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The 7th homotopy group 7.(SO(n)) of the group SO(n) of
the rotations in the euclidean n-space is determined by Serre [5]
without details. Let

o:S">S0O(8) and p:S*™—>SO(7) c SO(8)
be mappings defined by the formulas
o (x) (y) =xy and ¢ (*) (y) =xy% for x, yeS’,

where the multiplication in S’ is that of the Cayley numbers.
Denote by

o1 (SO(n)), n=8 and p,em, (SO(n)), n=7

the classes represented by o and ¢ respectively, regarding SO (8)
as a subgroup of SO(n), n==8 in the natural sense. About the
element p,, we have the knowledge of the result [8]:

p*l"’l?é O

under the (projection) homomorphism py : 7.(SO(7)) >7.(S%) ~Z,.
From this we can prove that o, is not divisible by 2”. Further-
more, we shall prove

Theorem. 1) 7;(SO(7)) is a free cyclic group generated by p,.
i) m(SOm)), n=9, is a free cyclic group generated by o,.

As a corollary we have 7.(SO(8)) ~Z+Z={o.} + {15} .

The proof of the theorem is mainly devoted to the following
simple lemma and results on 7,(S5%).

SO (7) is the set of all aeSO(8) such that a fixes the unit.
Spin(7) is the set of all eSO (8) such that for some aeSO(7) the
relation

a(x) a(y) =a(xy)
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holds for all x, ye§’. _In virtue of “the principle of triality” [3] we have
just two of sucha (« and —a) for each «. By setting f(a) =f(—«)
=a, we have a double covering

f: Spin(7)—>SO (7).

The projection p: SO (8)—S* defines fiberings p, : Spin (7) »>S°
(fibre: G,) and p,:Spin(5) »>S’ (fibre: S?. Define a mapping
t:S'>S°
by the formula #(x) =x°. Obviously ¢ is a mapping of degree 3.
Lemma. There exists a mapping i S"—Spin (7) such that fop=p
and pop=t, i.e., the diagram

is commutative.

Proof. In fact, we set p(x) (y) =xyx°, and we shall prove the
equality (v (x) () (7 (x) (2)) =p(x) (y2). First we have the follow-
ing formulas

x(y2)x= (xy) (zx) and (y%) (xzx) = (y2)x

for x,y,2¢S". The first formula is proved in [3], the second follows
easily from the first and Lemma 2 in [4]. Now

(p(x) () (F(x) (2)) = (xyx) (x2x°) = (xy%) ((x2x) x)
=x((y%) (xzx) ) x=x((y2) x) x=x (xy2) x*
=p(x) (y2).
Therefore p=fop. Obviously (p,o0) (x) =7 (x) (1) =2*=t(x).
Then the lemma is proved.
We proceed to the proof of the theorem. It was proved in [2]
that the characteristic class a€n,(S®) of the fibering Spin(5)/S*=

Sp(2)/Sp(1) =S’ is a generator of =,(S% =~Z,, which is represented
by Blakers-Massey essential mapping [1]

g: 5" >S5
Then in the diagram
7, (S%) 7, (S%)
E/ /g E ./ a\ g

r (& (5~ (Spin (5)) L2t (57 m (5
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the commutativity holds. Since the suspension homomorphism E':
7,(S®) -7, (S") is an isomorphism and since gy :7,(S%) >, (S%) is
onto, we have that 4: 7.(S") »>=,(S*) is onto and that kerneld=
image pox=12(7.(S7)). The group =;(S”) has order 2 and is
generated by the image gy (y) =aoy of the generator 7 of = (S%)
|7, Appendix]. Since E: 7. (S") »>,(S’) is an isomorphism, 4: 7,(S")
—>m.(S* is onto. Then Kkernel p,.=image i,=image (i4od) =0.
Consequently we have an isomorphism

Pox 1 m(Spin(5)) ~12 (7 (S)).
From the exactness of the sequences
7. (Spin (5) ) =7, (Spin (6) ) > (S”) ~Z,
7,(Spin (6) ) »>7: (Spin (7)) -7 (S") ~Z,,

we have that the cokernel of the injection homomorphism i, :
7.(Spin (5) ) »>7.(Spin (7)) has at most four elements. The mapping
p represents ;' (¢;) €7, (Spin(7)). By the above lemma, p,« (f5' ()
generates 3(=;(S")). From the commutativity of the diagram

7.(Spin(5)) L% 7,(57)

lie 4
* arr

m;(Spin (7)),
we see that the cokernel of i, is mapped by p,, into 7. (S%) /12 (r;
(S"))~Z, and that the image contains 3(x;(S%)) /12 (7, (S%)) ~Z..
Therefore the cokernel of i, has to be isomorphic to Z, and p,,
maps 7,(Spin (7)) isomorphically onto 3(x,;(S")). This shows that
7,(Spin(7)) is an infinite cyclic group generated by f;'(e,), and
then i) of the theorem is proved, by operating the covering isomor-
phism f5 : 7, (Spin (7) ) >m,(SO(7) ).
As is well known [6], 7;(SO(@)) = {05} +ixm;(SO (7)) = {og} + {p4}.
It is also known [6] that the injection homomorphism

ix 1 77 (SO(8)) »m:(SO(9))

is onto and its kernel is generated by 20— ;. Therefore iy (o) =a,
generates m,(SO(9))~Z. Since iy: 7,(SO9)) ~7,(SO(n)) and
iso,=0c, for n=9, o, generates 7, (SO(n))~Z. This completes
the proof of the theorem.

Corollary. 7. (SO(5)) ~m,(SO(6)) ~Z. The cokernels of the
injection homomorphisms iy : 7. (SO@1))—>n,(SO@E+1)), i=5, 6, are
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isomorphic to Z,.
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