf(x, v, ¥) be defined and continuous in £*. In
order that, given a positive number o and for a suitable posilive
number P(«) (>wu), if for any solution y=y(x) of (1) through a
point (x,,3,) arbitrary in £, provided |y (x,)| < «, we have

[y ()] < B(w),
so long as y=y(x) lies in £ for x,=x, it is necessary and sufficient
that there exist two nom-negative continuous functions P,(x,y,y')

(=1, 2) as follows; namely @, (x,y,y)and P,(x,y,y) are defined
in
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d: (r,y)el, ¢y <P
and

dy: (ay)ef, —By < —u
respectively and for (x, y)ed,

(2) wl(xy yv (l) > 0! (pl(x) y; 13) =0
and
(3) Dy(x,y, —2)>0, @y(x,y, —F)=0,

and then they satisfy the Lipschitz condition,
) 12.(2,99)-0:x3,M=K(y=7| + |y=¥] (=12),

with regard to (v,y'), where K, arve constants, and finally, for points
of 4, and 4,

(5) D{l«']wf (x,9,5)=0 (=1, 2)

respectively in the jollowing sense.

(5) is Nagumo's notation, e. g. see ‘“ Sur une sorte de distance
relative a un systeme difféventiel” (Okamura, Proc. Ibid, Vol. 25
(1943) pp. 520—521). Now we consider the system of differential
equations

dy, dy,

(6) dx 2}’2: dx :f(xvylyy2)'
which becomes by the vector notation
(7 ﬂ=1*'(x, v).

dx

This is equivalent to (1). Then the above mentioned sense is
that (5) holds for all points (x, ¥, from which a regular curve
i.e., continuous with continuous first derivatives, having the
direction given by F(x,¥,) goes to the right in 4, and 4, res-
pectively.

The left hand of (5), D% ?:(x, #,), depends by the Lipschitz
condition only on the direction ¥'(x,) at x=zx, of the curve
=y (x). Therefore, if (x,9,%) is an interior point, (5) may be
replaced by

lim {Pdx+t, y+ty, ¥V +1(x,9,¥)]—P(x,5 )} =0

t>+0
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and moreover if @,(x,y,y) be totally differentiable, then it reduces
to

p. .
a(lz + awt
ox oy

,, 09,
Y +-—-f(xyy)=0.
oy

Remark 1. In the above theorem, if * given a positive number
a and so on” be replaced by ‘‘ given an arbitrary positive number
« and so on”’, we shall have @%(x,y, ') (i=1, 2) for every o, instead
of @:(x,9,%).
Remark 2. Generalizing the problem, we can obtain the
dy;

analogous condition for the system ~d—= (%, Yy y0) (=1, m).
%

2. Proof of Theorem. At first, we prove that the condition
is sufficient. When there exist the above mentioned functions
?.(x,9,5) (i=1,2) for a suitable positive number f(«) (> «), we
suppose that, for a solution y=y(x) which passes through a point
(%, ¥,) and satisfies | y'(x,)| < «, we have y'(x) =S at some point
2(>x,). Then by the continuity of 3 (x), there exist two values
of x, say x, and x,, such that y'(x,)=«, ¥ (x) =8 and «<y'(x) <
for x,<x<x,. In this interval, we consider the function @,(x, y(x),
¥y (x)). By (2),

wl(x]) y(xl) s yl (.X,)) = (I)1 (xh y(%), a) >0
and
D, (%, ¥(1:), ¥ (1)) =D, (5, y(x5), B) =0

and vet, by (5), &,(x,y(x),¥'(x)) is non-decreasing with respect
to x and therefore

Dy(1, (%), ¥' (%)) = P, (%, ¥ (%), ' (%) ) -

This contradicts with the inequality standing above. Hence
y'(x)=p can not hold, whence we have

¥ (x) <B.
Similarly by aid of @.(x,y,y'), we can see that—f<3'(x). There-
fore we have in any case

|y (x) ] <A

Next we show the condition to be necessary. For clearness,
we will consider the equation (6) equivalent to (1). Let @ be a
point (1% ¥, ¥, in 4, and P be a point such as (x7, y,")e£, y,"=f
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and 2 < x”. Now we suppose that, if | ¥'(x,)| < ¢, then we have
¥'(x) <B. Now we construct the Okamura’s D-function D(Q, P)”
and we indicate by d(Q) the minimum of -D(Q, P), when P
displaces, yet satisfying ¢ < x¥; namely we have

¥ 4(Q) =min D(Q, P).

<

.

This minimum exists and there exists a point P such as just
3(Q)=D(Q, P), since D(Q, P) is a continuous function of P and
the range of the displacement of P is a bounded closed domain.
Moreover the continuity of d(Q) concerning to @ results from
that of D(Q, P) with regard to (@, P). '

By the hypothesis, there exist no solutions passing through a
point @ lying on y,=« and a point P lying on y,=f in 4;, and
hence we have always

D(Q,P)>0
and

9(Q) =min D(Q, P)> 0,

because there exists a point P such as 3(Q)=D(Q, P). Clearly,
if @ lies on y,=j, we have

2(@)=0,

1) Since the domain is general, the construction of D(Q, P) is based on the
method, for example, stating in Functional Equations, Vol. 39 pp. 33-40 by Okamura.

. . . . . dy
Namely we consider a system of ordinary differential equations —dL=I"(x. ), where
'y
Y=y »¥n) is a n-dimensional vector and F(x, ¥) is a continuous function (n-dimen-
sional vector) in a bounded closed set I in the space of n+1 dimensions. By using
an independent variable r, this system reduces to a system of n+1 differential equa-

. d: d
tions T::I,%:F(x, ), and the latter is represented by
@) 4 _ v,
dr

where &= (x,y) and U(x)= (1, F(x,9)). Then U(x) is continuous in B. Now
let P and Q be two points in B and a function a(¢) be a function of bounded vavia-
tion in ty < r < r; which satisfies x(rg) =P and a(r;)=@Q and Xpp be the family of
all such functions, where r, and r, are arbitrary and —c0<ry < r;<oco. And put

D(P, Q) =min 14 [x(r)—SU(w(r))er»
X(r)€Xpg <t 1)

where V expresses the total variation.
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and in the other cases where « < y,< 3, we have
3(@)=0,
since D(Q, P)= 0 by the definition of the D-function.

Let @ and R be two points, where x? < %%, and then there
exist P, and P, such that 6(Q)=D(Q,P) and Jé(R)=D(R,P,)
and 2°< 4™, x® < x™2. Since x? < %%, we have x? < 2™, and hence,
by the definition of 0(Q), we have evidently

9 S(Q=<D@Q R +3(R)>?
Moreover if x°=x", we have
(10) | 8(Q) —d(R)| < QR,

since Q)X D(Q,R)+6(R) and J(R)X D(Q, R) +40(Q), that is
to say, it satisfies the Lipschitz condition with regard to (@, R).
Then if we put

(A1) (%, 3,9)=0(Q)  with @=(x,3,3,)e4,

it is easy to see that @,(x,y,y.,) satisfies the conditions in our
theorem.

Secondly we suppose that, if | y'(x)|= «, we have —f<y (x)
In this case, similarly put

12) 0(Q) Qmm D@, P)

in 4, where Qed, and (1" y")eL,y,"=—p and 2°<a”. Then

6(Q) has the same properties as the above. Therefore, if we put

(13) Dy(x,31,9:) =0(Q) with Q= (x,,,3,)€d,,
this @,(x, ¥, ¥.)- is the desired function.

3. Remarks. In the preceding paragraph, we stated our
theorem in the case where x increases. Yet for decreasing x we
can obtain in the same way, a similar theorem for the solutions
going to the left. In this case we may consider

0(®Q) =min D(P Q)

e =xr

in 4., And if we put 5(Q)=W1(x,y1,y2) for Q=(x,,¥.)¢€4d,

2) If Q and R lie on the same solution, D(Q, R) =0. Therefore 6(Q)<4(R),
that is, it is non-decreasing along any solution.
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7.(x,9,y.) has same properties as those of @(x,¥,y,), but we
must have, instead of (5)

(14) D (%,9,9)= 0.

Also let ¥,(x,y,y¥) be defined in 4, in the similar way, then it
satisfies

(15) Dip¥y(2, 5, ¥)= 0.

Hence by using Z,(x,y,y') and %.(x,y,¥') in place of @,(x,¥,5")
and @,(x,y,¥') respectively in our theorem then we can obtain
the necessary and sufficient condition for the evaluation of
derivatives of solutions going to the left. Therefore the existence
of such four functions @;(x,y,y) and ¥.(x,y,y') (i=1,2) gives
the condition for the general case.

Finally we remark that @,(x,y,%) and ¥.(x,y,%) can be
modified as follows; namely, for example, we can replace
“@,(x,y,4)>0 and P,(x,,8)=0" by the condition “for (x, y)eL,

(16) min @,(x, y,«)>max @,(x,y,73)".
(xy)ek (% y)ek
As to the necessary condition, (16) holds good, because @,(x,y,y')
is continuous in the bounded closed domain 4, and hence @,(x,y,%)
is continuous just for (x,y)e£ aud therefore we have

min &,(x,y, ) >0,
() ek

while clearly we have max @(x,y,8)=0. As to the sufficient
(xy)ek
condition, if (16) only holds good, our theorem is proved as we

see evidently in the above proof. If our theorem be modified in
this way, we can directly deduce Nagumo’s "condition and
others.
March 1953, Mathemiatical Institute,
Kyoto University.



