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1 . Theorem. The principal part of the possibility of the
prolongation of solutions of the ordinary differential equation of
the second order,

(1) d'y d y \
( x ' ' dx  )'

is on the evaluation of the derivatives of the solutions. On this
subject P rof. Nagumo h as g iv en  a  sufficient condition in Proc.
Physico-Math. Soc. of Japan, 3rd Series. Vol. 19 (1937),, and the
la te  P ro f . Okamura has obtained a more general and easier result
in Functional Equations (in Japanese), Vol. 27 , but i t  i s  a ls o  a
sufficient condition.

Recently we have obtained a necessary and sufficient condition
for the evaluation, by aid of the D-function having the properties
like the distance has which Okamura had utilized in his research
of necessary and sufficient conditions for the uniqueness of solu-
tions in the Cauchy-problem.

Our theorem runs as follows.
L et X  be a  bounded closed dom ain in xy -plane and X * be a

three dimensional domain of  (x , y , y '), w here  (x , y ) X  and —  co
<y ' <+ co. L et f (x , y , y ') be defined an d  continuous i n  X * .  In
order that, given a positive num ber a  a n d  f o r a  suitable positive
num ber f l(u) (> (z ), if  f o r any  solution y =y (x ) o f  (1) through a
point (x„ y„) arbitrary  in  X , provided I y '(x (,) u.,  w e have

I (x) I < A(, ),
so long as y =y (x ) lies in  X  for x „- _x, it is necessary and sufficient
that there ex ist tw o non-negative continuous functions (P i (x, y, y')
( i=1 ,2 )  as follows ; namely 0 1 (x , y , y ')and 0 2 (x , y , y ') are def ined
in
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(x,Y)EX, a ‹Y ' -<13

and
(x ,Y )EZ , — / —a

respectively and for (x , y) E

(2) (1),(x, y, a) > 0, (x, y, 13) =0

and
(3) 0 2(x, Y , — 0, 0 2 (x, y, —0 ,

and  then they satisfy the Lipschitz condition,

(4) I ø(x, y, y') — 0 1(x , Y) I Ki(ly — Y I +  I Y — Yi) (i= 1, 2),

with regard to (y , y '), where K , are constants, and finally, for points
of  d , and 4 2,

(5) (x, y, 0  ( i=  1, 2)

respectively in the following sense.
(5 )  is Nagumo's notation, e. g . see " S ur une sorte de distance

relative à  un sy stèm e dif férentiel" (Okamura, Proc. Ibid, V ol. 25
(1943) pp. 5 2 0 -5 2 1 ) . Now we consider the system of differential
equations

dyi=yo d y „
Yi, Y2),dx dx

which becomes by th e  vector notation

( 7 ) d" œ lqx , 11).dx

T his  is equivalent to ( I ) .  Then t h e  above mentioned sense is
that ( 5 )  holds fo r  all points (xo , Yo)  from which a  regular curve
j. e., continuous with continuous first derivatives, having the
direction given by _11(x0 , yo ) goes to th e  right in  4 , a n d  42 res-
pectively.

T h e  left hand o f  (5), Ty -
F j Oi(xo , m,), depends by the Lipschitz

condition only o n  th e  d ir e c t io n  y '(x ,,) a t x = x , o f  t h e  curve
y  =  ( x ) .  Therefore, i f  (x, y , y ') is a n  interior p o in t , (5 ) may be
replaced by

lim 1   loi[x+t, y + ty', Y ' tf(x, Y, 00(x, y, y')} o
t

(6)
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and moreover if 0,(A, y, y') be totally differentiable, then it reduces
to

ao, ao. 
y

, ao.+  + '-f (x ,y ,y ')>a x ay ay'

Remark 1. In the above theorem, if "giv en a positive number
a  and so on" be replaced by "giv en an arbitrary  positive number
a  and so on", we shall have 0 (x , y, y') (i= 1, 2) for every a, instead
of 00 (A, y, y').

Remark 2 .  Generalizing the problem, we can obtain the

analogous condition for the system 
 d y  

 — f,(x, y i • • •,Y,L) (1=1,..., n).
dx

2. Proof o f Theorem . At first, we prove that the condition
is sufficient. When there exist the above mentioned functions
0,(x, y , y ')  ( i= 1 , 2 ) for a suitable positive number P(a) (> a), we
suppose that, for a solution y =y (x )  which passes through a point
(A0, yo )  and satisfies I y' (x0 ) a ,  w e  have y' (x) = i3 at some point
x (> x0). Then by the continuity o f y ' (x ), there exist two values
of x , say x , and x2 ,  such that y '  ( x , )  a n d  a <y' (x) <
for x, <x <x 2 . In this interval, we consider the function 0 1 (x, y(x),
y' ( x ) ) .  By (2),

0 1(x,, 3(x1) (x1)) = (xl, y  (x1), a)>  o
and

01 (x2, Y(12), Y' (x2)) = (x2, Y (x2) , /9 ) = 0

and yet, by ( 5 ) ,  0 1 (x , y (x ), y ' (x )) is non-decreasing with respect
to A and therefore

0 1(x1, Y (xi), Yi (xi) ) (PI (x2, Y (xo), Yi (x2)).

This contradicts with the inequality standing above. Hence
y' (x) can not hold, whence we have

Y '(x) <
Similarly by aid o f 0 2 (x, y , y ') , we can see that-13 < y '( x ) .  There-
fore we have in any case

y'(x)I < 19.

Next we show the condition to be necessary. For clearness,
we will consider the equation (6 )  equivalent to ( 1 ) .  Let Q be a
point (43'1 ° , y 2 Q )  in 4, and P  be a point such as (e ,  y 1» )  E L , y2"-- 19
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and x'2 e .  Now we suppose that, if I y' (x0) I,  then we have
y '(x) <P . Now we construct the Okamura's D-function D(Q, P) 1)
and we indicate by 8 (Q ) the minimum of - D(Q, P), when P
displaces, yet satisfying e  <  e ; namely we have

8(Q) =min D(Q, P).
z ‘z z

. •
This minimum exists and there exists a point P  such as just

P), since D(Q, P) is a continuous function of P  and
the range of the displacement of P is a bounded closed domain.
Moreover the continuity of 8 (Q ) concerning to Q  results from
that of D(Q, P) with regard to (Q, P).

By the hypothesis, there exist no solutions passing through a
point Q lying on )12 -= a and a point P  lying on y 2 =19 in  d ,  and
hence we have always

D(Q, P)> 0
and

a(Q) =min D (Q , >  0,

because there exists a point P such as a (Q) =D(Q, /5 ). Clearly,
if Q  lies on y 2 =9, we have

1) Since the domain is general, the construction of D ( Q , P )  is based on the
method, fo r  example, stating in Functional Equations, Vol. 39 pp. 33-40 by Okamura.

d y  Namely we consider a system of ordinary differential equations F(x . y ), where
dr

y —  (y, „  y , ; )  is a n-dimensional vector and P(x , y )  is a continuous function (n-dimen-
sional vector) in a bounded closed set B  in the space of n+1 dimensions. By using
an independent variable r, this system reduces to a system of n + 1  differential equa-

dxd ytions — 1  
d  

—  F(x , y ) ,  and the latter is represented bydr r

(A ) dx
— U (x ),

dr
where (x, y )  and U ( x ) -- (1, F(x , y ) ) .  Then U ( x )  is continuous in  B .  Now
let P  and Q be two points in B  and a function x(r) be a function o f  bounded vavia-
tion in ro r  r i which satisfies x (r 0) = -P  and  x (r 1) =Q and IpQ be the family of
all such functions, where 1- 0 and r, are arbitrary and -- r i < o o .  A n d  p u t

D(P, Q) =m in V f x (r) —  /1(x (r))dr.1,
x(r)E3EpQ ror  r i

where V  expresses the total variation.

(8)
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and in  the other cases where a < y,< 3, we have
8 (Q) >__ 0,

since D(Q, 0 by the  definition of the D-function.
Let Q and R be two points, where g 9  X 8 , a n d  then there

exist P, a n d  P 2 such that a (Q) = D(Q, PO  a n d  a (R) = D(R, P2)
and t <  xn x ' 2. Since x" x " ,  we have x" < e2, and hence,
by the definition of a(Q), we have evidently

(9) ô(Q)_5_ D(Q, R) + a (R) ."

Moreover if x"= x", we have

(10) I 8 (Q) —a(R)I 5 QR,

since 8(Q) < D(Q, R) + a (R )  a n d  a ( R )  D ( Q ,  +  a (Q ), that is
to say, it satisfies the Lipschitz condition with regard to (Q, R).

Then if  we put

(11) (Pi(x, Y2) a (Q ) with Q=  (x, y1, y2) € 4 ,

it is easy to see that 01 (x, y„ y2)  satisfies the conditions in our
theorem.

Secondly we suppose that, if  I y' (xo ) I a, we have -p < y '(x).
In  this case, similarly put

(12) 'W(Q) =m in D(Q, P)
x(2 xr

in 2, where QE/J2 a n d  (x" ,y 1 ) E Y 2 " .=  g  and x x " . Then

(Q ) has the same properties as the above. Therefore, if  we put

(13) 02(x, Y2) = a (Q )  w ith Q= (x, Y i ,  Y 2 ) ( 4 2 ,

this 02 (1, y„ y2)  is the  desired function.
3. Remarks. I n  t h e  preceding paragraph, we stated our

theorem in the case where x increases. Yet f o r  decreasing x we
can obtain in  the same w ay, a similar theorem for the solutions
going to the left. In  this case we may consider

(Q) =min D(P, Q)
,Q>zr

in 4 .  A n d  i f  we put (e) -=r i(x , y i, Y 2) f o r  Q  (x, Y2) E

2 )  If Q  and  R  lie  o n  th e  same solution, D (Q, R) = 0 .  Therefore 17 (Q)58 (R ),
that is , it is non-decreasing along any solution.
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T I ( x d f ,  Y2 ) has same properties as those o f  0,(x, 3, 2 ) ,  but we
must have, instead of (5)

(14) D E rf (x , )6.< O.
Also l e t  T 2 ( x , Y , Y )  be  defined  i n  42 in  th e  similar way, then it
satisfies

(15) JT",(x, y, y') O.

Hence by using Ti(x, Y )  and V2(x, Y )  in  p la c e  o f  0 1(x, Y, Y')
a n d  0 2(x, y, y ' )  respectively in  our theorem then we can obtain
th e  necessary a n d  sufficient c o n d it io n  fo r  th e  evaluation of
derivatives of solutions going to the left. T here fo re  the existence
of such four functions Oi(x, y, y') and 3,(.x,y, y') ( i= 1 ,  2 )  gives
the condition for the general case.

Finally we remark that 0,(x , y , y ') and 3F jx, y, y') can be
modified a s  follows ; namely, fo r  example, we can replace
"  ( Pi (x, Y , a)> 0 and (Pi(x, y, p )  - 0  by the condition "for (x, y)€ ,

(16) m in 0, (x, y, a) > max 0, (x, y, j3)".
(zy)€,K, (x,y)e4

A s to  the necessary condition, (16) holds good, because (/i (x,Y,Y)
is continuous in  the  bounded closed domain 4  and  hence (Pi (x,y,a)
is continuous just fo r (x, y) a u d  therefore we have

m in  0 1 (x, y, a) > 0,
(x, y) E A

w hile  c lea rly  w e  h a v e  max 4* (x, y, 13) = O . A s  to  the sufficient
(Y,y)EA

condition , if (16 ) only holds good, our theorem is proved as we
see evidently in  the  above proof. I f  our theorem be modified in
t h i s  w a y , w e  c a n  d ire c t ly  d e d u c e  Nagumo's condition and
others.

March 1953,M a t h e m a t i c a l  Institute,
Kyoto University.


