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Recently Zariski proved that a normal abstract surface can be
imbedded in a projective variety if (and only if) there exists an
affine variety which carries all singular points of the variety.”

The main purpose of the present paper is to prove the follow-
ing

THEOREM 1. There exists a complete normal surface which
cannot be imbedded in any projective space.

In order to prove Theorem 1, we shall prove the following
two theorems, from which Theorem 1 follows easily :

THEOREM 2. Ewvery normal surface can be imbedded in a
complete normal surface.”

THEOREM 3. There exists a normal abstract surface V with
two points P and P’ such that, if a function ¢ on V is well defined
at both P and P', then ¢ is a constant function.

§ 1. The proof of Theorem 2.

Let V be a normal abstract surface. Obviously, there exists
a normal projective surface V* such that 1) V* is birationally
equivalent to V and 2) if a point P*¢V* corresponds to a point
PeV, then P* dominates P (for example, let V,,---, V, be projective

1) Zariski treated the complete case at first, as was shown by him in his lecture
at Kyoto University (Oct. 1956). By virtue of Theorem 2 (cf. foot-note 2)), he
generalized to the non-complete case.

2) Since singularities of a surface are reduced by normalizations and quadratic
transformations with singular centers, we may require that the complete surface has
no singularity outside of the given surface,
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varieties in which affine representatives of V are imbedded respec-
tively and let V* be the derived normal variety of the join of the
V.’s). Therefore the following lemma will prove Theorem 2.

LEMMA. Let V be a normal surface and let V* be a complete
normal surface of the same function field such that if a point
P*eV* corresponds to a point PEV then P* dominates P. If @
is a fundamental point with respect to V* and if F* is the total
transform of @ in V*, then (V*—F*)u@ is a complete normal
surface and satisfies the same condition as V* with respect to V.

Proof. Since F* is a closed set, V*— F* is an abstract surface.
On the other hand, since V is a normal surface, there exists a
closed set F of V which does not contain @ such that @ is the
only one point of V—F which is not biregular with respect to V*.
Then V—F is also an abstract surface and (V¥*—F*) u@Q=(V*
—F*)u(V—F), hence (V¥*—F*)u@Q is the union of a finite
number of affine varieties. Obviously, every place of the function
field of V has one and only one center on (V*—F*) u@ and
therefore (V*—F*) U@ is a complete surface. Now we see Lemma
easily.

§2. Preliminaries on a cone.

PROPOSITION. Let D be the divisor on a normal affine cone V
defined by a homogeneous ideal a. Then D is linearly equivalent
to zero on V if (and only if) it is linearly equivalent to zero locally
at the vertex P of V.

Proof. We shall denote also by P the spot (local ring) of P.
Then there exists an element féP such that aP=fP. Let f” be the
leading form of f. Then f’éa. Therefore f’/f is a unit in P.
Hence f/P=fP=aP. Since f’ is homogeneous, f’ generates a and
D is linearly equivalent to zero on V.

We shall apply this proposition to the cone V* defined by
x*+9*=2° over the field R of rational numbers. This V* can be
regarded as the representative cone of the projective curve V*
with the generic point D*= (a, b, 1), a and b being transcendental
numbers such that a*+b=1. Let D be the generator of V* which
goes through D*. Then we have

LEMMA. For any natural number #, D is not linearly equi-
valent to zero locally at the vertex P of V2

Proof. Llet E* be the point (1, —1, 0) on V*. Now, we
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assume the contrary. Then by Proposition, »D is linearly equivalent
to zero on V2 Let f be the fomogeneous form which defines »D.
Let m be the degree of f. Then f/(x+y)™ is a function on V*
whose zero and pole are nD* and 3mE* respectively and we have
nD*~2mE*, hence n(D*—E*)~0 (3m==n), which is a contradic-
tion because E* is rationl over R and D* is a generic point of
V* over R.

§ 3. The proof of Theorem 3.

Let again @ and b be transcendental numbers such that a*+4b*
=1 and let £ be a field containing ¢ and b. Then V? in §2 can
be defined by

X+ 3 (a4 by) 24 3 (@x+ by) 2 =0 M

and the divisor D is defined by x=y=0. Set o=k[x, y, z], db=x0
+yo0, a=x0+ (3*+3byz+3b%2*) 0. Let F be the divisor defined by a.
Furthermore, we set

t= (a*x+b%) /b%*, u= (tx— (a/b)*)t,
v=[(x— (a/b)*)*+1]/3b2.

Then: y=(x— (a/b)*)x, x= (at+bu) /b,
z=[ (tx— (a/b)*)°+1]/3b%.

LEMMA 1. The mapping (x, ¥, 2) 5 (f, u, v) defines an involu-
tion of k(x, y, 2).

Proof. By the relations above, we see immediately that o:
(x, y) > (, u) defines an involution in k(x, y). By the involution,
tx is mapped to tx itself, and therefore we see easily that the in-
volution can be extended to an involution of k(x, y, z2) which map-
ps (x,y,2) to (f, u,v), observing that (f, #, v) satisfies the same
relation as (x, y, 2).

LEMMA 1. Kx, v, 2, t, u, v] (=K[x, z, ¢, v]) defines the affine
model V—F.?

Proof. Since a*x+b*yEd® and since xo=»dnN a, we see that t€a~?
(ie., a*%#Cp). Let A be the affine variety defined by k[x, ¥, z, t].

)

3) If we make use of the notion of a-transform, defined by Nagata “A treatise
on the 14-th problem of Hillert ” Memoirs Kyoto University vol. 30, No. 1 (1956), thi§
assertion means that k[%, z, ¢, v] is the a-transform of o.
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Since ao[t] is generated by x and z*, A— (the divisor defined by
x=2z=0) coincides with V—F. Since 1+ (tx— (a/b)*)*=1+ (y/x)*
= **+y°) /=3[ by'z+ax’z+ (a’x+b%y) 2*]/5°, we see that x*vwéop.
Obviously zvéo[t] and therefore, for the affine variety A*, defined
by k[x, v, z, t, v], the same property, as stated above for A, holds
good. But, obviously the definition of » shows that xo[t, v]+2z0[t, v]
contains 1. Therefore A*=V—F and the assertion is proved.

Now, by the involution o, we can consider V°, D°, F°. Then .
we see that V—F=V"—F° by Lemma 2. Furthermore, we see
that the union M of V and V° is an abstract surface, which is
obviously normal. For, let v be a place of k(x, y, z) which has
centers in V and V*. Since k[f, u, v, %, y, z] defines V—F, the
center of b is in V—F. Therefore the centers of v in V and V*
conincides with each other. Therefore M is an abstract variety.
Let P and P° be the spots of the vertices of the cones V and V°.
In order to prove Theorem 3, it is sufficient to show that PnP°
=k. P and P° will denote also the vertices.

LEMMA 3. ono°=k.

Proof. Regard V to be an affine representative of the projec-
tive cone defined by the same relation. Then the infinity plane
section is irreducible. Therefore o Nk[1/x, y/x, z/x]=k. As is easily
seen, t, u, v are in k[1/x, y/x, z/x] (as for v, use the relation derived
in the proof of Lemma 2). Therefore ono”=k.

LEMMA 4. If a divisor C on M does not go through any of
P and P°, then C=0.

Proof. We may assume at first that C is irreducible. Let K
be a field of definition of C. Let k& be a purely transcendental
extension of R(a, b) contained in K such that K is algebraic over
k. Let C’ be the sum of all conjugates of C over k. Since P and
P° are rational points over k, C’ does not go through any of P
and P°, and C’ is a prime rational cycle over k. Observe that
v —3 ¢k Now, it is sufficient to prove that C'=0. Let q be the
prime ideal in k[t, v, x, z] which defines C’. If q=k[t, v, x, 2],
then the assertion is obvious and we assume that q is of rank 1.
Since P ¢ C’, q contains an element f(x, y, z2) such that £(0, 0, 0) =1.
Let | be the derived normal ring of k[tx, {z]. Since fx and fz are
functions on the cubic curve V* in §2, we see that { is of di-
mension 1 and ¢ is transcendental over j. (It will be not hard to
see that j=Fk[tx, tz].) For a sufficiently large », #'f is a monic
polynomial in ¢ with coefficients in {. Therefore q contains a prime
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element in {[f]. {[t, 1/f, 1/tx]=Fkx, 2, t, v, 1/t, 1/x] and ¢, x are
prime elements in k[x, z, ¢, v] (for, Lemma 2 shows that xk[x, z,
t, v] defines the divisor D; t=x"). Therefore we see that q is
generated by one element, say gq. Assume that ¢ § o and let ¢ be
the least integer such that x’g&o. Then the divisor on V defined
by x'q is iD+C’ (because F is prime rational over k and x defines
D+ F). This shows tnat D is linearly equivalent to zero locally
at P, which is a contradiction. Similarly we have ¢&v°. Thus
géonov°=k. Thus Lemma 4 is proved.

Now we come to the proof of PNnP'=k. Let ¢ be a function
on M which is well defined at both P and P’. Then the pole of
¢ does not goes through any of P and P’, hence ¢ has no pole by
Lemma 4, i.e., ¢ is well defined at every point on M. By Lemma
3, we see now that ¢ is constant. Thus Theorm 3 is proved
completely.

Mathematical Institute, Kyoto University

Added in Proof. The writer proved recently that (1) let L be a function field
of dimension not less than 2, then there exists a normal complete abstract variety of
L which cannot be imbedded in any projective space, provided that the ground field
is sufficiently large; if dim L is greater than 2, then such a variety exists without
any condition on the ground field and (2) if » is a natural number greater than 2,
then there exists a non-singular complete variety of dimension n which cannot be
imbedded in any projective space.

The details will be published in a forthcoming paper.



