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The notion of Finsler space is based on the Finsler metric, in
similar manner with the case of Riemann space. However, we
may consider the geometry of spaces with an affine connection
without Riemann metric, and have a beautiful theory of connections
in principal bundles. Recently, a theory of Finsler spaces has been
successfully developed by T. Okada [1] from a modern and global
point of view. He introduce first a connection in a certain fibre
bundle. The connection is composed of two distributions, and hence
is called a pair-connection, which is of the most general type of
connections derived from a Finsler metric by several authors.
Thus we may say that a theory of connection of the Finsler type
is established without Finsler metric.

The present paper is the first part of a series dealing with a
theory of transformations of Finsler spaces. According to the
theory due to T. Okada, affine transformations can be treated for
Finsler spaces without use of the metric, parallel to the case for
spaces with ordinary affine connection. The base space of the
principal bundle in which a pair-connection is defined is the tangent
vector bundle B of the manifold M unter consideration, and hence
it is natural to start from transformations of B, not of M. We
shall introduce linear transformations of B at the beginning of
Section 2, which will be more general than that induced from
transformations of M. It will be shown that a linear transforma-
tion of B is constituted from an induced part and a deviation,
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that is, a rotation part of elements of support. Sections 6 and 7 are
devoted to the thorough investigation of the rotation part. Finally,
in Sections 8 and 9 is presented a theory of infinitesimal affine
transformations.

§1. Finsler connections

In the first place, we shall sketch the theory of Finsler con-
nections with use of fibre bundles.

Consider a differentiable manifold M of » dimensions, and let
P(M, x. G) be the bundle of frames of M, where = is the projection
P—M and G=GL(n, R). Let F be an n-dimensional real vector
space with a fixed basis (e,). a=1.---,n, and then g=(g%) €G acts
on F by pe,)=g%.,. With this standard fibre F, the associated
fibre bundle of P is obtained, which is the tangent vector bundle
B(M,, F,G) of M. The induced bundle = 'P=@(B, #, G) is then
obtained from P by the projection v:B— M. An element g€@
is a pair (b, p)€ Bx P such that «(b)==(p). If «(b) has the coor-
dinate (x%). and

b=b2 . p=(h). pa=p
ox ax

we call (xf, b, p?,) the canonical coordinate of ¢=(b, p). From a
right translation R, of P by g€ G, the mapping R,:Q— @Q is induced
which is defined by R,(b. p)=(b. R(p)). R, is called the right
translation of @ by g€G.

A Finsler connection (called a pair-connection by T. Okada) in
@ is a pair of distributions (I, 1) : @ 3¢ — (I, I'*;), which satisfies
the following three conditions :

1. The tangent space @, at g€ Q is the direct sum Q",+1",
+I*,, where Q, is the vertical subspace of @Q,.

2. For every g€ G and g€ Q. R 1™, =1" 4 R I =1",.

3. For every g=(b, p)€Q, z1”,=B",, the vertical subspace of
the tangent space B, to B at b.

The direct sum I'=1"4TI'% gives an ordinary connection in @,
and hence its connection form o is defined. For a tangent vector
X € @, the decomposition of X with respect to the Finsler connection
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is expressed as follows:

X=vX+hX=0vX+I"X+I"X,
vXeQ',, hXel, IXel”,, I"Xet’,.

The lift of a given vector X€ B, to g=(b, p)€ Q is denoted by /X
which is uniquely determined by /,X €1, and #/,X=X. The Finsler
connection induces the decomposition of B, into the direct
sum B,=B",+ H,, where H,=zI",, g=(b. p). The distribution
H:B>b— H, on B is called the non-linear connection induced from
the Finsler connection. For a tangent vector X € B,, the decom-
position of X with respect to H is expressed as follows:

X=vX+I'X, vXeB",, WXeH,.

Further, the lift /', X of a tangent vector X € M,. x=(b), to bER
is defined by /', X€ H, and /', X=X.

In the case of an ordinary linear connection in a principal
bundle. the basic form and the basic vector field are defined. In
the case of a Finsler connection, two kinds of basic forms and
basic vector fields are obtained as follows. The /li-basic form ¢
and /-basic vector field B (f) associated with f€ F are defined by

", = p~loroz, BW(f),=/l0l,opf. q=(b.p).

where p€ P is thought of as an admissible mapping of B:F
— v lez(p). It is shown that ¢7(X)=0 for "X=0, B"(f)e 1™
and 8 ¥(B™(f))=f. Moreover, the wv-basic form 0" and v-basic
vector field B™-(f) are obtained as follows:

0% = jyg top lov’ 0w, B f)g=1opjraf, q=(b D),

where p~' means the differential of the inverse of the admissible
mapping p, the mapping v:Q — F is called the characteristic vector
field defined by (b, p)=p b€ F, and j,: F—F, (a tangent space
to F at f) is the identification defined by jAf)=r." @/af7),,
fi=f"e,. It is shown that ¢"(X)=0 for /’X=0, B™(f)€ ", and
0" (B (f)=/.

In terms of a canonical coordinate, basic vector fields B*(f)
and B™(f) are expressed as follows:
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api @ A 3
B”')(f)=f.l’ a<‘a;—F’i53; _p)”F"k"ap_,,*) s

w — £A4i 0 iw 0
BN =P =0 5)
where C;i, Fj/, and F; are called coefficients of the Finsler con-
nection, which are functions of x* and &',
With respect to the connection I'=1"+1"% we obtain the
covariant differential D of a form @ on @ such that Da=daoj.
Since h=h"-+1" in the case of a Finsler connection, D& may be

written in the decomposed form. For an example, if « is an
1-form,

Da = D'a+2D%a+ D, Da=da(i®, b)Y,
Drhet = %(da'(lz". %) +-da(l, 1)), Dhat = da(h, I .

Therefore, the covariant differential of the connection form « gives
three kinds of curvature forms:

Do =0Q" = _%_Sbf.lcdg'vr/\ byv)dg‘-nh )
(1. 1) Do = Qv = % Pb.ﬂdrgt")c A gih)dg‘.ab ,
Dio =04 = _%Rbfrd():mc/\ 0(h)dg:a;. .

where g,’=(3/0g,"), is the basis of the Lie algebra G, and 0
=g, gW=0*% _ From the coefficients S,°,.,, P,7;. and R,?
we have three kinds of curvature tensors, for an example,
Syiu=DS 0707 7S a -
Next, DI’=E™ is called the v-forsion form which is written
WP = @ +2@(v)vh +(.)(1')h ,

(=) = —%S:,HU’MA ()w)cca s
(1.2) ek = % P20 A9 h%e,

(k= __;_ R,.QWb p gib¥g



Affine transformations of Finsler spaces 5

Coefficients S,°., P.%, and R,”. give three kinds of v-torsion tensors.
Finally, D#*=c" is the h-torsion form which is of a little
different form as follows:

=4 = 2(_)(h)vh+(;)v'h)h .
(1. 3) Hhwh _;A Ccﬂb(}(u)b A g(h)fea ,
AU = —% T,“ 090 A 4%, .

Hence there are only two kinds of /-torsion tensors.
We obtain two kinds of covariant derivatives A7 and A*T
of a tensor T by the equations

A T=dT(B,")Re*, AT =dT(B,*) Qe ,

where B,“?=B“e,) and B,®=B%(¢,) form the basis of 1" and 1*
respectively, and (¢“) is the dual basis of F* to (e,). If, for an
example, T is of (1, 1)-type such that T=T,%,Q¢* then we have

A'T=T,e.,Qe"Re’, A'T=T, e, Qe*Re .
The structure equation for » is of the same form with the
well-known one for an ordinary connection, namely, 2=do+[o, o].

On the other hand, since there are two kinds of basic forms, we
have the additional structure equations

(;)(r) — d()r;r’) + @A 0("), (ﬂ(’l) = d()"!)_'_w A 0&[!) .

Let F(A) be a fundamental vector field on @ induced from
AeG. 1t is well known that [F(A4), F(A")]=F(A, A’]). Further
brackets of F(A), B(f) and B™(f) are written in the following
forms:

[F(A), B™(f)]=B"XAf), [F(A), B*(f)]=B*"(Af),
[BS). BO(f)]=S,%af SF(E1)+ S f2f B,
(1.4) [B(f), BP(f)]=—Plac ffF(E.)
=PSB, = Cofof B,
[BX(f), BP(f)] = Ry? . ff°F(£.")
RS S B+ T S B,
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Bianchi identities are necessary in the final two sections.
These are given by DQ=0 for the curvature tensors and DO’
=QA00, DAW=0QA0® for the torsion tensors.

We have noted in the above only what will be used in the
following. Refer to the paper [1] for the detail, if necessary, in
particular, expressions of curvature and torsion tensors in terms
of coefficients of connection, the condition of integrability of
covariant derivatives and further Bianchi identities.

§ 2. Quasi-connections in P

We first notice that the bundle space @ may be identified
with the product Fx P by the mapping

1:Q —>FxP, q—(vqg), 7)),

where v is the characteristic vector field and % is the induced
mapping @ — P, (b, p)— p. By means of the identification /, various
notions in € are transfered into Fx P, and, in particular, we obtain
the characteristic vector field ¥* on Fx P, right translations R*
of Fx P, and fundamental vector fields F*(4) on FxP.

Proposition 1. (1) Let v be the characteristic vector field on
Q, and then the mapping

Y¥=noi"":FxXP—F
is canonical, that is, FxP3(f,p)—f.
(2) Let.R, be a right translation of Q by g€ G, and then the
mapping
R* =icRpoi"" :FxP--FxP
is given by the equation R*(f, p)=(g 'f. pg).
(3) Let F A) be a fundamental vector field on Q corresponding

to A€G, and put F*(A)=iF(A). According to the decomposition
(FXP)y, p,=F;+P,, F*A) is written in the form

F¥A), p=—0,A+F(A),,

in which F(A) is the fundamental vector field on P and the mapping
o,:G—F is defined by o (g)=gf. f€F, geG.
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Proof. (1) and (2) are direct results from definitions ¥* and
R*, respectively. We shall verify (3). F(A) on @ is defined by
the mapping L,:G— Q. g—qg. ¢€Q, and we have F(A),=L,(A).
If g=(b, p). then

oLy (g) =1o(b. pg) = (g 'p7'b, pg) = R*,0i(q) ,

from which it follows that, if we take the mapping L*, ,:G
—~FxP, g— R*(f, p), then F*(A)k,, ,=L*, ,A. Denote by =,
the canonical mapping F x P— P, and the decomposition of F*(A)
is written

F*(A)(/" s = V*OL*(_[, p)A+72L*(f. p)A .

Further, making use of mappings ()':G—G, g-—g', and
L,:G—P, g—pg, peP, the above equation is rewritten

F¥A).y p =0,2() (A +LyA),

and thus (3) is established.

Now, we shall introduce a guasi-connection in P induced from
the Finsler connection in @ and a fixed element f€ F. Take the
mapping K,: P—Q, p—(pf, p). and define &k (X) for XeP, as
follows :

h(X)= )}O/I"}—'ff(X) € I)p .

The tangent vector /1{X) will be called the f-horizontal component
of X. It is easily verified that the vector v (X)=X—-/h(X) is
vertical. Then the f-horizontal subspace I'¢,,, of P, is defined by
{XeP,. v{(X)=0}, and the distribution Vi pi P2p— 1, will be
called the quasi-connection in P with respect to f€ F. It is noticed
that I',, is not a notion of an ordinary connection in P, because
h, does not commute with right translations R,, but we get

(2.1) Ryoh,=hy-10R,,

which will be at once verified by means of the relation R oK,
=K, yR,.

When an ordinary connection is given in P, we shall have the
connection form which is defined by the well-known characteristic
properties. In like manner, for a quasi-connection in P, a G-valued
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1-form w*, will be defined and satisfy
o*, (FA) = A, o, (i, X)=0, XeP,,

which are satisfied by an ordinary connection form. In the follow-
ing we shall introduce such a form o*,,.

Let ® and 6" be the connection form and the v-basic form
of the Finsler connection in @ under consideration. If we take
mappings X,:F—=FxP, f—(f,p), and X,:P—FxP, p=(f, p),
then the following forms are defined:

o, = woi 'oX W, = @oi~'oX .

ps
The former is the G-valued 1-form on F which depends upon p€ P,
and the latter is the G-valued 1-form on P which depends upon
feF. In like manner F-valued 1-forms 6 and 67 will be
obtained from 6.

Lemma 1. Let o, be the mapping defined in Proposition 1,
and j, the identification F—F,. Then o, @,, 03, and 03, satisfy
the following equations:

2.2) o (F(A),) = A4 o ,(a.A4),
2.3) () =f.
@.4) U(FA) = Af

where we putted j;(f)= feF 75
Proof. According to (3) of Proposition 1, we have
A = o(F(A)) = woi (F¥*(A)) = @, (— ,A) + @ 1(F(A)) ,

and thus (2.2) is obtained.
Next, we consider (2.3). We first see that

ﬁoi—lc’xp(j) =pf:e B,”, b=pf,,
and hence the v-basic vector field B“?(f) is such that
B f)q = lopf = loomoi™ X () = I oi'oX (f) .

Therefore we have
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OD(f) = 0P0i 70X (f) = 00l"oi = oX (f) = & (B f)) = f ,

and hence (2.3) is proved.

Finally we consider (2.4). According to (3) of Proposition 1,
we obtain

0 = " (F(A)) = 0i;5(— 0 ,A) + O3 (F(A)) -
Then (2.4) is the direct result from j(Af)=0,4 and (2.3).
Theorem 1. Let %, be the G-valued 1-form on P defined by
(2.5) ¥, , = @, — O o0f 207 .
Then o}, satisfies the following equations:
o} (FA)=A, of(X)=0, Xel.
Proof. According to Lemma 1, we have

0% (F(A),) = 0 s(F(A) ) = @,2] 20 7(F(A),)
= A+(0(p)(a-fA)_(l)(P)fojf(Af) = A N
and hence the first equation is proved. Next, take a mapping
Ky=moi"'oX : P—B, p—pf, f€F, and then
J0R U X)=p tov' e K(h,X), XeP,.

Both of the vector K, (h,X) contained in the right-hand side of the
above and the vector 7ol"oK,X are tangent to B at pf. Put
Y=K(hX)—mol"oK X. It is clear that mo/"oK X is horizontal,
while Y is vertical. Therefore we have Y=v'Y=0v0K,(1,X), and
hence

FOFNX) = pY = T oo™ = 7o Yiol(R X )

Since ioh*(K, X)€(FXP)y ,=F;+P,, we may put ioh*(K X)
=X,+X",, where X',€ F, and X”,€ P,. Then we obtain

J05 U X)=p (= pX' ) ==X, = —v*oioh (K X).
Therefore we see

0 = 0(i* R X) = o p(v¥0ioh" R [X) + oy (m0iol" K X )
= - “’c,)(]‘fo??;(th)) +m(f)(th) .
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This completes the proof of the second equation.

The result of this theorem is that o, satisfies two of the
characteristic equations for an ordinary connection form. In this
point of view, the form o¥, is to be called the gquasi-connection
form of the quasi-connection I'y,. However, o¥, does not satisfy
the another characteristic equation: w},cR,=ad(g ')o¥,, but, cor-
responding to (2.1), we obtain the following equation:

(2.6) m?};"Rg = ad(g_l)c":;f; .
To prove (2.6), we shall find first a relation between ., and a
right translation R,. We have
Wy pg° R = woi~'oX Ry = woi o RFoX,
=ad(g )woi 'oX, .

Applying the similar process to 63}, we obtain

2.7) o poRy = ad(g oy, ORoR,=g "0y, .

Next, it is easily verified that the operation p, of g€ on F and
the identification j,: F— F, satisfy p,oj,=j,,op,. From this relation
it follows that

(2' 8) m(p)opg = ad(g)w(pg) .

According to (2.7) and (2.8), we have (2.6) immediately.

It will be interesting to know the local expression of the
quasi-connection form e}, in terms of canonical coordinate (¢, p,%).
From expressions of forms o and 6>, following equations are
derived at once:

o,y = APy + 0T D) dx* +p7CF (B fedD.”)
(2.9) @’y =P pp Ci D) AfC
0R = P b + F (PR

from which it follows immediately that
(2.10) ok, = pr(dp + D Fil(pf)dx*) .

If the canonical expression of X € P, is Xi(a/dx)+ X,/(d/dp,"), the
f-horizontal component /%,X of X is given by
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.0 cin J
(2. 11) IlezX’ﬁ_pa" ’j‘k(pf)Xkap; .
In the case of an ordinary connection, the horizontal component

X of X is given by

WX = xi2 p,f{].’ (X

oxt B J

KA

aps’

where {jik}(x) are coefficients of connection and depend upon x’
alone. While F;; are functions not only of ¢ but also of &'
For Fj, in (2. 10) and (2. 11), p,'f” are inserted for &, which means
that /,X depends upon the choice of an element f€ F really.

§8. Linear transformations of B

A Finsler connection is defined in the bundle space @, and the
base space of @ is the tangent vector bundle B of M. Further,
elements of support, that is, elements of B play an essential role
in the Finsler geometry, and are treated as independent of the
base point. But, if our attention will be confined to a transforma-
tion induced from the one of M, the transformation of elements
of support is determined by the one of the base point. In this
point of view, it seems natural to investigate a behaviour of a
Finsler connection under a transformation of € induced from the
one of B. However, we may not consider a general transformation
of B without any restriction, and then we are led to define a linear
transformation as follows.

A linear transformation @ of the tangent bundle space B is a
transformation which satisfies the following two conditions :

1. @ is fibre-preserving, i.e. Top(b)=vo@(d’) for any b, ¥ in
T Yx), xe M.

2. ¢ is linear on each fibre, i.e. @(ub+u'd"y=up(d)+1'p(b’)
for any b, % in v *(x) and real numbers u, «'.

If a transformation Y of the base manifold M is given, the
transformation of B induced from <, that is, the differential of +r
1s linear in the above sense clearly.

Let @ be a linear transformation of B. Since ¢ is fibre-
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preserving, the transformation ¢ of M is derived which satisfies
the equation 7o@p=%Por, We say that P is the projection of @.
Then, from the projection ?, the linear transformation ¢, of B is
induced. On the other hand, the linear transformation @ gives
the transformation ®* of P naturally, which is defined by

?*(ﬂ) = (q)(px)v St q)(pn))’ b= (Pl ot :j)n) .

It is easily observed that

1. ®* commutes with every right translation R, of P,

2. we interprete an element of P as an admissible mapping
F— B, and then

G.1) PHp)f =P(pf). peP, feF.

@* is called to be associated with . In like manner we obtain
the transformation @F of P associated with the induced @,.

Next, a linear transformation of P is by definition a trans-
formation which is fibre-preserving and commutes with every right
translations R,. The above @* and @7 are linear in this sense
obviously. If a linear transformation @* of P is given firstly,
there exists uniquely a linear transformation @ of B such that ¢*
is associated with . In fact, if @ is defined by

(3.2) Pb)=PX(P)p7'b, beB, pemer(d),

it is shown that the above ¢ is linear and does not depend on
the choice of pé€ = ‘er(d). Comparing (3.1) and (3.2), it follows
that the original ®* is associated with @ as given by (3.2).

Thus we obtained as above the linear transformations @* and
@¥ of P from the same @. Since @*(p) and P¥(p), p€ P, are on
the same fibre of P, there exists the element g& G such that
pH(p)=p¥(p)g. Therefore we have the mapping X :FP— G which
is such that

@3.3) PH(p) = PE(HIMDP) .

The mapping A is called the deviation of . From the commut-
ability of @* and @f with K., it is known that X is of adjoint
type, i.e.
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(3.4) Mpg)=g""Mp)g. peP. gei.

The following theorem makes clear the property of linear
transformations.

Theorem 2. Suppose that a transformation P of the base
manifold M is given. Then there is the one-to-one correspondence
between the set of linear transformations of B having 9 as the
projection and the set of mappings A of P into G satisfying (3.4).

Proof. As have already been shown, to a linear transformation
¢ corresponds its deviation . Conversely, if a mapping AM: P—G
is given such that (3.4) holds, then we take first the induced
transformation ®¥ of P from the given @, and then (3.3) gives
the linear transformation @*, and (3.2) does the linear transforma-
tion @ of B, which has the given ® as its projection and X as its
deviation.

The above theorem shows that the notion of linear transforma-
tions is obtained by synthesis of notions of induced transformations
and deviations.

Consider linear transformations @ and ¢, of B, the latter
being the induced one from the projection of the former. If we
take the mapping

Ly:B— B, b—p\Mp)p~'b), pe€ =z 'or(h),

it is verified in virtue of (3.4) that L,(b) does not depend upon
the choice of p€ x 'er(b). By means of (3.2) and (3.3) we have

(3.5) P =Pl .
The mapping L, may be said the deviation part of .
M B P
/ P ‘—_‘_’(P*
(/2 IL‘\ ......... I)\' ......... deviati()n part'
P PF

The element AM(p)e G is expressed by a matrix (¢,”), ¢, b
=1, -+, n. The equation (3. 4) means that quantities A; =p,'a, p7"®
(p=(&%, p,)) are functions of x* only. In terms of A;, deviation
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parts of @* and ¢ are expressible respectively by

3.6) PMP)= (2, M () p7), p=(¥ p.7).
' Lyd) = (xi, Aj(x)b%). b =(x. bi).

§4. Induced transformations of @

We consider a linear transformation @ of B and the associated
®* with . Then a transformation ¢ of the bundle space @ over
B is naturally obtained as follows:

P:Q=Q, (b, p)—(@), P ),

which will be called the transformation induced Sfrom @. It is to
be noted that the induced ® does not contain differentials of ¢
and @*,

Proposition 2, The characteristic vector field +v:Q—F and
Sundamental vector fields on Q are invariant by the induced trans-
Sformation P,

Proof. We shall recall the definition of v:Q—F, (b, p)—p~'b.
Then its invariance yo@=v is expressed as

“.1) PO (P =p"'D.

This follows from (3. 2) immediately. Next, we take a fundamental
vector field F(A) on @ which is defined from A€G by F(A),
=L,(A), where L,(g)=f?-,(q), g€G. Since P commutes with
R,, ®oL,=Lq, is obvious. Hence we have

73?(14)0 = PoLy(A) = Lg(A) = F(A)v“r’qt» .

This completes the proof.

In an entirely similar way, we deduce that any fundamental
vector field on P is as well invariant by o*.

The notion of an induced transformation of @ is transfered to
Fx P by the identification i used in Section 2. We see from (4.1)

ie@oi=*(p7'b, p) =io(b, p) = i(p(b). P*(p))
= (p7'b. p*(p)) .
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If we define a transformation (1, ®*) of Fx P by (1, ") f. p)
=(f, P*(p)), then it follows that @=i""o(1, p¥*)oi.

Let @, be the transformation of @ induced from the induced
@, of B and A the deviation of @. The

P, p) =i""o(1, PFor)ei(b. p)
= {(PE(LIMPNP™'b. PE(HIMP))
= (P(pMD) p7'D). PE(EM D)) = (PooLi(D), PE(HM(D)) -

If we define L,:Q@—@Q by the equation L,(b, p)=(L\(0), pM(D)),
then we obtain the expression #=@,0L,, which corresponds to
(3.5). Thus I, may be said to be the deviation part of .

We now turn to a consideration of behaviour of the /-basic
form 6 under the induced transformation . Neglecting first the
deviation part of @, we have the following lemma.

Lemma 2. The h-basic form % on Q is invariant by the
transformation @, induced from an induced @, of B.

Proof. From the definition of ¢# it follows that
()'—’:,“:,,,0(?0 = PE(p) loToFP, = PF(p) ' PoToR ,

where ¢=(b, p), and ?, 7. = mean differentials of these mappings
written by the same symbols. The differential of 9 is the induced
transformation @,. Then the lemma will be derived at once from
(4.1) replacing @ and 9* by @, and @§ respectively.

It is noticed that the above lemma corresponds to the similar
one for the case of the basic form or P and induced transformation
from the one of the base manifold. However, in our case, we must
take attention to deviations, and the result is as follows.

Proposition 3. By the transformation ® induced from a linear
transformation @ of B the h-basic form 6% on Q is generally not
invariant, but 0op=\"'0"" where N is the deviation.

Proof. It was shown above tnat & was expressed as P=@,0[,,
and hence it is suflicient to prove that 6%-J, =A"'6®, because of
Lemma 2,
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9‘,—'_‘)"(0)0T1,‘ =Np) 'pterezo Ly =M p) 'pleTe Loz
=Mp) 'plerez, g=(b,p).

This completes the proof.

We note here that the /-basic form #*% as above treated is
defined without a Finsler connection, while the »-basic form &
is not so. Therefore we can not discuss the behaviour of &
under general induced transformation .

§5. Affine transformations of Finsler connections

Suppose that a connection is defined in the frame bundle P.
It is well known that the basic form is always invariant by induced
transformations. Thus an affine transformation ¢ of M is defined
such that the connection form is invariant by the induced trans-
formation @¢, which is equivalent to the fact that the transformation
preserves horizontal subspaces.

In the case of a Finsler connection in @, however, we have
generalized a transformation to a linear transformation and proved
Proposition 3. In this point of view, it is natural to define an
afline transformation of B as follows: an affine transformation of
B is a linear transformation which preserves both of h- and
v-horizontal subspaces. We can state the definition of an affine
transformation in terms of the associated ordinary connection and
the non-linear connection in B as follows.

Proposition 4. A necessary and sufficient condition for a linear
transformation @ of B to be affine with respect to the given Finsler
connection tn Q is that pH=H and ¢U'=", where | is the associated
ordinary connection and H the non-linear connection.

Proposition 5. The above condition is given by the equations
(5. 1) (1.)0!7) =, 0‘:")0(/_) = 0'") y
where o is the connection form and 0" the v-basic form.

Proof. Suppose that o is affine, and then @o@(1)=0 and
further @o@(F(A))=A in virtue of Proposition 2. From the com-
mutability of ¢ with right translations it follows that @oPoR,
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=ad(g ")wo®, Thus the form wo@ satisfies the characteristic
properties of the connection form, and hence we@=w, Next we see

U5croP =P*(p)'opor/oT = plov'ow

and hence the second of (5.1) is obtained.

Conversely, suppose that (5.1) holds. It is easy to show that
the first of (5.1) gives the invariance of horizontal subspace I' of
Q. Now, if X€ H,, we have @o/[,(X)€ I'* by means of (5.1), and
s0 7ToPol(X)€ H,,, from the definition of H. Making use of
7oPp=wpowz, we see that FoPpol(X)=p(X)€ H,, , and thus we obtain
pH=H.

Proposition 6. The above condition is also given by
(5.2) PB(S)=Bf). PBUS)=BH ),
where BY(f) and B™(f) are v- and h-basic vector fields respectively.

This proposition will be easily verified by means of (5.1) and
Proposition 3.

§ 6. Reotations of B

Theorem 2 shows that, if we take the identity transformation
of M, a mapping A of P into G corresponds to a special linear
transformation @ of B. For a Finsler connection, an element & of
B is thought of as an element of support, and the base point of
b is invariant by the above @. Therefore we may say that the
@ is a rotation of B. The associated @* of P and the induced ®
of @ are called rotations as well. The discussions of this and
next sections will be confined to rotations.

From (3.4) it follows that for a rotation @*

(6.1) Nog* = 1.

Define a G-valued 1-form A on P by A, =Mp)"'\, where \ is the
differential, that is, for X€ P, we have a tangent vector MX) to
G at AMp). The form A will be denoted by the A-form of the
rotation,
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Proposition 7. The A-form A of a rotation ¢ has the follow-
ing two properties:

1. A is of adjoint type.

2. A is invariant by the associated rotation ¢*.

Proof. From (3.4) it follows that
Ao Ry =Mpg) NoR, =(g7Mp) 'gXg"™Ng)=87'A, 8,
which is the first property. Next, in virtue of (6.1) we obtain
Agec s P* = MP¥(D)) Do =Mp) A =14, .

Thus the second is proved,

Proposition 8. If a connection form o on P is given, we gel
6.2) A =wp*—ad\ "o,
where @* is the associated rotation corresponding 1o \.

Proof. Since @*(p)=pr(p). we have
6.3) P*(X)=XMp)+pMX). XeP,.
Let 4, be the left translation of G by g€ G, and then
(6.4) Ly, = LoV,

where L, is the mapping G — P as has already been used in the
proof of Proposition 2. From (6.3) and (6.4) it follows that

“’¢*<p)'7’*(X) = wv‘(p)(RA(;oX) + mw’"(p)(LpA'(X )
= ad(M p) )0 (X) +@gsc s Lowe p¥ac - MX))
= ad(M p) e (X)+Mp) " MX) .

The last term is the A,(X) and hence (6.2) is established.

The form A is originally defined by the deviation A and hence
the value of A for a fundamental vector field F(A) does not depend
upon connections. But the equation (6.2) gives the value directly
as follows.

Corollary 1. Let F(A) be a fundamental vector field on P
corresponding to a A€G, and then
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(6.5) AI(A)=A—ad(X NHA.

This follows from (6.2) and the observation that F(A) is
invariant by @*,

Now, if a connection is given in P, the following problem
arises : whether an associated rotation ®* remains invariant the

connection or not. The following theorem is the clear answer of
this problem.

Theorem 3. The necessary and sufficient condition for a
connection form @ on P to be invariant by an associated rotation op*
is that the M-form A of the rotation is equal to zero for any
horizontal vector.

Proof. If wp*=w, then we have A=w—ad(A "o in virute of
(6.2), and hence A(X)=0 for any horizontal vector X. Conversely,
if A(X)=0 for XeI', (horizontal subspace), we have wp*(X)=0
from (6.2). It is easily verified that the form op* statisfies the
characteristic properties of a connection form, and hence wp* =0,

The contents of Theorem 3 can be expressed in terms of a
certain tensor. The A~fensor T is by definition the F <X F*-valued
tensor which is given by T(p} f)=Mp)f. p€ P, fe F. The tensor
T is of adjoint type as shown from (3.4), and d7T(X) is given by
dT(X)f=dMX)f. XeP,, feF.

Corollary 2. The condition of Theorem 3 is equivalent to
DT=0, where D is the covariant differential operator with respect
to the connection under consideration.

Proof. Since T is of adjoint type, it is well known that
DT(X)=dT(X)+o(X)T—To(X). X¢€ P,,
which is rewritten

= dMX) + (XN p)— M p)e(X)
=MPIMX) + (XN p)— M p)o(X),
and, in virtue of (6.2), we obtain

(6.6) DT = op*— 2w,



20 Makoto Matsumoto

It follows that, if wp*=w, then DT=0. Conversely, if DT=0,
we have 0p*(X)=0 for X€I', and A(X)=0 from (6.2).

We conclude this section by a remark that D7T=0 is expressed
by a very simple form. In fact, it has already been noted in
Section 3 that M p)*,=pr'"N;ip, . p=(x7, p,7), where A; are functions
of . DT=0 is expressed by A;i,=0, where semicolon denotes
the covariant differentiation.

§7. Affine rotations

A linear transformation ¢ of B is called an affine rotation if
@ is a rotation and an affine transformation with respect to the
Finsler connection in @. We shall find a necessary and sufficient
condition for a rotation ¢ to be affine. In Section 2, we have
deduced a notion of a quasi-connection in P with respect to a fixed
f€F, which will be used throughout this section. And we have
introduced the forms e, and ., from the connection form o,
In like manner, if a form @ on @ is given, we obtain the form
@, on F defined by «,=aci"'oX , which will be called the
p~induced form from «. Similarly we shall obtain the f-induced
form a., on P.

Lemma 3. The necessary and sufficient coondition for a form
o on Q to be inwvariant by the induced rotation from a rotation ¢
is that the p-induced form o, on F and the f-induced form g,
on P satisfy the following equations:

(Yu-)(p* = (X(f, y grepn = “Cp” s

where p* is the associated rotation of P.

Proof. If we take a*=aoi~' which is a form on Fx P, then
it is obvious from @=i"'e(1, *)oi that the invariance of « by @
is equivalent to that of a* by (1, *). Thus we see that

X P* = X op* = a¥(1, p*) X ;=a*X, =y,

a(W"(p)) = a*x'ﬁo*:‘,,) = a*(ly q)*) xp = a*X'p = a(p) ’

and hence the necessarity is obtained. Conversely
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a* el PF) = (Apuiyn7*® + @z, )(1, P¥)
= a7+ X ppta, = Oy TF + U oy, = ¥, BE
This shows the sufficiency.

According to Lemma 3, the necessary and sufficient condition
for a rotation ¢ to be affine is given by

1) “’(fs‘P* =y, (3) 8pp* =467,
(2) (D(V”(p)) = m(p)’ (4) aigi(p)) = 2;; .

(7.1)

In the following we shall discuss these equations in detail and
change them to the forms given in the following theorem 4.

It is first observed that the fourth of (7.1) is automatically
satisfied by virtue of (2.3), and may be removed from the condition.
Next, the process used in Section 6 to obtain (6.2) is applicable
to any form on P. and then we deduce

(7.2) A yP* = ARy + 0 (F(A)) .
Applying (7. 2) to ©,, and making use of (2.2) and (2.7), we obtain

W PY = g, Ry + o1 F{A))
= ad\M(p) You,p+A +o, (o, A).

Therefore (1) of (7.1) is rewritten in the following form:

(7.3) W py = ad(n” l)“’(Af)""A +‘”(p)("'/A) .
In like manner, (3) of (7.1) is changed into
(7.4) 05 = A0, +Af .

Next, we shall show that (7. 3) is further rewritten in a simpler
form in terms of the quasi-connection form w*, as defined in
Section 2. In fact, we have from (7.4) that o, A=j 00— j A0},
where j,: F—F, is the identification. Substitution of this into
(7.3) gives

O prp = QAN g, + At @, (,65))
— @ (T A5

the last term of which is

""’(p)/(PA“jAfgi:})) = —ad(N")wc,,mw(juBéi})) »
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in consequence of (2.8). Making use of (2) of (7.1), this term is
moreover changed to —ad(A")a,,,(ji 0i3n). Therefore (7.3) is
written in the following form:
“’(f},“"(,,)f(jfol;f =A+ad(7\'—l)(“’(xpp
"‘“’(,:Af(jugé;}:)) .
We shall recall the definition of the quasi-connection form w* ,,,
and the above equation is written

(7.5) %= A+adA ) o*y .

Consequently, at the present stage, the condition (7. 1) is equivalent
to (2) of (7.1), (7.4) and (7.5).

We now observe that values of both sides of (7.4) for a
fundamental vector F(A) are equal to Af in consequence of (2.4)
and (6.5). Hence (7.4) may be exchanged for
(7.6) O3h, = N0k + AN S .

By virtue of Theorem 1, the similar result is seen with respect to
(7.5), and further o* k=0, and hence (7.5) may be exchanged
for the following:

7.7 A+ ad(ho*a )k, =0,
Finally we shall show that (7.6) is written in the simpler form
(7.8) O;h, = )\."0;’;},/1,\,— .

In fact, if we take Xe€ P,, then I, ,(X)—h(X) is clearly vertical
and hence there exists A€G such that InA(X)—=h(X)=F(A),.
According to Theorem 1, we have

“’*(u)(hx'f(X) - hf(X N=- “’(";f)hf(X) =A.
We see from (2.4) that 63(F(A),)=Axf. Therefore
05{})(")4()() - hf(X)) = - “’*Qf:»(h,r(X))xf .

Substituting (7.7) in the right hand side of the above, we see that
(7.6) is written in the form (7. 8).
Consequently we establish
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Theorem 4. 7The necessary and sufficient condition for a rota-
tion @ io be affine is that the deviation N of @ satisfies the following
three equations :

( 1 ) ‘z\h/—!—ad(k"])(')*ijllf= 0 s
( 2) A.()(;:/lf= ()éf}J/IAf ’
(3) Depn = Op

for every f€F and pé P.

At the end of this section, we shall express the above equa-
tions in terms of a canonical coordinate. In the final paragraph
of Section 2, some canonical expressions of forms and vectors have
been obtained. The equation (3) is immediately expressed in the
form

(3) Ciid@(0)) = Min= 'm0l (D)
Next, the following is easily derived.
(O5h) = pi' " Dil(pf)dx*,  D7(b) = Fiy(b)—b7Fyu(0) -

It is to be noted that Condition F due to T. Okada is expressed
by D,=0. The equation (2) is then written

(2) Di (b)) = N, D* (D) .

We consider (1) finally. By means of the definition of the A-form
A, we have

A%y = pi(dpy — N WINPT P AP+ PN AN
(‘Ul/)ab — ‘—lapbjx’:lix’_hlkdxh ,

where the symbol (|) denotes ii-covariant differentiation. Besides,
we have from (2. 10)

(ad(\ 1)(‘)*()‘f}hf)”b = PPN NS (F P (ONS)— F P BS)) dx*,
and hence the equation (|) is expressible in the form
(1) >"j;lk+(Flik((p(b))—'Fl;k(b))le =0.

As has already been stated in Theorem 3, the condition for a rota-
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tion @ to be affine with respect to an ordinary connection in P is
expressed by Ai=0, namely \;.,=0. In this case, coefficients
{].’ k} of the connection depend upon xi only, and hence the second
term of (1), { [' k}((p(b))— { lt k}(b), vanishes. Thus the equation (1)

is looked upon as the direct generalization of A/=0 in the case
of a connection in P.

§ 8. Infinitesimal affine transformations

We consider a 1-parameter quasi-group of linear transforma-
tion @,. Let M, be the deviation of @,, A,€ G the tangent vector
at e€ G of the curve A(p), p€ P, and X the infinitesimal trans-
formation of ¢,. Then we have from Proposition 3

8.1) .07 = —A,0%,

where ¢, denotes the operator of Lie derivative with respact to X.

Now, in consequance of Proposition 6, we know that the
necessary and sufficient condition for @, to be a 1-parameter quasi-
group of affine transformation is that

(8.2) LyBU(f)=0, LyB"(f)=B"(AS).
We first treat the first of (8.2), which is equivalent to
(8.3) w(EyB(f)=0, 0 X(LB(f)=0,

OP(LxB(f)=0.

According to the definition of Lie derivative, we obtain from a
1-form « on @

£,a(Y) = da(X, Y)+ Y(a(X)), YeqQ,,

= X(a(Y))- Y(@(X)—a([X, Y )+ Y(«(X)).

Therefore we have
(8.4) £xa(Y) = X(a(Y))—-a(t,Y).
We apply (8.4) to @ and have

@(Lx B f)) = X(@(B(f))—Lx (B f))
= —dao(X, B(f))—B"(f)«(X)).
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Referring to the structure equation, we obtain

==X, B(f)—B(f)o(X)).
Thus the first of (8.3) is written

(8.5) B f)o(X)=2B(f), X).
In like manner the second of (8.3) is written
(8.6) B (fNO (X)) = 0(B(f), X)+o(X)f,

where we made use of the additional structure equation. On the
other hand, the third of (8.3) is automatically satisfied. In fact,
applying (8.4) to a=6%, Y=B"(f), we obtain

0L Bf)) = =L OBAS)).

The right-hand side of the above vanishes, because of (8. 1).
Next, the second of (8.2) is written
“’(EEXBU')(f)) —_ O, 0(")($XB‘\II)(f)) = 0 ,
0P BP(f) = AnS -

In this case also, making use of (8.4), we shall deduce from above
equations the following two equations :
8.7) BP(f)@(X)) =B"(f), X),
(8.8) BE(F)OX)) = O BH(f), X) .
Therefore we have deduced the following proposition.

Proposition 9. The necessary and sufficient condition for @,
to be a l-parameter quasi-group of affine transformations is that
the infinitesimal transformation X of o, satisfies the system of
differential equations (8.5)-(8. 8).

We shall express left hand sides of these equations in terms
of covariant differentiations A" and A% From the definition of A*
we see

A'(X)(f) = ([d(@(X)B RN fe,)
= (B (o(X)) RN fPa,) = BV(f)o(X)).

In the similar manner we obtain A"e(X)(f)=B¥(f)«(X)), and
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further the similar equations with respect to 6“°(X).
Therefore the system (8.5)-(8.8) is written in the forms

Ao(X)f) =B, X),
ATXN ) = OB F), X) +o(X) .
A(X)F) = QBPS), X),
AODXY ) = 6BYF), X).

Further we shall find explicit forms of the system in regard to
the expression

X = X, Ft, — X'BO + X°BM .

It is easily seen that the system is written in the following:

8.9) X% = =S X P+ P X7,
(8.10) X9, = -S4 X+ P X + X%,
(8.11) Xe=—PlaX PR .X?,
(8.12) X@,=—P XO—R.X°.

We observe that covariant derivatives of X°, /A-horizontal
components of X, do not appear in the system (8.9)-(8.12).
However, for the latter use, we shall find expessions of X°|, and
X%, in terms of X, X and X°. It follows from (8.1) that

£ 0P(B()) = dOPX, BO(S)+ B OPE))
= (X, B(f))+BFUEPX)
= — A6PE() =0,
£ OPBR(f) = OP(X, B F)—a(X)f
+BH(FUOPX) = —Auf

Therefore we obtain
BO(f)NO (X)) = 0(B(f), X)),
BB Y 0"(X)) = @P(BP(f), X)+o(X)f— A S
which are written in the following explicit forms:
X, = C.,X°,

8.13
( ) Xalb = —CbacXm"‘ Tcach+Xab_77ab ’
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in which %", are components of the tangent vector A, to G at e.

We now shall find the condition of integrability of the system
(8.5)-(8.8). These conditions will be obtained from the explicit
form (8.9)-(8.12) by direct calculation, making use of conditions
of integrability of covariant differentiations and substituting (8. 13).
However, we shall proceed in the following by the other way, for
the purpose of avoiding tensor calculus.

It we put SllzzsbacfxbfzreaEF and szz=sb(.‘cdf1rfzdéabec‘r it
follows from (1.1) and (1.4) that :

UB(f), B(f))=-S57,
[B(f,), BY(£)]=F(S)+B(S,)).
It follows from (8.2) that
0=_[X, B(f)]=[eX, B(F)]+[hX, B“(f)]
= [F((X)), B(f)]+[hX, B(f)],

and thus we obtain in virtue of (1.4)

(8.15) [hX, B(f)] = —B(@(X)f).

(8.14)

According to the Bianchi identity D=0, it is derived that
0 =dQBC(f), B™(f.), hX)
= BY(SIQUB(L), hX)—B(f) B f), hX)
+hXQUB(£,), B(f)— QULB(£), B(f)] hX)
+ LB ), hX ], B(f))—U[B(fo), hX ], B(f)) .
In consequence of (8.14) and (8. 15), the above equation gives
(8.16)  BU(fYUBYXf.), hX)—B(f,)UB (1), hX)
= hX(S)+ QB (S, "), hX)— QB ((X) f,), B £.))
+ B (X)) f2), B(f)) .
Next, we see that
do(X, F(A)) = Xe(F(A)— F(A)o(X)~o( X, F(A)]
= —F(A)w(X),

where we used [X, F(A)]=%2,F(A)=0 from Proposition 2. On the
other hand we have from the structure equation



28 Makoto Matsumoto

=X, F(A))— o(X)o(F(A)) +o(F(A)o(X)

=—wo(X)A+ Ao(X).
Therefore we obtain
8.17) F(A)o(X) =o(X)A—Ae(X).

Now we consider first the value [B“(f,), B (f.)]®(X). From
the definition of the bracket it follows that
[B(f), B(f)]e(X)
= B (£ XB(f)o(X))— B (fXB(f) (X))
and, by means of the differential equation (8.5), we get
= BY(f)QUB(f2), X)~ B f)UB(f), X)),

which is the left-hand side of (8.16). Besides, it follows from
(8.14) that

=F(S})o(X)+BXS, )o(X),
which is written by virtue of (8.5) and (8. 17)
=wo(X)S—5.%0(X) +2UB(S,",), hX).
Consequently we establish

(8.18) hX(S/.)+Q(B"(e(X)f2), B (f))
~Q(BX(X) ), B(f))—@(X)S5%+50(X)=0.

In like manner we shall consider values of brackets [B“(f)),
B™(f,)]e(X) and [B*(f.), B¥(f,)](X). Furthermore, values of
those three kinds of brackets for ¢(X) will be examined by
applying the similar considerations to those applied to «(X), in
which, instead of (8.15) and (8.17), we shall use [iX, B*(f)]
=—B®(((X)— A\ f) and F(A)O(X)=— A0"(X) as will be easily
obtained, and further the Bianchi identity D@ =0A 6" will play
a important role. Thus we obtain the following five equations.

(8.19) hX(R?,)+QMBP((X)— A f2), BY(f)

— OM(BP((X)— A f), BP(f)
- w(X)szz +R‘22(0(X) =0,
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(8.20) hX(Py)+2Q"(B(@(X)f.)), B"(f.)
—2MBP(AX)— A Sf2), B(S1))
—o(X)P},+ Phe(X) =0,
(8.21) AX(S,",)+ O (B™(@(X)f2), B(f))
— (BN (X) f), B (f))—o(X)S,', =0,
(8.22)  AX(R,',)+ @M BM(((X)— A Sf2), B¥(f)
— OOHBW(@(X)~ A £), B(L) —o(X)R!, =0,
(8.23) RX(P,'))+207" M B w(X)f), B¥(f2))
=20 BR((o(X )~ A 2, BN —«(X)P=0.
In these equations quantities R, and R}, are defined in a similar
way as for S,', and S;?,, and further P, =P7°, f. f’e,, P}
= b‘:‘dcfzdfltgﬁ'ab'

The system of six equations (8.18)-(8.23) is the condition of
integrability of the system (8.5)-(8.8). For the latter use, we
shall write down the system (8. 18)~(8.23) in the following explicit
forms.

(8' 18,) Sl:ed]exfe) '}-Sb‘.'tdier—Sl:chea +St:rdee
+8,2,uX . =8,%..X, =0,

(8.19) RS AX 4R 4 X =R GX S+ R X,
+ R (X =7 )— R (Xa'—94) = 0,

8.20) Pl XO+PS 2 X =Pl X+ P LX)
+ P (X =)+ P X, =0,

(8.21"y S, X +S5,7 1 X4~SA. X, +5,°.X,4-8,°,X4=0,
(8.22) RSN XPHRS(u X =R X, + RS (X =)
- Rdab(er - 7]cd) = O »
(8.23) PO XD+ P X — Py X, + P (X —n,7)
+Pbachd = O N

§9. Complete integrability of infinitesimal

afline transformations

In the last section, we derived the conditions of integrability
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(8. 18)-(8.23) of the system of differential equations (8.9)-(8.12)
which were satisfied by an infinitesimal affine transformation X.
These conditions were written with use of covariant v- and
li-differentiations. It will be noted that the v-covariant one in
these equations may be replaced, roughly speaking, by the
v-covariant one which will be defined as follows. If we take the
mapping #;': v 'oz(p)—>Q, p€ P, defined by z;'(b)=(b, ), then
we have a tangent vector field B“*(f) on Q, f€ F, which is defined
by B"(fle=73"(pixa:f)s a=b, p). B(f) will be called the #-
basic vector field. Tt will be easily seen that B™(f) is expressed by

BO(f)=Cyf fFL+Bf), f=Sre,,
where F,'=F(g,"). Therefore, if X€ Q, is expressed
X=X, "F 4+ X B +XBY = X,°F+~ X "B+ X“B®,
then we obtain
©.1) X =X", X®=X® X =X7+XC2,.

Referring to B™(f), we shall define the {-covariant derivative A"
in similar manner with the r-covariant one A” by means of B(f).
Thus, for a (1, 1)-type tensor K=K,’¢, ®¢*, we shall write A'K
=K, 2,¢"®¢. The following equation will be easily verified.

KA XO—K2X, + Ko Xy =K XO—K X"+ K, X4,

both hand sides of the above being of the same type. Consequently
we may replace X,%, X“°, X? and the v-covariant differentiation
(1) in (8.18)-(8.23) by X,*. X, X* and the ¢-covariant one (Ii)
respectively.

We now return to a consideration of an infinitesimal linear
transformation X, which may be written in the form of sum Y+Z2,
where Y is the induced part from a transformation of the base
manifold M, and Z is the rotation part arising from the deviation
A. In the following we shall first treat the induced part Y and
then the rotation part Z.

If we denote by £=& (¢/ox’) the infinitesimal transformation
of M, the induced Y is expressed by
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Y =& o ,f;'iibi 0L f"igf,pai g

axi oxd obi oxd 7’)pj’, s
at g=(x', b, p,)). Hence, if we put
Ej:’ = Ei}j_:. Tjikfk’ Ei= Ej;b/ ,
then vertical, ¢~ and /-horizontal components Y,*, Y, Y° of Y are

Yba = p7i bj(fji+cjikfok+cf‘."D’kEI) ’

9.2 i
9.2) Y = p7%(E; :—Dj"f’), Y= p"é,

or, from (9.1), we have the following simpler equations:
(9.2) Y = pitipity, Y=Y, Y'=Y".

Since the condition of complete integrability will be somewhat
complicated for the most general Finsler connection, in subsequent
discussion attention is confined to such a Finsler connection that
Conditions F and I due to T. Okada are satisfied. Condition F is
that D;i=0, while Condition I means the liomogeneity of coeflicients
of the connection, and it does not seem to us that these conditions
impose upon the connection some strong restriction.

According to the note as given at the beginning of this section,
we substitute (9.2’) into (8. 18"), and then we have

7} "' s r ' r ¢ r { r
9.3) S ‘5‘%;’?—”’ T w+S T+ SiuTd v —Sita T/ =0,

(9.4)  ZEHD"— S,y B S,k 8 Bi" = S bl =

the first being a coefficient of &* and the second being of &,.
Since S,%, are homogeneous of degree —2 with respect to b,
contraction of (9.4) by b* gives

9.5) _meij:kl - Skmsjfol— Blmsjfnk; Sj'"sofkl_ b;Sj'?kl =0,

where the index (¢) means contraction by &/, Take quantities &;
such that b,=bb,==0, and contract (9.5) by b,, and we have
(9.6) bS;7 k= —20"S "0y +8,"S ;00— 8,"S ok 40,78 s .

Further, contraction by b, gives
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3beS %0 = bpS;l0r— 0,706+ 0,8,

from which we obtain §,°,=S;’,=0 immediately, and hence
S;%.=0. Consequently (9.6) gives S;7,,=0, and then the another
equation (9.3) is reduced to be trivial.

We next consider (8.19'), where it is to be noted that 7,"=0
for the induced Y. In this case we obtain (9.4) replaced S by R.
Since K;%,, are homogeneous of degree 0, we get K;{,,=0 immed-
iately by putting m=#% and summing. By the same process (8.20)
gives P;i,,=0. Remaining three equations (8.21')-(8.23’) give us
easily that torsion tensors Sj,, R;/, and P, vanish as well.

Consequently we conclude that

Theorem 5. Let (I, I'%) be a Finsler connection in Q(B) satis-
fying the condition of homogeneity and Condition F: Fji=0b'F);.
If the connection admits a group of induced affine transformations
of the maximum order w*+n (n=dimension of the base manifold M),
then all kinds of curvature tensors vanish and three kinds of
torsion tensors, namely, S;,, Ri, and Pj, vanish also.

According to this theorem, we have not any conclusion about
the torsion tensor T/, while the torsion tensor C;, is to be
symmetric with respect to subscripts, because S;/,=C;,—Ci;. It
is to be noted that the following equations have to be satisfied :

Cj"(hll_ - thrhchilj =0, T(jikzlz_ T(jhkThil) =0,
Coéyu,— Tl —C Ty + TG =0,

which are given from Bianchi identities with respect to torsion
tensors.

The remainder of this section will be devoted to the study
of the rotation part Z. Since we putted »,/=(d\; /df),, Z is given
by
0

| L
Z =i i
7 75D ap

obi

from which it follows that

0.7 Z)=ppli +Cilan®), Z0=pi0, Z2°=0.
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Comparing (9.7) with (9.2) for the case of Y, we know that Z is
of the simpler form than Y. because terms containing D, do not
appear, and hence we assume in this case that the connection is
imposed the condition of homogeneity only.

We are concerned with the condition of complete integrability
(8.18)-(8.23"). The first (8.18") gives

oR;i - . N
9.8) al;,.il 748 R =6, iR = 0.

Contraction of (9.8) by b* gives
81’ okl—bR] kl’_O
Take b; as used in the case of Y and contract the above by b;.
We then obtain R,-f',,,=-1 3Ry, immediately. Substitution of this
n

expression into (9.8) shows that K,%, are functions of x only.
Thus there exist quantities Ry (x) such that R;f,=87R.(x).
Next. we have from (8. 20")

L bty Sty 8P 5Py = 0.
‘bl: - Eh— Yy kl_ hoki =

Contraction by & gives

9.9 —mejfkl‘i‘al'"ijka biP;"y+0,"P, =0,

because P;i,, are homogeneous of degree —1. The process by
means of which from (9.5) we got S;/,,;=0 is applied to (9.9), and
then we obtain

bngpj’f'k[ == (_l—;’—bjbl+8j'"bl : "'b >Po ko -

Substitution of this expression into (9.9) gives the equation of the
form (-+) PS,,=0, the coefficient (---) being

bg bib™b;b, — l;_(a /b;+8,ib))

- % (3,7b;-+8,7b,)+8,78, +8,73, .
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which does not vanish as will be easily seen. Therefore we obtain
Pig=0.
Finally we treat (8.21°), (8.22) and (8.23’), which give

‘QS '

(9.10) b8 S = 8S =851 =0,
0R;

9. 11) 8RN =0
P

9.12) i b8P — 8P, =0,

respectively. Contracting these equations by &’ and noting that
S7v, R, and Pji, are homogeneous of degree —1, 1 and O respec-
tively, we get

(9. 13) "'bhsj'ik'{“s"’lsa'k b ".5 { —b SJ F 3 =
9.14) V'Riy—bRf=0
(9. 15) Skhpji,,—bipj St 0 >

respectively. It is easily deduced from (9.13) that S,/,=0, and
(9.14) and (9. 15) show that there exist quantities [?,-,, and P; such
that Rj,=bR,, and P;,=8,P;. Substitution of these into (9.11)
and (9. 12) respectively gives that both of R, and P; are functions
of x only. Consequently we establish

Theorem 6. Let (1, 1'") be a Finsler connection in Q(B) satis-
Sying the condition of homogeneily. 1f the connection admits a group
of affine rotations of the maximum order w* (n=dimension of the
base manifold M), then the following equations are satisfied :

S"u = 'kl = S:ik =0, R;'.u = B.ka,(x) ,
Ry, =b R,k(x) Pjiy=8,iPx).

The theorem was derived under the condition of homogeneity
only. If certain conditions are further imposed on the connection,
it will be expected that some of above functions R (x), R;(x)
and P;(x) or all of them vanish, especially for a connection induced
from a Finsler metric under certain hypothesis, It is to be
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remarked that Bianchi identities for curvature and torsion give
following equations :

8 (Pun+ P T +Ry)— (8j£+ca;j)ﬁl:l =0,
Riun+ TR+ R Pr=0,
Colyiy— Tifm;+PuCpi=0,

Tejun+ Tef s Toiu+ ReyCrio— 8GRy = 0.

REFERENCES

£1] T.Okada: A formulation of Finsler connections with use of the fibre bundles
(the graduation thesis, Univ. of Kyoto>.

[2] Y. Tashiro: A theory of transformation groups on generalized spaces and its
applications to Finsler and Cartan spaces. J. Math. Soc. Japan, 11 {1959), 42-71.

Note

In equations under Theorems 5 and 6, branckets and paren-
thesisses of indices mean that, for an example,

Cipn = Cii—Cin,

I 7: § ! : f
T Tin=THT/H+THT, 5+ THT,),.



