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Denote by myn, (SV; p) the p-primary component of the
(N+k)-th homotopy group =y,.(SY) of N-sphere S¥ In this
paper, N denotes always a sufficiently large integer, in particular
N >k+1 for the group =n, (S") which does not depend on
N(>k+1) and is the k-th stable homotopy group 7,(&) of the
sphere.

For k< 2p*(p—1)—3, the stable groups 7y, (SV; p) are deter-
mined and stated as follows (p: an odd prime):

(A) Tnizrpip--1(SY; D)=Z 2 for 1<r<p—2 and =Z,+Z,
for r=p—1;
(B) 7neu(SN; p)=Z, for the following values of k:
k=2Hp—1)—1 where 1<t< P and t==0 (mod p),
=2rp+sNp—1)—2(r—s) where 0<s<r<p—1,
=2p(p—1)—2p,
=2rp+s+1)(p—1)—2(r—s)—1 where 0<s<r<p—1
and r—s=p—1;
(C) 7mnn(SY; p)=0 for the other values of k< 2p*(p—1)—3.

For example, 7y.;,,-1,-o(SY; p)=2Z, and 7yi;,,-15-2(SV; P)
=Z,.

Methods emploied here are the same as in [4] by determining
the S“*-module structure of stable cohomology groups of Postnikov
complexes K, over the sphere. Several difficulties may occur, the
first one is related closely with the values of the above example,
and it is removed by the aid of the results in the preceeding paper
[6]. The second difficulty occurs in the dimensions about
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k=2p(p—1)—2. We may show many possibilities, in these dimen-
sions, which depend on mod p Hopf invariant H,: 7y, (S")—Z,, k
=2p(p—1)—1, and some others, however, we do not know how to
determine the groups 7y, (SV) for k=2p(p—1)—3, 2p(p—1)—2, ---.
The results and the notations in the preceeding sections [5]
and [6] are refered such as Proposition 1.5, Theorem 2.9, etc.

§ Preliminaries and lemmas.

Let S¥ be an N-sphere. According to §4 of [4], take a
sequence of CW-complexes

K. OK > DK, DK, D> DSV

such that #»(K,)=0 for i=N+k and the injection homomorphisms
ix: 7f{SV)—>=7(K,) are isomorphisms for i< N+k. The sequence
may be regarded as a realization of Postnikov system over S¥.

Let K,* be a complex obtained from K, by shrinking K,., to
a point. Obviously, (co)homology groups of the pair (K., K,.,)
are isomorphic to those of K,* under the homomorphisms induced
by the shrinking map. As is easily seen, =,(K,, K,,,) vanishes
except for 7y, pi(Kp, Key)) =7y (Sy). Since K., is (N—1)-
connected and since (K,, K,,,) is (IN+k)-connected, the shrinking
map induces isomorphisms =;(K,, K,,,)~ 7(K,*) for i<2N+k—1
and onto-homomorphism for {=2N+k [1]. Thus =, (K,*)=0 for
1==N+k+1 and i<2N+k.

Imbedding K,* in an Eilenberg-MacLane complex of the type
(Zneu(SY), N+k+1), we see that HV'(K,, K,,,, Z,) and
HY*(K¥, Z,) are naturally isomorphic to  HN"(my,,(S"),
N+k+1, ZP) for i< N+k, and isomorphic to the stable group
ATy f(SY), Z,) for sufficiently large NC>i—k>i—2(k+1)).
It follows from the cohomology sequence of (K,, K,,,) that the
following sequence is exact :

v Ji) HN.“‘(Kk ’ Zp) l_*’ HN+£(Kk+1 y Zp) i*") Ai_k(”N+k(SN)’ Zp)

_ji) HN+i+1(Kk, Zp) _i

b

where we identify HY'"*Y(K,, K,.,, Z,) with A" K=y, (SY), Z,) by
the above isomorphism.

Since the Steenrod operations ¢ and the Bockstein operator
A commute with the homomorphisms of the above sequence, it
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follows that the homomorphisms are &*-homomorphisms.
By suspension methods as in [4], we take stable groups
A(K,, Z,), 7(©) and 7,(S; p) given by

A(K,, Z,)=H""(K,, Z,), 0<i< N+k,
T(S) = wn, W(SN), 7S p) = mn WSV D), N>k+1.

Then it follows the following exact sequence of &*-homomor-
phisms.

@1, 354K, 2,5 AK,,., Z,) D> A xS p), Z,)
2 AK,, Z,)

Let &8/p": 6/p"'-kernel (C H(X, Z,)) - H*(X, Z,)[(8/p" -
image) be the Bockstein homomorphism. Put

: Ar:(——l)’S/p’ (AIIA)

then A, commutes with the suspension homomorphisms. Thus A,
may be defined in the stable group A*(K,, Z,) and A*(w, Z,).
A, commutes with the homomorphisms of (3. 1).

From the exactness of the homotopy sequence of the pair
(K,, SY), it follows that =(K,, S¥)=0 for i<N+k and
9: mi, (K, SNy~ m(SY) for i>N+k. Since (K,, SY) is (N+k)-
connected, there are Hurewicz isomorphisms 7K, S¥)~ H(K,, S")
for i<N+k+1. Obviously H(K,, S¥)~ H/(K,) for i#=0, N. Thus

TS, 1= N+k+1,
(3.2. H(K,)~10, N<i<N+k+1,
' Z, i=N.

The first isomorphism is also given by the composition
Hy i K)~Hy i (K, Ko )~Hy (7 5 o(SY), N+E+ Dy, 4 (SY).
Then by the duality, we have

(3.3). AiK,, Z,)=0 for 0<i<k+1 and j*: A7(S; p), Z,)
= AN Ky, Z,) is an isomorphism. j*: A 7w ; p), Z,)—>AFXK,, Z,)
is. an isomorphism into.

The last assertion follows from the fact that A=, Z ») is
spanned by A,-images and from the following lemma established
easily from (3. 2).
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Lemma 3.1. The number of the direct factors of = (S ;p)
isomorphic to Z, is the rank of (the image of) A,:A,_ —kernel
(<Ak+l(Kky Zp))_>Ak+2(Kk’ Zp)/(Ar—x—image)°

In particular, if A*'(K,, Z,)=0 then =,(&; p)=0, and it
follows that the homomorphisms * of (3.1) are isomorphisms.
Thus,

Lemma 3.2. If A‘(K,, Z,)=0 for 0<i<k+r(r>0), then
TS ; p)=0 for k<j<k+r and i*:A¥K,, Z,)—>A*K;, Z,) are
isomorphisms for k< j<k+r.

Lemma 3.3. Assume that A*"(K,, Z,)={a} and Aa=+0. Let
{a¢,a=0, s=1, 2, ---} be a system of relations in the submodule & *a
of AMK,, Z,) generated by a. Let {3 B,x,=0, t=1,2, --} be

a system of relations in the submodule > S *a, of * generated

by {a;}. Then there exist elements b, of A¥(K,.,, Z,) and w, of
A¥(K,, Z,) such that

&b, = a(j*'a) and 3 B,b, = i*w,.

Let {a,} and {r,=0} be systems of gemerators and relations
of AMK,, Z,), then A*K,.,, Z,) has a system {i*a,, b} of
generators and a system {i*r,=0, i*a=0, X} B,b,—i*w,=0} of
relations. )

Proof. By the exactness of the sequence (3.1), j¥(a,(j* 'a))
=aa=0 implies the existence of b, such that &*b =« (j* a).
Similarly there exist w, such that > 8,b,=1i*w,, where it is to

be remarked that 7,(&; p)~Z, and AX(7(S; p), Z,)=*(j*"a)

~ %%, The second part of the lemma is also proved by the

exactness of the sequence (3.1) of S *-homomorphisms. q.e.d..
Similarly the following lemma is established.

Lemma 3.4. The previous lemma 3.3 is also true wunder the
following replacement of the assumption, relations and notations :

A*NK,, Z,)={a} and Da==0 by A¥"K,,, Z,)={d'}, A**(K,, Z,)
={a"} and Aa'=Aa"=0 (resp. by A**'(K,,, Z,)={a, a'}, A*'¥K,, Z,)
—{Aq, a"’} and Aad’=Aa”"=0),
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aa=0 by a¢/a/+a/a” =0 (resp. aa,+a/a/+a/a) =0),
G *a by S *a’ + F*a” (resp. F*a+ S *a’ +.S*a”),
&*b, = a(*7'a) by &b, = a(j*'a )+ (¥ a”)
(resp. %b, = a(f*'a)+ /(7 'a' )+ (7% 'a")),
2By, =0 in * by DB (), a))=0 in S*[F*A
DS *| F*A
(resp. 23 Bilat,, &, a)=0 in S*QS*|S*ADLS*[ S *A),

and by adding the relation 1*a’ =1i*a”’ =0 in the last assertion.

A remark in the proof is that A¥(7,(&; p), Z,)~ S */*A
DS *| S *A (resp. = F*¥PS*| S AP *]*A), which follows
from (3. 3).

The following lemma is established from §3 of [7] (cf.
Lemma 3.3 of [4]), by taking stable groups.

Lemma 3.5. Let %, j* and &% be the homomorphisms of (3. 1).
i). For ac A" K=, (&; p), Z,) and be A(K,, Z,), assume that

A,b={j*a}. Then there is an element @ € A" (K,,,, Z,) such that
*G=Aa and A,, j¥b={a} (r=1).

ii). For ac A"X=(S; p), Z,), assume that j¥a €A,  ~kernel.
Then there are elements G € A™K,,,, Z,) and c€ A" K, ,Z,) such
that §*@é=A27a, A,7*b={c} and A,_a={i*c} (r=2).

iii). For acAH=yS; p), Z,) and deA"F Xz, (S; p), Z,),
assume  that A (j*a)={j*d}. Then there are elements
a€ A" (Kyy,, Z,) and de A Y(K,,,, Z,) such that 8 a=A~Aa—p""'d,
Sd=Ad and A,a={d} (r=1).

§ Cohomology of K,,_, and K, _,.

The complex K, is an Eilenberg-MacLane space of the type
(Z, N). Thus

AXK,, Z,) =~ ANZ, Z,) =~ F*| S *A .
Denote by
a, € AK,, Z,)

a fundamental element. Then the &*-module A*K,, Z,) is
generated by a, and has the relations generated by Ag,=0.
AYK,, Z,)={a,, F'a,, AF'a,, F*a,, -}, and thus A(K,, Z,)
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vanishes for 1</<2p—3. It follows from Lemma 3.2 and Lemma
3.1 that

7(&; p) =0 Sfor 1<i<2p-—-3,
(3.4). *:AMK,, Z,)~ AXK;, Z,) for 1<i<2p-3,
”2,:.—3(@ ; p) = Zp .

For the convenience, we write the image /*a of an element
ae A¥(K,, Z,) by the same symbol «a€A*K,,,, Z,). Then
AX(K,, Z,), for 1<k<2p—3, is generated by @, and has a system
{Aa,=0} of relations.

Now we apply Lemma 3.3 for the case k=2p—3.
AP XK, , ,, Z,)={F'a,} and AFP'a~+0. By the isomorphism
AXK,, 5, Z,)= S * | FS*A, S *(Fa,) corresponds to the image of
(P F* > F*]F*A) the kernel of which is F*R + S * PP}
by Proposition 1.6 [5]. Consider a relation « R +a,7??'=0 in
S ¥R+ F* PP, By Proposition 1.6, «a,??'=0 mod S*R,
implies a,=B,A+B3,* for some B,, B,€ F*. Since L' FP? =0
and AP?P ' = —FP**R,, it follows (@,—B,F7*7*) R,=0. Then, by
Proposition 1.5, a,— 3,2 *'=B,R,+ B,AFP'A for some B,, B,€ F*
such that B,=0 if p_>3. Consequently it is proved that the
relations in S*R,+5*SP?' are generated by the following
relations :

RR =0, (AZ'AR, =0 if p=3), AP+ FP* 7R =0
and F'F*'=0.
By Lemma 3.3 there exist elements
a,€ A" YK,, ,, Z,) and b, € A**VNK,, ,, Z,)
such that
*a, = R,(j%'a,) and &b, = F*(j*a,),

and there are relations R,q,=7i*w,, (AZ'Agq,=*w, if p=3),
Ab, + PP q,—i*w, and P'b,=i*w, for some w,, w,, w,, w,
EA*(KZp—I%) Zp)'

Theorem 3.6. AXK,, ., Z,) is an S *-module generated by
a,, a, and b, having a system {Aa,=FP'a,=R,a,=7'b, =0,
Ab, = P?ta,— F? %, (adding AFP'Aa,=0 if p=3)} of relations.

Proof. By Lemma 3.3, it is sufficient to prove that
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*w, = *w, = *w, =0 and *w, = P?a,.

w, € AX# P ONK, ., Z,)=0, and thus *w,=0. w,€ A*» D+
(K, py, £,)=1{AF%a,}. Since AF°a,=F°A(F'a,), i*w, € (*A*P~ D
(K;,-5, Z,)=0 and thus *w,=0. Also it follows from A*# >*
(K,p-s, Z,)=0 (p=3) that *w,=0. Since w, € A**K,,_,, Z,)
= {Z*a,} and since F?a, does not vanish in K,, ,, we have to
determine the coefficient x in the equation

*w, = x P?a, .

Consider theorem 2.9 of the case »=0, where WX is a fibre
space over an Eilenberg-MacLane space WY of the type (Z, N)
such that =(WY) vanishes for i#=0, N+2p—3 and 7zy.,, (W)
=Z,, ny(WY)=Z. Let X be a mapping-cylinder of the fibering:
WY—Wy. Asinseen in §4 of [4], we may take K,,_, and K,,_,
such that K33 2 =Ky+%*=S™. Let f: S~—>WX be a representative
of a generator of 7y(WP). Since 7 (WPV) vanishes for i=N+2p—2,
the mapping f is extendable over the whole of K,, , and the
result is denoted by f,:K,,,—WY. Also f,: K,, ,— WYX is
extended over f,: K,, ,— X such that f,=/,|K,,_,.

It is easy to see that f, and f, induces mod p isomorphisms
of the homotopy groups and thus isomorphisms of the cohomology
groups in the following diagram.

> Hi(X) Zp) - H‘( W{V’ Zp) g i.H(X, va’ Zp) >
| 7 | £ | 7
> Hi(sz—ay Zp) g Hi(sz—zy Zp) - Hi+l(K2p—3> sz—z» Zp) ot

Choose the element # of Theorem 2.9 such that f,*u=gq,, then
it is verified easily that the element b, of Theorem 2.9 is mapped
by f* to our element b,. It follows from Theorem 2.9 that
Ab,— PPa, is in *a,. Therefore we have Ab—FP?q,
=—FP??%, x=1 and thus *w,=F%,. q.ed.

Added in proof. In Theorem 2.10 [6], read Ab,=FP*u
—F*%a in place of Ab,= P u+FP*’a. HXWY, Z,) is naturally
isomorphic to ANK,, ,, Z,).

By Lemma 3.1 and Lemma 3. 2, it follows from A*(K,, ,, Z,)
={a,, a,, Aa,, ---} that
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7(&; p)=0 for 2p—2<i<4p—5,
(3.5). #*:ANK,, ., Z,)~ AXK;, Z,) for 2p—2<i<dp—5,
”4p—5(© ; P) = ZI’ .

Then Theorem 3.6 is also true for K,, ;.

Theorem 3.7. i). Let p>3. There exists an element
a, € A*"K,, ,, Z,) such that ¢*a,=R,(j*'a,). The S *-module
AXK,, ., Z,) has a system {a,, b,, a;} of generators and a system
{Aaq,= FP'a,= P'b,=R,a,=0, Ab,= FP*a} of relations.

il). (Let p=3.) There exist elements a,€ A¥K,, Z,) and
al € A¥K,, Z) such that ©&%a,=R,(j*'a,)=AT"(j*"'a,), o*a,
=AP'A(j*'a,) and AP a,= FP'a. The F*-module AX¥(K,, Z,)
has a system {a,, b,, a,, a/} of generators and a system {Aa,
= Pa,=P'b,=Aa,=20a/ =0, Ab,=FPta,, AFP'a,=FP'a)} of
relations.

Proof. 1i). Consider Lemma 3.3. A'*"%K,,_, Z,)={a,} and
Aa,#=0. By Theorem 3.6, the relations in S *a, is generated by
R,a,=0. By Proposition 1.5, the relations in %*R, is generated
by R,R,=0. Then it follows from Lemma 3.3 that the theorem
is true for p >3, by concerning the relation Ra,=*w
€*A*P VK, o, Z,)={i*AFP*a,} =0.

il). A¥K,, Z,)={a,} and Aq,#=0. By Theorem 3.6, the rela-
tions in S *a, is generated by AZ'q,=0 and AFP'Aq,=0. By
Proposition 1.5, the relations in AP F*+AFP'AS* is generated
by AAZF)=0, AAZP'A)=0 and AP AF)—F(AF'A)=0.
By Lemma 3.3, there exist elements da,€A%K,, Z,) and
a’ € A®(K,, Z,) such that 6*3,=AP'(j*'a,) and &*a/=AFP'A
(747'a,) and there are relations Ag,=i*w,, Aa,’=7*w, and AP'q,
— P'a) =1i*w,. Since w,€A"K,, Z,)={AF%,, AFP%,} and
*a,=0, i*w,=xAP*a, for some coefficient x. Since *A%K,, Z,)
=*A%K,, Z,)=0, i*w,=i*w,=0. Put ¢,=dad,—xF%a,, then it is
verified easily that 6*a,—AZP'(j* 'a,), Aa,=0 and AP'a,= P'a,.
Now the theorem, for p=3, is established by Lemma 3.3. q.e.d.

§ Some adding relations from Steenrod algebra.

By Theorem 1.7, the kernel of the homomorphism (&7 #)* : &*
— X [(FRA+ FS*PY) is FFAL FF¥ Py FH (2PN - PP
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+ S *c(FPrPb), By (1.7) and (1.8), c(2FP?" — PP PN =27t P!
_ﬁﬁ'}»l.

By Lemma 1.3 and by (1.9), &P(p*) ¢ S*A+ F* P F* PP
and P(p°—i, 1) € F*A+ F* P for 1<i<p—1. Thus (P?)*
P(p(p—1)—i, ©)=0 for 0<i<p—2. By (1.3Y, LP(p(p—1)—1, ©)
€ * 7 for 2<i<p—1. By (1.3), FP(p(p—1)—(p—1), p—1)
=3 (-1t AP (p(p—1)—i, i) and thus P(p(p—1)—1,1)
€ * 2, Tt follows from P(p(p—1)) ¢ F2.* that (P (p(p—1)))
¢ S * % Therefore ¢(FPr P V) —x PrP=b¢c F* 7?2 for some x==0
(mod p). This shows F* P24 F*( P KL D)= * P24 GF* FPrID,
We have proved

(3.6). The kernel of (FPty* . F* - F*(|F*A+ F*FP) {s FS*A
+ P4 FHRRPP P — PP 4 FHRFPILD

Now consider the submodule ~*b, of A*(K,,_,, Z,) generated
by b,. Let ab,=—0 be a relation, « € &*. Then, by Theorem 3.7,
a=RLP +yA for some B, v€.S* such that yP?q,=0, ie,
(P?yy=0. By (3.6) and by the relations AA=0 and F7?A
=(P'A—LAPNF, it follows that @=BF +yAe F*T +
FHRRPP P — PPYA 4 F* PPN, Conversely P'b,=(2F? P!
— PP YAD, = PP P DAp, =0. Therefore the following lemma is
established.

Lemma 3.8. *b, has a system {Pb,= W,b,= PP DA},
=0} of relations, where W, =27P?F'A— FPPTA,

Denote that

W, =(k+1)FP*P'A—kP?"A+(k—-1)AF?*
Wik) = c(W,) = FAP? P —(k+1) AP —(k—1) P+ F'A .

By use of (1.3), the following relations mod '&* are
verified.

Wk g =0, in fact, Wk)F' = FP'W,_,,
W) F " P = (k+S) AP PITD P —(f—1)FP PO PHA

_(k +t+1) AP otTDH ps ,
W(k) P F°A = (k+ ) AP PUD PN —(k+1t+ 1) APPETON PN |
W(k)A 7 GP* = kAP IO P VA (k+ 1+ 1) A PrI-OINA S
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W(R)A P21+ P51 = A GPIUHDT PN (| - 5) AGPIUHDIHA P
W(E)A PP P A = —(k+1+1) A PPN PA |
W(E)AP P PN = —(k+s)AFLUIHA FA |
WAPHHAP = —(k+1)APIHOUA A |

W(k) AP PHAPTIA =,

GPIDED GPIT-1 = PP~ D PN PYUD P
APrIDINPIDN = APPHNP NP DY),

It follows from these relations that the kernel of the homo-
morphism

W(k)y : F* — F*| P F*

is  PLI*+ W) F*+ PP D PP GF* if k=1,
P+ Wk+1)F* i 1<k< p-2,
P+ W(p—1)F* +APPHAFPAGF* if k=p—2,
(P F* + W(2) S, + PHP-DPP L, L APPVNPNGF*
if p=3 and k=1),
PF* 4 W)L * + {APPHIARP ... | APPIPIHN

A PP PN -} if k=p—1,
PLF* 4 W) *+ {(PPPDPIN oo | APPIDPI ..
A IHD G i B=0,
where we remark that PPPDPIA ... =APIPDPP ... mod
P s if r=0.

Let Im W(k)x be the image of W(k),. Then the above results
show the exactness of the sequence

0 - Im Wik +1)4 — &%/ P'* — Im W(k)sx — O

for some lower dimensions. Consider the exact sequence of H“
associated with this sequence. Since H4(S*/ P *)=0 by
Proposition 1.2, we have the following isomorphisms.

Hi*#2+@(Im W(1)y) ~ Hi(Im W(2)y)
for i< 2(2p—p—-1)p—1—1, p >3,
Hit2@+15X0=5Im W(k)y) ~ Hi(Im W(k+1),)
for all 7 and 1<k<p-—-2,
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Hit#er0e=(Im W(p—2)y) ~ HW(Im (p—1)4)
for i<2p+2)p—1)+2,
Hi+2(?+l){ﬁ—l)(1m W(p___l)*) ~ Hz(Im W(O)*) - 4
for i< 2(p+1)p—1)+1,
Hi+##00=(Im W(0)y) ~ Hi(Im W(1))
for i <2(p*—p)p—1).
Since Hi(Im W(k)4x)=0 for i< 0, it follows that
HiIm W(k)x) =0 i<2(p°—(k—1)(p+1)p—1)+2, 0Zkp.
By operating ¢=c"", the following lemma is obtained,
Lemma 3.9. Z'W,=W(p—k)P'. The kernel of the homo-
morphism W,k : F*— F*| F*P 1<k<p—2, is generated by P!
and W,,, adding FP?'cP*»*™ > {f k=1 and adding AP *"AFP'A
if k=p—2. The kernel of W* corresponds with the relations of
kb, for dimensions less then 4p*(p—1)+1. H;(Im W, *) vanishes
Sfor i< 2Ap*—(k—1)(p+1))p—1)+2, 0<k<p.

(3.7). The kernel of (PFL DAY F* > F*[(F*P 4+ F*W))
contains S *A + F* P and thus ¢ for 0< i< 2p(p—1) and it does
not contain F°.

This follows from the following relations mod 'S * by
operating c. .

APFIDA=(, APIPOP = W1)Pr+»,
Agﬁ(ﬁ—l)ﬁﬁ = Aﬁptl’—l)ﬁ-l‘gﬁ'l ¢ PR 4 W(l)y* .

§ S *-structure of A¥K,, Z,).
If an element a € A¥(K,, Z,) is defined, then we denote by

a in K, or simply by « (I=k)

the image of « under the injection homomorphism *: A¥(K,, Z,)

nd A*(KI ’ Zp)-
Consider the following notations and relations.
a, € A*“Y(K,, Z,), k=Ma,), 2<tp*,
3.8, W€ A“r(K,, Z,), k=ha,), 1<r<p,
b € AMH(K,, Z,), R MbS), 0<s<r<p,

) Cy('S) S Ad(cg‘S))(Kk > ZIJ) ’ k_Z, h(C;S)) ? O '—<=S < r < p !
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da,) = 2Hp-—-1), d(al,) =2rp(p—1)+1,
dbP)=2(rp+s)(p—1)—2(r—s)+1, dlc;")=2(rp+s+1)(p—1)—2(r—s),
h(a,) =2(t—1)}p—1), Mai,) = 2(rp—1)¢t—-1),

2(p—1), if r=s+1=1,
) =4 20sp+s—1)(p—1)—1, if r=s+1>1,

2r—1) p+s+1)(p—1)—2(r—1—s), if r>s+1,

h(cl?) = 2(rp+s(p—1)—2(r—s)+1.

In the following relations (3.9), a)-c), & and j* are the homo-
morphisms of (3.1) for the case k=/I(a)—1, where « is the
element in &*( ).

(3.9), a):

(3.9), b):

3.9, o:
(3.10), a):

(3.10), b):

&(a,) = R, j* (P'a,),

(a,) = R,_(j*7'a,_,), t==1 (modp) and 2<t <},
8*(ay,) = AFP'A(j*a,,-,), 1<r<p,
&(a, ,4,) = AP *a,,)—F(j* al,), 1<rp.
(D) = PPN Pa,),

Fb) = PN * ), 1<s+1<r<p,
(b)) = W75 V), 1<s+1<p.
F(es) = P b, 0sr<p.
Ra, =0, 25t P,

Aa,, = Aay, =AF"a,,—F'a,,=0, 1<rp,
AFP'Aa,, , =0, 1<r<p.
PP = PP =0, 1<s+1<r<p,
b = W(p—s)e", 1<s+1<p,
Wb =0,

P (s—1 .
Ws+1b§?1 - s+1cs )+Vs+1asp+s—1 ’ 1<S+1 <p;
gﬂ(ﬁ—l)Abiﬂ) — 0 ,
P PP OpY = Uei® +Va,+V'a,’,
2 p-i-1 1 (p—2) ___ (p—3
APPIAPIALTYY = Ue? 2 + Vol yepoy-s+ Vo' @pip15-3

where W, \W,=U,,,7" and PP e PP OW = U, APPTAP!
AW, ,=U", and if p>3 then V=V =V, ,=V/=0.

(3.10), ¢):

PP e =0, Os<r<p.
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(3.11) a=0 in K, for each element o of (3.8) sucn that d(@)<k.

Denote by
B*(k)

the S*-submodule of A*(K,, Z,) generated by the elements «
of (3.8) such that h{a)<k< d(a) and that the relations (3.9) and
(3.10) are satisfied.

The purpose of this § is to prove the following theorem.

Theorem 3.10. Let 4p—4<k. There exists the elements «
(in K,) of (3.8) satisfying (3.9) and (3.10). The relations tn B¥(k)
are generated by the corresponding relations of (3.10) and (3.11).
The module A*(K,, Z,)|B*(k) has the following form.

AX(K,, Z,)| B¥(k)
= {a,, PPa,, PPa,, -} ~ FH|(F*D+ SR+ S P)
for 4p—4<k<2p(p—1)-2,
= {a,, d, Pa,, Ptd, P"" ?q,,- -}
for 2p(p—1)—1<k<2(p*—p)p—1)—1,
={a,, b,, &b, d, P¥a,, P'Ab,, AP'Ab,, T, F*d,
Frray, - for  20pPP—p)p—1)<kL2(pP—-1)p—1)—-2,

where d € AP ONK, yp 1yo1, Z,) and b, € AXPOPTONEK, o,
Z,) are given by 8%(d)= FP** PA(7*7'b,) and &*(b,)=F*7(j ;).

p—-1
Proof. i) The case 4p—A<k<2p(p—1)—2.

The S *-module A*(K,,.,, Z,) is already determined in
Theorem 3.7, and this shows that the following proposition (3.12)
is true for k=4p—4.

(3.12). A*(Ky, Z,) has the following system of generators and
relations respectively (b, =b{").

{a,, a;, b} and {Aa,=F'a,=F'b,=R,a,=0, (adding AF'Aa,_,
=0 when t=p—1), Ab,=FP%,} for 2(t—1)(p—1)<k<2Hp—1)
and 2<t<p;

{a,, b,, a,, a,)} and {Aa,=F'ay=F'b,=A2,=A4a,’=0, Ab,
=P, APa,=P'a,} for 2Ap—1V<k<2p(p—1)—2.

The proof is done by the induction on k, using Lemma 3.2,
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Lemma 3.3 and Proposition 1.5, and it is quite similar to one of
Theorem 3.7 and omitted.

It follows from (3.12) and from Lemma 3.8 that Theorem
3.10 is true for 4p—4<k<2p(p—1)—2.

ii) The case k=2p(p—1)—1.

From the result for k=2p(p—1)—2, AP O UK, ,p-1>-2» Z,)
={b,}, Ab,=0 and {Fb,= Wb, =F** PAp, =0} is a system of
relations in .%“*b,. By Proposition 1.6, Lemma 3.9 and by (3.7),
it is seen that *P'+ F*W,+ F*FP*?"PA has a system of
relations {P?'F'=0, P'W,=Wp-1)&', W,W,=U,7,
PP PP OW = UP!, APPPVA=VP', P PIPOA=V T
+V'W,, a, PP OAN=V/ P +V/'W} for some U,, U, V,--,«
such that the dimensions of «, are not less than 2(p+1)(p—1).

Then by Lemma 3.3, there are elements ¢{®, b" and d such
that &%(c{®) = PYj*7'b,), S*(bs’)= W (j*'b,) and &*(d)= P DA
(7%7'0)), and AX(K,,cp-15-1, £,) is obtained from A¥(K,,c,-15-2, Z,)
by adding the generators c‘°’ $, d and the relations b,=0,
R (0)'—2*101, .gnb(l) W(j) 1)c<0) z*wz, Wb(l) UC(°)+Z*ZU
PO PrB- 1)b(1) UC(0)+1*w4, Ad = VC(D)-FZ*?A'S, Pld = V/ )
+ VbP +i*w,, and ad=V/c{®+ V/ b +i*w,/ .

From the fact that the /*-images vainish for the corresponding
dimensions to 7*w, and *w,, it follows 7*w,=i*w,=0. From
PRACPDPNK, ypnr-2s £, ={F*a,, P FPa,}, it follows that
*w,=V,a, for some V,, Slmllarly we have that *w,=Va,
+Va,’ for some V, V' such that V=V'=0 if p>3.°

Consequently Theorem 3.10 is proved for k=2p(p—1)—1.

iil) The case 2p(p—1)<kL2(p*—p)p—1)—

The proof is done by the induction on k. The following four
cases are considered.
A®NKy, Z,) = {a,}, for k=d(a,)—1
= {b"} , for k= d(b‘”)—
= {c}, for k=d(c)—
=0 otherwise.
For the first case Lemma 3.3 (#Z=0) and Lemma 3.4 (£=0)

are applied, for the next two cases Lemma 3.3, and for the last
one Lemma 3.2 is applied. Then it is sufficient to prove that

1) If p=3, the last relation of (3.10), ») has to be added.
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(3.13) for each steps from K, to K,.,, we may take new generators
a of ha)=k+1 and new relations given by (3.8), (3.9), (3.10)
and (3.11).

The case A**(K,, Z,)=0 is trivial.

Consider the case A*(K,, Z,)={a,}. By Proposition 1.5,
Lemma 3.3, Lemma 3.4 and by (3.10), a), new generators are
a,., and a,, (if rp=1t+1) and new relations are the followings:

R, a;,, = *w, (t+1=£0), A~¢1Aarp—1 = i*w, (t+1=rp-1),
Aa,, =t*w,, Aa,=1t*w,, AP'a,,—F'a,,=i*w, (t+1=rp)

#*w, and *w; belong to F*A***»*">*K, . ., ,, Z,) which is
generated by some b and ¢ such that 24(p—1)<Zd(b)<L2(2+2)
(p—1+1, 2p—1)<d(c)<2(t+2)(p—1)+1 and Ac¥)=d(c)
—(2p—3)=2t(p—1). Then the possibility of *w,=4=0 or *w,==0 is
the followings.

Ritssopes = 10, = XA DG, 1< 5 < p2,
APa,~Pa, = i*w, = xAPAb,,
Rp—za(p—np—z = *w, = xbp—1 .

In the first case we replace @cpprs DY Gsirrprs—(2/8)ADT,

and in the second case we replace a, by a,+xAb,. Then we see
that #*w,=¢*w,=0. In the last case, it follows from AZ'AR,
=0 and AZ'Ab,_ =0 that x=0 and thus *w,=0.

Similarly it is verified that the possibility of *w,==0, *w,3=0
or *w=40 is the followings.

AP Dac, 1y, = F¥w, = xAD,_,,
AglAa(p—z)p—l = *w, = XCp_2»
Al ypyp = 1¥W, = XCp_,,

Ad yoryy = Fw, = xPAb,_, .

In the first case, it follows from AP(AZLP'A)=0 and
AZ'Ab, =0 that x=0 and *w,=0. Also in the other three
cases, it follows from A(AZ'A)=AA=0, Ac, ,==0 and AF'Ab,_,
Z4=0 that x=0 and *w,=*w,=0.

Consequently, by a suitable chice of «,, the relations (3. 10), «)
are satisfied and thus (3.13) is established for the case
A NK,, Z,)={a}.
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Next consider the case A*(K,, Z,)={c;”}. By (3.10), the
module S *c® has a system {ZP?'c®} of relations for r_>s+1.
This is also true for »r=s+1, because 6* maps S *c{%, isomor-
phically onto SZ* P (7 'b)) ~ S *|F*F*»". Then, by Proposi-
tion 1.6 and Lemma 3.3, new generator and relation are 5%, and
Pb8 =i*w. The only possibility of *w=0 is P,
=xP?"Aac, 55,,. In the case, we raplace b,, by b,
+x PPN, 4,.,, then *w=0. Therefore (3.13) is established
for the case A*'(K,, Z,)={c;"}.

Similarly, we have new generator ¢{” and new relation &°?~'¢c{®
=u*w for the case A**(K,, Z,)=1{b;"} and r_>s+1. There is
no possibility of *w==0, in this case, and (3. 13) is established.

Finally consider the case A*"(K,, Z,)={b where
1<s<p—2. Let 1< s<p—2, then *bi}, has a system { b,
= W, ,b%1 =0} of relations. By Lemma 3.9 and Lemma 3.3,

new generators are ¢, and b¢°%" and new relations are

gp‘lcésﬁl == i*wx ’ xqmb;s:zl) == i*wz ’ Ws-|~zb.«(xs++21) = Us-t-ches-»)l +i*w3 ’
APPVAPADIY = Uy +i*w, .

There is no possibility of *w,=#=0 or 7*w,=4=0. There are
possibilities of *w,=V,,,a,,.,_, and *w,=V,a,, » .+ V)ayp 1,-5.
In the case s=1, there is an adding relation G7? 'c GP*®~bp§V
=0, and there is a corresponding new generator, however, the
dimension of which is so hight that it may be neglected in
Theorem 3.10. (3.13) is established for the case A*"(K,, Z,)

= {b§3+)1 .
iv) The case 2(p*—p)Np—1)<kZ2(p*—1)(p—1)—2.

In the case k=2(p"—p)p—1), A¥" (K, Z,)=1{acy-11p, 1}
and Lemma 3.4 may be applied. Then new generators are a,_,,+,
and b, and new relations are Rac,_,;,+; =*w, and Z'b,=i*w,.
It is easy to see that /*w,=0 and *w,—xd for some integer x.
Then Theorem 3.10 is established for k=2(p*—p)(p—1). The
proof of the other caces is similar to the above iii) and rather
easy. q.e.d.

§ Stable groups.
Proposition 3.11. The group A**(K,, Z,) has the following basis:
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{a,}, Aa,==0,  for k=2t(p—1)—1, t==0 mod p and 2 <t P,
{(Pa,}, AP'a,=+0, for k=2p—3,

{65}, A == 0, for k=2rp+s)p—1)—2(r—s)
and 0<s<r<p—1or r=p=s+p,
{c}, Ac® == 0, for k=2(rp+s+1)(p—1)—2(r—s)—1,
r—s==p—1 and 0<s<r<p—1,
{a,,}, Ba,, =0, for k=2rp(p—1)—1 and 1 <r<p—1,

{@p-1ps Cpor}s Bayo, =0, Ac, =0, for k=2(p"—pNp—1)—1,
{} (empty), otherwise for 0< k< 2p(p—1)—3.

For k<2(p*—1)(p—1)—2, this proposition follows directly from
Theorem 3.6 and Theorem 3.10. For 2(p*—1)(p—1)—2<k
< 2p%(p—1)—3, it is proved easily.

By Lemma 3.1, for the first four cases of the above proposi-
tion, 7,(&; p)=~Z, and, for the last case, 7,(&; p)=0. In order
to determine the groups 7,(&; p) of the other two cases, we shall
verify the Bockstein operator A, in A¥(K,, Z,).

Let H,(A*) be the cohomology group of an S *-module A*
with respect to the homomorphism Ay:A* —-A*. Then we may
regard that A, is essentially a homomorphism of H,(A*) in itself.

Let C*(k) be a submodule of B*(k) generated by a,, a,,, a;,,
¢ and bS” such that »'~>s’+1. Then

(3.14). H,C*(k)) = {cF* 'a;, cF* " 'Aa)} or {cF?a,,cTFPa,,} .

Proof. By (3.10), C*(k) is a direct sum of some “*g,,%*qa,,
+ F*al,, ¥ and *bE”. By Proposition 1.6 and by (3.10),
HAF* )~ H (¥ | F* PP )~ H(F*P")=0 and H(*bS")
~H(*| S* Py~ H(F*FP?)=0. Thus H,(C*)) is isomor-
phic to H,(Z*a,), t=£0 mod p, H(S *a,,+ S *a,,) or 0.

Let ¢==0, 1. Then, by Proposition 1.5 and (3. 10), a), H,(%*a,)
~H, (%] *R)~ H,(S*R,_ )= {AcP? "1, Ac PP A}, As
is seen in the proof of Proposition 1.1, R¥ (¢ FP? ) =cP?'R,_,
=c(R(t—1)P? )=c(1—8) PP *T'A)=(1—t)AcP?**' and also
R¥ [(cPPi~tA)y=tAcP? *"'A, Then (3.14) is proved for this case
t==0, 1. The other cases are proved similarly. q.e.d.

By (3.10), b), B*(k)/C*(k) is generated by the class of 5%, and
it is isomorphic to 0, SF*/(F*F'+ FS*W,,,), F*[(F*F,
‘9’"* W1 +y*g‘ﬁ(ﬁ—l)A)’ y*ﬂya:gol,;_y*M+y*@p—lcﬁzp<p-l>)+
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or S*[(F*P'+F*W,_ + S *APPTAZPA). As is seen in
Lemma 3.9, the last four modules are isomorphic to the image
of W* for dimensions less than 2(2p*+p)(p—1). By the last con-
clusion of Lemma 3.9,

HY(B*(k)/C*(k)) =0 for i<2(p2+21?—1)(17—1)+1,
and thus
H(CH(k)) ~ HyB*(k)) for i<2(p°+2p—1)p—1).

Since A*(K,, Z,)/B*(k)=0 for i< 2p*(p—1)—3,
(3.15). HIC*(k)) ~ HX(A*(K,, Z,)) for < 2p(p—1)—4.
Now we shall prove the following important lemma.

Lemma 3.12. A,: H,(AY**XK,, Z,) ~ H (A%#e-D*Y (K, | Z,)
Sor 2p—2<k<2jp(p—1) and j<p.

Proof. First consider the case k=2p—2. Apply Lemma 3. 5,
i) to the sequence (3.1) of k=2p—3. (See the proof of Theorem
3.6). Since AcPPia,=c P 'AP'a,=F(c PP A(* ' FPa,)), it
follows that, in K,, ,, AcF?a, is the class of an element @;

such  that ~<3*d,~=Acg"""A(j*“g"ao)=--%—c.@’”f'zAR,(]*“‘ﬁ‘ao)

= &% <% cC PP ‘zAa2>. Here we remark that (3.14) and (3. 15) are

true for K,, ,. From Ab = P?a,—P?%a,, we have AcP*i~?p,
=c PV N PPa,— P’ *a,) = —icPPa,+c P *a,. Since AA=(,
we have A,(icP?Aa,))=A,cP? %q,. Therefore

Afc P Pa)==0  for 1Zi<Dp,
and this is a class of xcZP?*Aa, for some x==0 mod p, since

cF*7?Aq, is a generator of H,A***"*NK,, ,, Z,)), 1<i<p.

Now the lemma will be proved by the induction on k. If the
lemma is true for some k== —1 mod 2(p—1), then it is also true for
k+1 by the naturality of A,. If the lemma is true for k=2p—1)
—1, we apply iii) of Lemma 3.5 to (3.1) of k=2¢p—1)—1. Since
a, (and a, if t=rp) are j*-images, the non-triviality of A, in K,
implies the non-triviality of A, in K,,,. Then the lemma is
proved. q.e.d.

From the above lemma, Au,,#0 for 1<r<(p. Thus, by
Lemma 3.1, 7, ,,-1,-,(S; p) has a direct factor isomorphic to Z .
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Consequently the following theorem is established.

Theorem 3.13.

(A) Zopip-1-i(G 5 D=2 for 1<r<p—1,
: =Zp+Z, for r=p—1,
(B) 7up-1-(S; D=2, for 1<Zt<p* and t==0 mod p,
7’2(rp+s)(p—1)—2<r—s)(@ s D=2, Sfor 0Zs<r<p—1,

”2(rp+s+1)(p—1)—2(r—s)—1(® ; p) = Zp f07’ 0§S<7’_§_p—1
and r—s=+p—1,
”zpz(p—l)—zp(@ ; p) = Zp ’
(C) 7(S; p)=0 otherwise for k< 2p(p—1)—3.
To compute the group =, 1,2(1,_1)_3(@5; p), one has to be deter-
mine the coefficient x of
P'b, = xd in K,,(,,P) .
It is verified easily that
(8.16). m, 2, , (S; P=2Z, if Pb,=0 and m,,x, 5 (S; P)
=0 if Z'b,+0.
The second undetermined factor is Ad. It is a reasonable
conjecture that .
Ad = PPq, mod B*(k) .
This is the case that the conclusion of Theorem 2.9 is true
for =1, and this implies the tiriviality of mod p Hopf invariant

H,:7yn.p.2,-1-1(S¥)—Z,. Under this conjecture it will be com-
puted that

(3 17) ”2[)2(1)—1)—2(6 ,17) = Zp if «qﬂbp =0 and 7t2p2(p—l)—2(@ ,P) =0
if P A0,
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