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The notion of Finsler space is based on the Finsler metric, in
similar manner with the case of Riemann space. However, we
may consider the geometry o f  spaces with an affine connection
without Riemann metric, and have a beautiful theory of connections
in principal bundles. Recently, a theory of Finsler spaces has been
successfully developed by T. Okada Li] from a modern and global
point of v iew . H e introduce first a connection in a certain fibre
bundle. The connection is composed of two distributions, and hence
is called a pair-connection, which is of the most general type of
connections derived from a  Finsle r  metric by several authors.
Thus we may say that a theory of connection of the Finsler type
is established without Finsler metric.

The present paper is the first part of a series dealing with a
theory of transformations of Finsle r  spaces. According to the
theory due to T . Okada, affine transformations can be treated for
Finsle r  spaces without use of the metric, parallel to the case for
spaces with ordinary affine connection. The base space of the
principal bundle in which a pair-connection is defined is the tangent
vector bundle B  of the manifold M unter consideration, and hence
it is natural to start from transformations of B , not of M .  We
shall introduce linear transformations of B  a t the beginning of
Section 2 , which will be more general than that induced from
transformations of M .  It will be shown that a linear transforma-
tion o f B  is constituted from an induced part and a deviation,
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that is, a rotation part of elements of support. Sections 6 and 7 are
devoted to the thorough investigation of the rotation part. Finally,
in Sections 8  and 9  is presented a  theory o f  infinitesimal affine
transformations.

§ 1 .  Finsle r  connections

In the first place, we shall sketch the theory o f Finsle r  con-
nections with use of fibre bundles.

Consider a differentiable manifold M  of n dimensions, and let
P(M, 7r, G) be the bundle of frames of M , where 7r is the projection
P—  M and G =G L (n , R ). Let F  be an n-dimensional real vector
space with a fixed basis (e.). a=1, ••• n, and then g=(ga b)E G  acts
on F  by pg (ea ) =gb a eb . With this standard fibre F , the associated
fibre bundle o f P  is obtained, which is the tangent vector bundle
B(M, T, F, G) o f M .  The induced bundle 7 'P = Q (B , ,  G) is then
obtained from P  b y  the projection 7- : B  M .  An element q E Q
is a pair (b, p )E B X P such that 7(b)= 7r(p). I f  70) has the coor-
dinate ( r"). and

ir;
b = b'--°—  p = ( P . )  P .=  pi a

ox:a x '
we call (.1-1, bi, pi ,  a )  the canonical coordinate o f q—(b, p ) .  From a
right translation Rg  of P by g E G, the mapping R g :Q->Q is induced
which is defined by Rg (b , p )=(h , k ( ) ) . f ?.  g is called the right
translation of Q by g E G.

A  Finsler connection (called a pair-connection by T. Okada) in
Q is a pair of distributions (r,rh ):Q  D q Ph,), which satisfies
the following three conditions :

1. The tangent space Q, at q E Q  is  the direct sum
+1̀ hg , where Qr, is the vertical subspace of Q,.

2. For every g E G  and 9E Q. qg, 1?-
 g r h  =  rhu

•

3. For every q p)E Q, ;Yr,-- =Brb , the vertical subspace of
the tangent space B b  to B  at b.

T he d irect sum r=1" H-F1'  gives an ordinary connection in Q,
and hence its connection form 6) is defined. For a tangent vector
X E Q, the decomposition of X with respect to the Finsler connection
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is expressed as follows :

X = hX = vX +le X + hh X ,
vXE Qvg , h X E  , h"xE  r", hhxE

The lift of a given vector XE Bb  to  q=(b, p) E Q  is denoted by d,X
which is uniquely determined by 4 X E  and ff-/g X.---- X .  The Finsler
connection induces th e  decomposition o f  Bb  i n t o  the direct
sum B b =B " b±  Hb , w h e re  l i b = q=(b, p). The distribution
H:H b  on B  is called the non-linear connection induced from
the Finsler connection. For a tangent vector X E Bb , the decom-
position of X  with respect to H is expressed as follows :

X =v 1X+h 'X , v/XE  B " b h/XE .

Further, the lift L a  of a tangent vector X E M .  x= 7(b), to bE B
is defined by l',XE H b  and 71' b X = X.

In the case of an ordinary linear connection in a principal
bundle, the basic form and the basic vector field are defined. In
the case of a Finsler connection, two kinds of basic forms and
basic vector fields are obtained as follows. The Ii-basic form
and Ii-basic vector field B ( f )  associated with fE F  are defined by

triog = p -  °T o  , B "( f ) q  14°11/°Pf q = (b, p) .

where p e  P  is thought of as an admissible mapping o f  B :F
-. 7 -1 0 ,0 ). It is  sh o w n  th at 0 (X )- -  0  for hhX=0, Brh'(f)E l' h

and Oh) (B ' ' ( f ) ) = - f .  Moreover, the v-basic form  Or) and v-basic
vector field B ( f )  are obtained as follows :

0 .:,= , 13:̀ , ( f ) q  = , q (b, p),

where p - '  means the differential of the inverse of the admissible
mapping p , the mapping 7:Q -> F  is called the characteristic vector
field defined by 7(6, F ,  and j f : F (a tangent space
to  F  a t  f )  i s  the identification defined by j 1 ( f 1) = f 1"  own ! ,
fi—Aaea• It is shown that 0 " (X )=  0 for le X = 0 , B (")(f )E r", and

r

In terms of a canonical coordinate, basic vector fields B  ( f )
and B '' ' ( f )  are expressed as follows :
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B ( h) ( f ) =  f p i o ( —a—  p i
b 
F  a
 a p „ k )

13( ") (f) = fapi . 6 8  — kW / l a—p
a

 bk ) ,

where C l k , F i lk  and F 1
5  are called coefficients of the Finsler con-

nection, which are functions of x ' and b .
W ith  respect to  the connection 1 '= F "  + l " ,  w e obtain  the

covariant differential Da of a fo rm  a on Q  such that Da=daoh.
Since h=h"-khh in the case of a F insle r connection, Da may be
written in  the decomposed form . For an example, i f  a  i s  an
1-form,

Da = D'a+2Drha+D ha ,  ! F a  da(hr, le)

Dvha = *(da(hr, hh)+da(hh, kr)), Dha = da(hh, h h ) .

Therefore, the covariant differential of the connection form co gives
three kinds of curvature forms:

D"(,) = = — —1 S
`

b
a

 d û v ) .̀

2 . 

D' 116) = f2" = —
1  

P,a,,,O1">  A2

0A  (h)dka b
P h '  = =  —

2
1  R Z tatP ô t .

where i a b= ( a / a g b a)  i s  the basis of the Lie algebra 6, and Oc")
=ffrYie a , 0 ) - 0 ( we a . From the coefficients S Zch, P h a.d ,  and Rba.cd
w e  have th ree  k inds o f  curvature tensors, fo r  a n  example,
,S f ila r =  p o i pTlas ab . c d

Next, DO'") =(-4"' ) is called the v-torsion form which is written

Hc") = e( ')t'+20(v)vh + (419 k

" P  = — 1.3,°,6r"b A ,
2

(1. 2) 1 rA C  h  
=  -  P  „ 0 (  ) 6  A O'h)cea

2
1 a hm ,h)c(7)( 1 9 h —  —  R  b  f r ) (  A ea  .
2

Odka b
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Coefficients S ha  r, P b  and 1 4 °  give three kinds of v-torsion tensors.
F inally, Dffh ) --=(-0 )  i s  the h-torsion f o rm  w hich  is o f  a  little
different form as follows :

H(h) ±4 h )rh (, ,h )h

(1. 3) = 1  

Cc
a

 b0( „ ) h  A  0(hY ea
_

() ( h ) "  = — 1 T O ' 0 , h, cea  .
2

Hence there are only two kinds of h-torsion tensors.
We obtain two kinds of covariant derivatives __VT and A h T

of a tensor T  by the equations

T = dT(B a ' " ) ®  ,  Ah T = dT(B ,,'")) e °  ,

where Ba 't)= B "(e.) and B . h ) = B ne a )  form the basis of 1". and 1'h
respectively, and (e°) i s  the dual basis o f F *  to  (e a ) . If, for an
example, T  is  of (1, 1)-type such that T =T b

a e .0 e b ,  then we have

T = Tb a I c e  (
531 eb ec  , A hT = T „7 ,e 0  e b .

The structure equation for (0 is  of the same form with the
well-known one for an ordinary connection, namely, 12= cho .±[co, (0].
On the other hand, since there are two kinds of basic forms, we
have the additional structure equations

(=y '̀) = clti'": ± N A  0-' ) , (4h )  = dû-h) (g ) Oh)

Let IT'(A ) be a  fundamental vector fie ld  on Q  induced from
A E 6. It is well known that [P(A ), P(A ')1=P(L A , A l ) .  Further
brackets of P(A ), B (")( f ) and B ( f )  are written in the following
forms :

[F(A ). B  ")( f )i = B  f ) (A .f) ,B ' h ) ( f ) ]  =  B ` h ) (A f )
[B ( v) (f ). B ( ") (f )1= S b! rdr f ' d F(É. b ) +Sba  f b.f "B .`" )

(1 . 4) [B`"D( f ) , 1 3 (h )( f l i=  P b ! a c f ` t dP(kab)
bf bf "B . —Ccabf bil`B a

( h ) ,
[13 ' ) ( i) , 1 3 (h ) (n i  R b a rd f `f dF ( e )

Rb" , P f " B a
( " ) +Tb a c f br B a

( h )  .

2
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B ianchi identities are necessary in the final tw o  sections.
These are given by D12=0 for the curvature tensors and DH(')
— 1-2 A V ',  DH(h3 = f2 A Or" )  for the torsion tensors.

W e have noted in the above only what will be used in the
following. Refer to the paper [1] for the detail, if necessary, in
particular, expressions of curvature and torsion tensors in terms
of coefficients of connection, the condition of integrability of
covariant derivatives and further Bianchi identities.

§ 2. Quasi - connections in P

W e first notice that the bundle space Q  m ay be identified
with the product F x P by the mapping

i : Q  F x P ,  q  M g), (q)),

where y  is  the characteristic vector field and n  is  the induced
mapping Q - - .  P, (b, p) —  p .  By means of the identification i, various
notions in Q are transfered into Fx P, and, in particular, we obtain
the characteristic vector field 7* on  F x P , right translations Rg *
of F x P , and fundamental vector fields F*(A ) on FxP .

Proposition 1. (1) Let 7 be the characteristic vector f ield on
Q, and then the mapping

7* =

is canonical, that is, F xP  3 (f, p )  f.
(2) Let. R, be a righ t translation of Q by  gEG, and then the

m ap p ing  -
g0i-1 : F x P-- ExP

is given by  the equation 1?*g (f, p)-= (g -

 1f ,  pg).
(3) Let F be a fundamental vector f ield on Q corresponding

to A E 6 , and put F * (A )= iP (A ). A ccording to the decomposition
(F x P ) ( f .  =  Ff+ Pp , F*(A ) is w ritten in the form

F*(A) ( f .  0 ) =  a i r A  

in which F(A ) is the fundamental vector field on P  and the mapping
Œf : G -->F is def ined by  af (g )=gf, fE  F , g E G.
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Proof. (1) and (2) are direct results from definitions 1,*  and
l e g  respectively. W e shall verify (3). P(A ) on Q  is defined by
the mapping L q : G --Q , g - -  q g , q E Q , and we have P(A ),=1,,(A ).
If q=(b, p ) ,  then

ioL q (g) = io(b, pg) -  ( g - lp - l b ,  p g ) =  R*g oi(q),

from  w hich it fo llow s that, i f  w e take the mapping L* c f .  p ) : G
F x P. g -- l e g ( f , p ) ,  th en  F* (M) f p, = L *  p A .  D enote by 7r 2

the canonical mapping F F - P,P , and the decomposition of F*(A )
is  written

F * J. p 7*.L * ( 1 .  p)A 21.*( p , A  .

F urther, m ak ing u s e  o f  mappings ( ) - 1 g - - g ,  an d
p  E P. the above equation is rewritten

F * ( A )  p r o ( ) - 1 (A)+ L p (A) ,

and thus (3) is established.
Now, we shall introduce a quasi-connection in P  induced from

the Finsler connection in Q and a fixed element f  E F .  Take the
mapping Tif  : p ) ,  and define / i 1 (X )  fo r  X E P p  as
follows

/i1(X) 710//iTC1 (X ) E P p •

The tangent vector h 1 (X )  will be called the f -horiz ontal component
o f  X .  It is  easily  verified  that the vector vf (X ) =X - h f ( X )  is
vertical. Then the f-horizontal subspace ['v ., p of P p  is defined by
{X E P .  v1 (X ) - 0 } ,  and the distribution I'( f ,p  : P p , r, f ) p  will be
called the quasi-connection in P with respect to J E F .  It is noticed
that Fu -, is not a notion of an ordinary connection in P , because
hf  does not commute with right translations R g ,  but we get

(2. 1) R g q i f  =  hg
-

l f
°

R g

w hich w ill be at once verified by means o f the relation ke rcf

= -A7g .•if Rg .
When an ordinary connection is given in P , we shall have the

connection form which is defined by the well-known characteristic
properties. In like manner, for a quasi-connection in P , a 6-valued
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1-form w*c f , will be defined and satisfy

(0*(f ,(F(A)) =  A, (o * c i- =  O, X  E Pp  ,

which are satisfied by an ordinary connection form. In the follow-
ing we shall introduce such a  form co*( f ) .

Let co and 0 "  b e  the connection form and the v-basic form
of the Finsler connection in  Q  under consideration. If we take
m appings % :F --. F x P ,  f - - . ( f , p ) ,  a n d  Xf  : P—>Fx P, p= (.f, P ),
then the following forms are defined :

'0%p ,

The former is the 6-valued 1-form on F  which depends upon p E P,
and the latter is  the 6-valued 1-form  on P  which depends upon
f E F .  I n  lik e  m an n e r F-valued 1-forms O and M",;'; w ill be
obtained from O'").

Lemma 1. L e t  r the m apping def ined in Proposition 1,
and j 1  the identification F—> Ff . T h e n  wc p ) , czkr , M"p ; and Mi"; satisfy
tue following equations:

(2.2) (F(A) p ) = Ad-(0, p ) (cri A ),

(2.3) f

(2.4) b7(A))= Af, ,

where we putted j i i ( f )= J E  F11 .

Proof. According to (3) of Proposition 1, we have

A = co(F(A))= (Doi - i(F*(A))= co ( p ,(—crf A)±(0,/ ,(F(A)),

and thus (2.2) is obtained.
Next, we consider (2. 3). W e first see that

7toi - '0X1,(f ) = p f e Bb " , b= p f „

and hence the v-basic vector field 13̀") ( f )  is such that

Bc`')(f),= l a ppf=1,0770i - x 0 ( f ) =  oi—ox p ( i )  .

Therefore we have
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= tr )./ - 1 0 X ,V ) = 0"oh"oi - '0Xp ( j ) =  EP) (Bc") ( f ) ) = f  ,

and hence (2.3) is proved.
Finally we consider (2 .4 ) .  According to (3) of Proposition 1,

we obtain

0 = 0 ( P ( A ) ) =  ; ( - 0 -
1 A)+W ;;(F (A )).

Then (2.4) is  the direct result from j 1 (A f )= 0 -
1 A  and (2.3).

Theorem 1. Let (4 ) b e  the 6-v alued 1-form  on P  defined by

(2.5)( 1 ) , I ) p  =  c y (p p —  6 3 ( p)f°f r e
J'; •

Then co',1:f ;  satisf ies the following equations:

(4 ,(F (A ))=  A ,  (4 ,(X )= - 0 ,  X E  ' ( J ) .

Proof. According to Lemma 1, we have

(0,-) (F(A) p ) = co( p (F(A) 0 )— 0)( 1 ,y 0 j f oO'f ''(F(A) p )
A+co ( p ) (crf A)—(;) ( 0 ) f ojf (A f) =  A ,

and hence th e  first equation is proved. N ext, take a  mapping
f  E F , and then

f 0 f  X) =  p - '0 e0 K /h f .,Y ) , x E  P,,.

Both of the vector K f (hf X ) contained in the right-hand side of the
above and the vector fr- ohhoR f X  a re  tangent to  B  a t p f .  Put
Y = K f (h/ X)—ff-oh h ori f X .  It is  c lear th at ff-ohhokf X  is horizontal,
while Y is vertical. Therefore we have Y=v'Y=violff (h/ X ), and
hence

j 1 00//1 X ) = p - - ' Y = p-i(K  f ov oi-' f x ) .

Since iohh(k. / X )E  (F x P), f , p) =  F f  +Pp ,  w e  m a y  p u t  iohh(k i X )
= X",,, where X ' 1  F f  and X",, E Pp . Then we obtain

i f oer;.(h f X )= p -  '( — px' — = —  o io h h (R f X ) .

Therefore we see

0 = co(hhKf X)= (1) c p ) (7*oioh`R f X )+ ftk r ,(n-2 0i0/thri f X )
=  —0),10(if07.;(/zi-X))H-cocf)(/‘/X).



10 Makoto Matsumoto

This completes the proof of the second equation.
The result o f this theorem  is that co',1̀,, satisfies two of the

characteristic equations for an ordinary connection form. In this
point of view , the form cotr ,  is to  be called  the quasi-connection
form  of the quasi-connection f ( f ) . However, 64, does not satisfy
the another characteristic equation : (4 ,0 k = a d (g - ')(0 ,  but, cor-
responding to (2. 1), we obtain the following equation :

(2.6)( o t . , o R g  =  a d ( g - ' ) (4 T , .

To prove (2. 6), we shall find first a relation between w( f )  and a
right translation Rg . We have

( f ) p g
oR

g  
=  ( 1 01- 1  oX

f
oR

g
= Woi - 1  0 R *  0X

g  g f

= ad(g - ')cooi - '0Xg f

Applying the similar process to O, we obtain

(2. 7) co(poRg = a d (g la k g p , 0 0 R ,  = .

Next, it is easily verified that the operation pg  of g E G  on F  and
the identification F—> F1  satisfy pg ojf = jg f opg . From this relation
it follows that

(2. 8) co(p,opg = ad(g)o-( i ,g ) •

According to (2. 7) and (2. 8), we have (2. 6) immediately.
It w ill be interesting to know the local expression of the

quasi-connection form 4 -,  in terms of canonical coordinate (xi, P.O.
From expressions o f forms o  and ffv) ,  following equations are
derived at once :

(oc =  P T " (d P b 1 + Pbir k(Pf)dxk + pi/C k(Pf)PdP,k)
(2. 9 ) it)(p)a b = c h i Pc k C  k (P f )d f c

61 ;7a  =  l a ( f  b  d b bi  F j ;  ( P f ) d xi) ,

from which it follows immediately that

(2. 10) COtria = PT i a  fi bi  ±Pb i Fj j k(Pf)dX k)

If the canonical expression of XE.13  i s  xicalaxo+x a i(aiapa i), the
f-horizontal component hf X  of X  is given by
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(2. 11) /11 X "  X i p  iF - i  ( P f ) X k — L -3 .. a j k

In the case of an ordinary connection, the horizontal component
h X  o f X  is given by

h X =   kii(x)Xk Tp
a

 ,ox, 3

where /
k
} (x )  are coefficients of connection and depend upon xi

j  
alone. W hile F i lk  a re  functions not only o f x i but a lso  o f  bi.
For F i ik in (2. 10) and (2. 11) , p a i r  are inserted for b ', which means
that hf X  depends upon the choice of an element f E F  really.

§ 3. Linear transformations o f B

A Finsler connection is defined in the bundle space Q , and the
base space o f Q  i s  the tangent vector bundle B  o f M . Further,
elements of support. that is, elements of B  play an essential rôle
in the Finsler geometry, and are treated as independent of the
base point. But, if our attention will be confined to a transforma-
tion induced from the one of M , the transformation of elements
of support is determ ined by the one of the base point. In this
point of view, it seems natural to investigate a behaviour of a
Finsler connection under a transformation of Q induced from the
one of B .  However, we may not consider a general transformation
of B  without any restriction, and then we are led to define a linear
transformation as follows.

A  linear transform ation p  of the tangent bundle space B  is  a
transformation which satisfies the following two conditions :

1. rp  is fibre-preserving, i. e. Top(b)=Top(IY ) for any b, h ' in
T- 1 (x), x E M.

2. cp is  linear on each fibre, i. e. p(ub+zi'/O— up(b)-1-16p(b')
for any b , b ' in 7 - ' (x )  and real numbers u, u'.

If a transformation Ak of the base manifold M  is given, the
transformation o f B  induced from J r , that is, the differential of Air
is linear in the above sense clearly.

Let rp b e  a linear transformation of B .  Since rp  i s  fibre-



12 Makoto Matsumoto

preserving, the transformation o f M  is derived which satisfies
the equation Top ---(7).1-. We shy that T1 i s  the projection of p.
Then, from the projection P ,  the linear transformation p c, of B  is
induced. On the other hand, the linear transformation p gives
the transformation p* of P  naturally, which is defined by

P * (P) = (P(P,), 9 (P . ) ) ,  P = (P1, —  , P,.) •

It is easily observed that
1. p * commutes with every right translation Rg  o f  P,
2. we interprete an element o f P  as an admissible mapping

and then

(3.1)P * ( P ) f  P ( P f ) ,  P E P ,  f E F•

(p* is called to be associated with In like manner we obtain
the transformation p it  o f P  associated with the induced pc,.

Next, a linear transformation o f  P  is by definition a  trans-
formation which is fibre-preserving and commutes with every right
translations Rg . The above (p* and p it  are linear in  this sense
obviously. I f  a  linear transformation p* of P  is given firstly,
there exists uniquely a linear transformation p of B  such that re
is associated with p .  In  fact, if ql is defined by

(3.2)( p ( b ) = p * ( p ) V b ,  b E B ,  p E 7r- '07-(b),

it is shown that the above p is linear and does not depend on
the choice o f  p E  -1  og-(b). Comparing (3.1) and (3.2), it follows
that the original (p* is associated with q) as given by (3.2).

Thus we obtained as above the linear transformations p* and
p t  o f P from the same p .  Since p*(p) and (p :(p ) , p E P , are on
the same fibre of P , there exists the element gE G  such that
p * ( p ) — p :( p ) g . Therefore we have the mapping X: P— .G which
is such that

(3. 3) P*(P)= V :(P)X (P).

The mapping X is called the deviation o f  p .  From the commut-
ability o f p * an d  p : with Rg ,  it is known that X is of adjoint
type, i. e.
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(3.4)X ( p g ) = g - i x ( p ) g ,  p E P ,  gEG .

The following theorem makes clear the property o f  linear
transformations.

Theorem 2 .  Suppose th a t a  transformation (P  of the base

manifold M  is g iven. Then there is the one-to-one correspondence

between the set o f lin e a r transformations of B  having (P  as the

projection and the set of mappings X o f P  into G  satisfying (3. 4).

P roo f. As have already been shown, to a linear transformation
9)  corresponds its deviation X. Conversely, if a  mapping X:
is given such that (3. 4) holds, then we take first the induced
transformation 'pi' o f  P  from  the given (7), and then (3. 3) gives
the linear transformation p*, and (3. 2) does the linear transforma-
tion (7- , o f B , which has the given ,e as its projection and X as its
deviation.

The above theorem shows that the notion of linear transforma-
tions is obtained by synthesis of notions of induced transformations
and deviations.

Consider linear transformations p and po o f  B , the latter
being the induced one from the projection o f the form er. If we
take the mapping

L i : B — B ,  b - -  po.(p) , pE  7 r -  o T ( b )  ,

it is verified in  virtue of (3. 4) that L i (b ) does not depend upon
the choice of pE 71-- 1 01-(b). By means of (3.2) and (3 .3 ) we have

(3.5) =  To° 1--x •

The mapping L , may be said the deviation part of (I,.

> q ) *

(13 9)141.,   ...........d e v i a t i o n  part.

Po4 >cpg

The element x(p)E G  is expressed by a  matrix (a ba), a,b
, n. The equation (3. 4) means that quantities --P a lab

a kT i b

(p =(x1, pa 9 )  are functions of .,r1 o n ly . In terms of X/, deviation



14 Makoto Matsumoto

parts of p* and p  are expressible respectively by

(3 6) PX(P)= Xl(x)Pa i ), P = (x`, P a t )  ,. 
(xi, X(x)b'). b (x, be) .

§ 4. Induced transformations of Q

We consider a linear transformation of B and the associated
(p* with p .  Then a transformation (p of the bundle space Q over
B  is naturally obtained as follows :

: Q — Q , (b, P) - - ' (P (b), P * (P))

which will be called the transformation induced from p .  It is to
be noted that the induced does not contain differentials of cp
and (p*.

Proposition 2. The characteristic vector field 7 :Q — F  and
fundamental vector fields on Q are invariant by the induced trans-
formation ep.

Proof. We shall recall the definition o f 7: Q— F, (b,p)—p - 'b.
Then its invariance 7.(7)=7 is expressed as

(4. 1) 93*(P)-1(P(0)=

This follows from (3.2) immediately. Next, we take a fundamental
vector field P (A ) on Q  which is defined from A E G b y  P(A),

L , (A ),  where L,(g)=1-?. g (q), gE G .  Since T,  com m utes with
Rg , (p0L,---1,4-( , ) is obvious. Hence we have

(PP(A)„, epoLo (A) L.7„ (A)

This completes the proof.
In an entirely similar way, we deduce that any fundamental

vector field on P  is as well invariant by 9*.
The notion of an induced transformation of Q is transfered to

F x P  by the identification i  used in Section 2 .  We see from (4.1)

ir=rpoi - 1 ( p — b. p )=  i(T (b ) , rp * (p ))

= (1) - '1). 9)*(P)).



Affine transformations of Fins ler spaces 15

I f  we define a transformation (1, p*) of E x P  b y  (1, r e ) ( [  p )
( f, (1)*(p)), then it follows that (2=

Let (p„ be the transformation of Q induced from the induced
(p , B  and X the deviation of p .  The

(p(b, p) = i - '0(1, epgroX).i(b. p)

= ((q4 (P )X (P ))P - 1 1). P:(P)X(P))
= 00 0(PX(P)P - '0 , (P:(PX(P)) -- - (97 0.1-x(b), (74(PX(P)) •

I f  we define I.,: Q—.Q b y  th e  equation L À(b, p)=(1,,(b), px(p)),
then we obtain the expression (p=T)o .L À , which corresponds to
(3. 5 ) .  Thus L A m ay be said to be the deviation part of (p.

We now turn to a consideration o f  behaviour of the h-basic
form O''' )  under the induced transformation (p. Neglecting first the
deviation part of (P, we have the following lemma.

Lem:ma 2. T he h-basic f o rm  0C" o n  Q  i s  invariant b y  the
transformation er30 induced f rom  an induced p o  of B .

Proof. From the definition of 0 "  it follows that

o<7  =  (AN p ) — lo T o  o rpo = p y i  o P c  7T- ,

where ti=(b, p), and 9), 77, .7( mean differentials o f these mappings
written by the same symbols. The differential of (P is the induced
transformation (130 . Then the lemma will be derived at once from
(4. 1) replacing cp and p* by rpo  and p: respectively.

It is noticed that the above lemma corresponds to the similar
one for the case of the basic form on P  and induced transformation
from the one of the base manifold. However, in our case, we must
take attention to deviations, and the result is as follows.

Proposition 3. By the transformation rp induced from  a linear
transformation p  of B the h-basic f orm  O'h)  on Q  is generally not
invariant, but 0.(p—X. - '0 , where X is  the deviation.

Proof. It was shown above tnat (T,  was expressed as eP = (Po o  „ ,
and hence it is sufficient to prove that (Th)..T.,---x - Vh), because of
Lemma 2,



16 Makoto Matsumoto

= x ( p ) lp - '07-077 q =(b,p).

This completes the proof.
W e  note h e re  th a t  the h-basic fo rm  0 ' )  as above treated is

defined without a Finsler connection, w hile  the v-basic fo rm  t)(y)
i s  n o t  s o . T here fo re  w e  can  no t d iscuss  the behaviour of 6r")
under general induced transformation

§ 5 . Affine transformations of Finsler connections

Suppose th a t  a connection is defined in the fram e bundle P.
It is well known that the basic form  is always invariant by induced
transformations. T hu s an affine transformation q) of M  is defined
su c h  th a t the connection form  is invariant b y  the induced trans-
formation p ct, which is equivalent to the fact that the transformation
preserves horizontal subspaces.

In the case of a Finsler connection in  Q , how ever, w e have
generalized a transformation to a linear transformation and proved
Proposition 3. In th is  point of v ie w , it  is  n a tu ra l to  d e f in e  an
affine transformation of B  as follows :  an affine transformation of
B  i s  a  linear transformation which preserves both o f h - a n d
v -horiz ontal subspaces. W e  c a n  s ta te  the definition of an affine
transformation in te rm s of the associated ordinary connection and
the non-linear connection in B  as follows.

Proposition 4. A  necessary and sufficient condition for a linear
transformation (19 o f B  to be affine with respect to the given Finsler
connection in Q  is that 99H=H and er91' =r, where I' is the associated
ordinary connection and H the non-linear connection.

Proposition 5. The above condition is given by the equations

(5.1) cooep = Co, O'"orp =

where co is the connection form and O'' )  the v-basic form.

Proof. Suppose t h a t  ep i s  affine, and th e n  coolp(r)---0  and
fu rther coorp(F'(A ))=A  in virtue  of Proposition 2. From  the com-
m utability of rp w ith  r ig h t tra n s la tio n s  it  fo llo w s  th a t moepong
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=ad(g - ')cooqi. Thus th e  form  coocp satisfies th e  characteristic
properties of the connection form, and hence coo(75=0). Next we see

0 eri = p*(p) - 'opotioff  V o v 'o f f

and hence the second of (5 .1 ) is obtained.
Conversely, suppose that (5. 1) holds. It is easy to show that

the first o f (5 .1) gives the invariance of horizontal subspace V of
Q .  Now, if X E  „  we have p- o/,(X)E r h  by means o f (5. 1), and
SO 7T 0 T, 0 1 q(X ) E H,,( , )  fr o m  the definition o f  H . Making use of
T rog i= p077 , we see that 'o Po lq (X )=p (X ) E H ,  and thus we obtain
(pH = H.

Proposition 6. The above condition is also given by

(5. 2) (P13'"(f)=13.")(f), (T) 13( ( f )= B ' h (X- 5"),

where B " ( f )  and B(h)(f )  are v - and h-basic vector fields respectively.

This proposition will be easily verified by means o f (5. 1) and
Proposition 3.

§6. Rotations of B

Theorem 2  shows that, i f  we take the identity transformation
o f A l, a  mapping X  o f P  into G  corresponds to a special linear
transformation q, o f B .  For a Finsler connection, an element b  of
B  is thought of as an element of support, and the base point of
b  is invariant by the above p .  Therefore we may say that the
p  is a rotation o f B .  The associated cp* of P  and the induced (7-,

o f Q  are called rotations as well. The discussions o f this and
next sections will be confined to rotations.

From (3. 4) it follows that for a rotation rp*

(6.1)X o p * .

Define a  G-valued 1-form A  on P  by A p =X(p) - 1 X, where X is the
differential, that is, for XE P,  w e  have a tangent vector MX) to
G  at x(p). The form A will be denoted by the X -form  of the
rotation,
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Proposition 7. The X -form  A of  a rotation rp has the follow-
ing two properties:

1. A is  of  adjoint type.
2. A  is inv ariant by  the associated rotation T*.

Proof. From (3. 4) it follows that

Ap e k  X(pg) - lX0Rg —(g - IX(p) - 1 g)(g - tX g)=g - lA p g ,

which is the first property. Next, in virtue of (6. 1) we obtain

Aecp)q)*  = X(q)* (P)) -1X°T*  = X(P)  = Ap •

Thus the second is proved.

Proposition 8. I f  a  connection form co on P is given, we get

(6.2)A  —  we— ad(X - 1 )co ,

where (p* is the associated rotation corresponding to X.

Proof. Since q,*(p)=pX (p), we have

(6.3)e ( X )  = X X (p)-- pX (X ), XE P .

Let Airg  b e  the left translation of G by gE G, and then

(6. 4) L "p  = LP c Jr ÀcP.,

where L p  i s  the mapping G --I3  as has already been used in the
proof of Proposition 2. From (6. 3) and (6. 4) it follows that

p)q) * (X) = c°f•(p)(R),(p-X)± 6)0-c p.(L pX(X))
=ad(X (P) - 1 )(0

1,(X )+wec io(Le( i , ,*xcp) - IX(X))
= ad(X(p) - 1 )(0p (X )+X (p) - 1 X (X ).

The last term  is the A p (X) and hence (6. 2) is established.
The form A  is originally defined by the deviation X and hence

the value of A for a fundamental vector field F(A ) does not depend
upon connections. But the equation (6. 2) gives the value directly
as follows.

Corollary 1. L et F(A ) be a  fundam ental v ector f ield o n  P
corresponding to a  A E 6, and then
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(6.5) A(F(A))= A—ad(X ')A.

T h is  fo llo w s  f ro m  (6. 2) an d  th e  o b se rv a tio n  th a t  F (A ) is
invariant by p*.

N ow , i f  a  connection  is g iven  in  P . t h e  following problem
arises : w hether a n  associated ro tation p *  rem ains invariant the
connection o r  n o t .  T h e  following theorem  is th e  clear answ er of
this problem.

Theorem 3. T h e  necessary  and suf f icient condition for a
connection form co on P to be invariant by an associated rotation cp*
is  th at th e  X-form  A  o f  th e  rotation is  e q u al to  zero  fo r any
horizontal vector.

P r o o f .  If c o p = ,  th e n  w e  have A=c0—ad(X - ')(o  in  virute of
(6.2), and  hence A(X )= 0 for any horizontal vector X .  Conversely,
i f  A (X )=0  fo r X E  r  (horizontal subspace), we have rop*(X)=0
f ro m  (6. 2). It is  e a s ily  v e rif ied  th a t th e  form  (op* statisfies the
characteristic properties o f  a  connection form , and  hence wq, *=(0.

The contents of Theorem  3 can  be  ex p ressed  in  te rm s  o f a
certa in  tensor. T he  X-tensor T is by definition th e  F13F*-valued
tensor w hich is given by T (p ) ( f ) -x (p ) f ,  p  E P. fE  F .  T h e  tensor
T  is  o f ad jo in t type  as shown from (3. 4), a n d  d T (X ) is given by
d T (X )f= d X (X )f, XE Pp , fE  F.

Corollary 2. T he condition of  T heorem  3  is equiv alent to
DT= 0, where D  is  the covariant dif ferential operator w ith respect
to  the connection under consideration.

P ro o f. S in c e  T  is  o f ad jo in t type , it is w ell know n that

D T(X )=  dT (X )±6 )(X )T— Tco(X ), X E  P ,

which is rewritten

= dX(X)co(X)X(p)—X(p)(0(X)

X(P)A(X)±w(X)X(P) — X (0 0 (X)

and , in  v irtue  o f  (6. 2), we obtain

(6.6)D T  =Amp* —Xco
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It follows that, i f  (059*=6), then D T = 0 . Conversely, i f  DT=0,
w e have (0493*(X)=0 for XE r p  and A (X )=0  from (6.2).

We conclude this section by a remark that DT = 0 is expressed
by a very simple form. In fact, it has already been noted in
Section 3 that X.(P ) a b=  P  hi  P =  pa% where X/ are functions
of xi. D T = 0 is expressed by X i fk =0, where semicolon denotes
the covariant differentiation.

§ 7 . A ff in e  rotations

A  linear transformation cp of B  is called an a ffin e  rotation if
p  is a rotation and an affine transformation with respect to  the
Finsler connection in Q . W e  shall find a necessary and sufficient
condition for a rotation q l to be affine. In Section 2, we have
deduced a notion of a quasi-connection in P  with respect to a fixed
f E  F, which will be used throughout this section. And we have
introduced the forms cocp  and (0(1 0  from  the connection form co.
In like manner, if a form a on Q  is given, we obtain the form
a ( p ) on  F  defined by a , 1,, = a0i -1 oX1,, which will be called the
p - in d u ced  f orm  from a. Similarly we shall obtain the f - in d u c e d
f orm  ac t ,  on P.

Lem m a 3. The necessary and sufficient coond ition  f or a form
a  on Q  to be inv ariant by  the induced rotation f rom  a rotation (p
is  that the p - in d u c e d  f o rm  ce( p )  o n  F  and the f - i n d u c e d  f orm  a( f )

on P  satisf y  the following equations:

Ce( f)P *  =  »  a 0 P * (1 1 ))=  Ce(

where p *  is  the associated rotation of P.

Proo f. I f  we take a*=coil which is a form on F x P , then
it is obvious from (p= i - I .(1 , ep* ).i that the invariance of a  by (T,

is equivalent to that of a* by (1, p*). Thus we see that

ctc f ,tp* = a*X f oq)* = a*(1, VP)X f =ci*X f  = crc f ,

aw cp» =a* X ecp)= a * (1 , P * )Xp= ce * X p  = a( p )

and hence the necessarity is obtained. Conversely
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a *
cf. 4,-(p))( 1 , P * )== (aomp»7* +cf(p7r2)(1, (P* )

=  p ) 7 *  ÷  ( f ) (P* 7
r 2  =  pe  Ct(f)

7
r 2 = , p) •

T his show s the  sufficiency.
According to Lemma 3. th e  necessary and  sufficient condition

for a  ro ta tion  p  to be affine is given by

(1) 0V ,P *  =  CL' Orr';P*

(2) ( 1 ) (ir• p» = (°( p), ( 4 )  ° ((:1( p)) = ° C;; •

I n  th e  following we shall discuss these equations i n  detail and
change them to th e  forms given in  th e  following theorem 4.

It is first observed that th e  fourth o f  (7.1) is automatically
satisfied by virtue of (2. 3), and may be removed from the condition.
Next, th e  process used in  S ec tion  6 to obtain (6.2) is applicable
to any form o n  P . and  then we deduce

(7. 2) dcfP* = ci(pRx +ctcp(F(A)) •

Applying (7.2) to (oc f , and making use of (2. 2) an d  (2. 7), we obtain

wcf p *  =  co,f ,12, +a ( f ) (F(A))
= ad(X(p) -  i)co( , » + A + (0(  p krf  .

Therefore (1) o f  (7. 1) is rewritten in  th e  following form :

(7. 3) (0(f ) ad(A.- *Da p + A ±(0 ( p ) ((Tf A) .

In  like manner, (3) o f  (7. 1) is changed into

(7. 4) X-'01;3„d-Af

Next, we shall show that (7. 3) is further rewritten in a simpler
form in  terms o f  t h e  quasi-connection form (0* ( f )  a s  defined in
Section 2. In  fac t, we have from (7.4) that crf A = j f 6T;;— j f X- '0ft,',)f „
where j f : F— F1  is  th e  id en tif ic a tio n . S u b stitu tio n  o f  this into
(7.3) gives

6)(.np a d ( X -1 )w cipp+ A + focpv-(.ifffii )))

— 6 ) cpv (i/X - 1 0 Vr)) ,

th e  last term o f  which is

= —ad(x-')wc/A-Af(i),foal- , ) ,

(7. 1)
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in consequence o f (2. 8). Making use of (2) of (7.1), this term is
moreover changed to —ad(X - 1 ),0( , f ( j f 0X„) ) .  Therefore (7.3) is
written in the following form :

wv ,p — akp v  ( j i  OT) A +ad(X - ')(coa p p

— ociix f ( jv C A  •

We shall recall the definition of the quasi-connection form co*( f ) ,
and the above equation is written

(7. 5) (-0*(f) = A + ad(X, - i) oro*
a f . )  •

Consequently, at the present stage, the condition (7.1) is equivalent
to (2) of (7.1), (7.4) and (7. 5).

We now observe that values of both sides o f  (7. 4) for a
fundamental vector F(A ) are equal to At in consequence of (2. 4)
and (6. 5). Hence (7. 4) may be exchanged for

(7.6)0 0 z =  X 10 f ) /if  +A(//f ) f .

By virtue of Theorem 1, the similar result is seen with respect to
(7. 5), and further (0*( n hf =0, and hence (7.5) may be exchanged
for the following :

(7.7)a d ( X - 1 ) ( 0 * ( , , ) l i f  =  O.

Finally we shall show that (7. 6) is written in the simpler form

(7.8)0 , ; : j r f  = h f

In fact, if we take XE Pp ,  then hx ,(X )— k ,(X ) is clearly vertical
and hence there exists A E Ô such that h,f (X)—/t/ (X )= F (A ) p .
According to Theorem 1, we have

()* ( ) f ) (h,:f (X)—/if (X ))=  — û 1 ,h1 (X ) =  A.

We see from (2.4) that OZ,(F(A ) p ) =A X f .  Therefore

OT,) (h, f (X)—It f (X ) )=  —0)*„f ,(11f (X ))X f  .

Substituting (7. 7) in the right hand side of the above, we see that
(7. 6) is written in the form (7. 8).

Consequently we establish
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Theorem 4 . T he necessary and sufficient condition for a rota-
tion cp to be aff ine is that the deviation X of (p satisf ies the following
three equations:

( 1 ) A li1±ad(X -')(6*apkt-= 0

( 2 ) Xtfit,I;hf = f

( 3 ) fe l(px) = -* (Ocio

f o r every f E F  and p E P.

At the end of this section, we shall express the above equa-
tions in terms o f a  canonical coordinate. In the final paragraph
of Section 2, some canonical expressions of forms and vectors have
been obtained. The equation (3) is immediately expressed in the
form

(3 ' )

Next, the following is easily derived.

(0 /z 1 )° h(pf)dx* , D i ( b ) =  F i k (b)— biFf ik (b).

It is to be noted that Condition F  due to T. Okada is expressed
by Dk i =O . The equation (2) is then written

( 2') Di k (q7(b))= X„iDh k (b).

We consider ( 1 )  finally. By means of the definition of the X-form
A, we have

Aab x _ t h A k i m i c i  I b kd p c/a p 6,1x ,T1 dX ,

(M IA , = pb -, x,-;' , N.J 4 kde

where the symbol (I) denotes h-covariant differentiation. Besides,
we have from (2.10)

(ad(X - 1 )(0 plif
)O

i, -- pzi piAT"Ay(F ,(Pxf)— Fihk(Pf))dxk ,

and hence the equation ( D is expressible in the form

( 1') XI I k (F  k (q ) (b)) —  F h(b))X = O .

As has already been stated in Theorem 3, the condition for a rota-
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tion q,  to be affine with respect to an ordinary connection in P  is
expressed by Ah=0, namely In  th is  case, coefficients
I  i
t i  k i  o f the connection depend upon xi only, and hence the second

term o f (1'), { H e  }(cp(b)) -  kf
1(b) vanishes.' Thus the equation (1)

is looked upon as the direct generalization o f Ah=0 in the case
of a connection in P.

§ 8. Infinitesimal affine transformations

We consider a 1-parameter quasi-group o f linear transforma-
tion p , .  Let X, be the deviation of 59„ A E G  the tangent vector
a t eE G  of the curve x i (p), tE  P ,  and X  the infinitesimal trans-
formation of cp,. Then we have from Proposition 3

(8. 1) ) = 4x931)

where i x  denotes the operator of Lie derivative with respact to X.
Now, in  consequance of Proposition 6 , we know that the

necessary and sufficient condition for 97), to be a 1-parameter quasi-
group o f affine transformation is that

(8.2)I x f f " ) ( f ) =  0 , Ix / 3 (h ) (f)-= B`h ) (A x f ) .

We first treat the first o f (8. 2), which is equivalent to

(8. 3) w(TxB'r)(.t. )) =  0 , 0 ") (ixill ( ") (f )) 0
0 h ) ( i x B n f  )) = 0

According to the definition o f L ie  derivative, we obtain from a
1-form a on Q

i x a( Y) d a (X , Y) + Y(a(X)), YE Qq ,

X (a(Y  ))-  ra (X )) - a(EX, 17 _1) ± Y(cr(X)).

Therefore we have

(8.4)i x a ( Y )  =  M a ( 17 )) - - “ ( ix Y ).

We apply (8. 4) to co and have

w(T.A-B ( v ) (f ))= X (co(B c v ) ( f ) ) - ix f o ( B  v ) (f ) )
= -dco(X , B c1)(f ))-B (")(f )(co(X )).
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Referring to the structure equation, we obtain

= — S2(X, 13(")(f))— tr )(f)(co(X)).

Thus the first o f (8. 3) is written

(8. 5) f»'(X)= f2(13(f), X ) .

In like manner the second of (8. 3) is written

(8. 6) B"(f)(a(X)) =  W (B '" )(f), X)+0)(X)f ,

where we made use of the additional structure equation. On the
other hand, the third o f (8. 3) is automatically satisfied. In fact,
applying (8.4) to ce=0(h), Y=B(" )(f), we obtain

0 - ")(TxB`"(f))= — Ixe iN f r )(f)) •

The right-hand side of the above vanishes, because o f (8. 1).
Next, the second of (8. 2) is written

o ( ix fP )(f))= 0 , 0 '19(ixB'" )(f))=  o •

6" )(i x 13(")(f))=  A,f

In this case also, making use of (8. 4), we shall deduce from above
equations the following two equations :

(8. 7) 13(h)(f)HX))=12(B`"(f), X ),

(8. 8) 1-3(h)(f)(0-')(X))= ( )(B(h)(f), X ).

Therefore we have deduced the following proposition.

Proposition 9. The necessary and sufficient condition for
to be a  1-parameter quasi-group of affine transformations is that

the infinitesimal transformation X o f  (p, satisfies the system of
differential equations (8. 5)-(8. 8).

We shall express left hand sides of these equations in terms
of covariant differentiations A" and A h .  From the definition of .1"
we see

A'co(X)(f) = (d(a)(X))B;;' ) ea)( f be b)

= (B';'( 6 '(X)) 53) ea )(f bab)= B''' )(f)((X)) •

In  the similar manner we obtain A h co (X )(f )= 1 -3'h) ( f ) (w (X ) ) ,  and
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further the similar equations with respect to 0"") (X ).
Therefore the system (8. 5)-(8. 8) is written in the forms

_.1"w(X )(f) = f2(13 ( ") ( f ) ,  X),
A v tPA X )(f )= e ( r) (fI ( ") (f ), X )+co(X )f  ,
...1"co(X )(f) = 12(B ( h) (f ) ,  X),
A "O nX )(f )= EP)(B ch)(f ), X).

Further we shall find explicit forms of the system in regard to
the expression

X  = X ',F 6
 a — X'"B(ar) + X°13?) .

It is easily seen that the system is written in the following :

(8.9)X a b l c  =  —  Sb7cdX`d ) + N i dcX d

(8.10)X ' ' ) I b  = —Sbq cX " ) +Pc a bX`

(8. 11) Xabic = —Pba. c d X ( d ) — Rb7cdX d

(8. 12) X(a)16 = — Pba cr c ) — Rba cX ` .

W e observe th a t covariant derivatives o f  Xa , Ii-horizontal
components o f  X , d o  not appear in  th e  system  (8. 9)-(8. 12).
However, for the latter use, we shall find expessions o f Xal b and
X% in terms o f X a  b , X ( a )  and X a .  It follows from (8. 1) that

i x 0 b) (B n f ) )  = d û  " (X , B " ( f ) )+B ( ") (f )(0 '" ) (X ))
= 0 ' 11)(X , B ( r) ( f ) ) + B m ( f ) ( e ) (X ))
= — Axe h) (B ( ") ( f ) ) =  0 ,

i x d(h) (B ( h) ( f ) ) =  W(X, B ( h) (f ))--co (X )f
+B (h(f )(0 h ) (X )) = —  A x f

Therefore we obtain

B " ( f ) (0  h)(X)) = (.9 '') ( B ( f ) ,  X)
B 'h)(f )(0 h ) (X ) )=  (-3(h) (13( h) ( f ) , X )+ co (X ) f  A x f , ,

which are written in the following explicit forms :

X"lb = Cc abr
(8. 13)

Xaib = — C ba  ,X " 3  ±  b c  +  X
°
 n a b
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in which ?la b a re  components o f the tangent vector A, to G at e.
We now shall find the condition of integrability of the system

( 8 .5 ) - ( 8 .8 ) .  These conditions will be obtained from the explicit
form (8. 9)-(8. 12) by direct calculation, making use of conditions
of integrability of covariant differentiations and substituting (8. 13).
However, we shall proceed in the following by the other way, for
the purpose o f avoiding tensor calculus.

I t  w e  put Si l 2=-Sba cfi bf2`e. E F  and 5 122 - - St,• d f 1 1 2 d i o b E 6, it
follows from (1 . 1) and (1 . 4) that

8 14)
f2(B"A fi), B t tf2» = —S122,( . 
EB`")(A), B` v ) (f2)] = P(S1 22)+ B ' v ) (51 12) •

It follows from (8 .2 )  that

0 = [X, B(")(f)] = 13(")(f)]+[hX, B" 9 (f)]

=EF(a)(X)), B"AfYi+[llX, B` v )(f)]

and thus we obtain in virtue o f (1. 4)

(8. 15) [hX , —13`")(6)(X)f)

According to the Bianchi identity D12=0, it is derived that

0  (11 2 (Bm (f,), B' r ) (f2), hX)
= frAf1)i-2(B"(f2), hX) — B``Af0 1 2 (B̀ r ) (ii), hX)

+hX1:2(B("V,), B"(f2)) — (2([13̀ v (fi), B rv )(f2)], hX)

+r2 ( 0 '( f , ) ,  hX ], Bc" ) (f2))— n([B ''' ) (f2), hX ], B c e ) (f i ) )

In consequence o f (8. 14) and (8. 15), the above equation gives

(8. 16) B̀ lAf,)f2(B`")(f2), hX ) — B. ' " ( f , ) ,(2(.8‘ 1') (f,), hX )
= hX(S 12

2 ) +12(B' ) (S ,',), hX)—S2(13''')(6)(X)f,), B"')(f 2))

f2 (B" )(6)(X)f2), B"(.0) ,

Next, we see that

dro(X, P(A)) = X(0(F(A))— k'(A)(0(X)—co([X, F(A)])
— F(A)co(X) ,

where we used [X, P(A)]=I,P(A)=0 from Proposition 2 .  On the
other hand we have from the structure equation
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= f2(X , F(A ))—  co(X )(0(F(A ))+co(F(A ))6)(X )
= co(X )A + 116)(X ) .

Therefore we obtain

(8. 17) F(A )o(X ) = co(X )A —  A co(X ) .

Now we consider first the value [B " ) ( ii) , B''' ) (f2)] 4 )(X ) .  From
the definition of the bracket it follows that

EB ( r ) (f1), 13 "̀)(f2)](il(X )
= 13 ( '') (f 1)(1r ) (f2)(0 (X )) - 1 3 `̀ ')(f2)(B`" ) (.0 w (X ))

and, by means of the differential equation (8. 5), we get

= B" ) (f1)n(B"(f2), X )— B ''( f 2 )f 2 (B` r ) ( f ,) , X)

which is the left-hand side o f (8. 16). Besides, it follows from
(8. 14) that

= P(S ,22) 6)(X )+ B ' ) (S i ' 2)6)(X )

which is written by virtue of (8. 5) and (8. 17)

— ()(x)S 1
2

2 — S 1
2 ,6)(X)+11(B ( "'(S1 ' 2 ), hX ) .

Consequently we establish

(8. 18) hX(S122) + 1 1 "(B`v ) ()(X )f2), 13 ( "(f1))
— f2"(13( "(co(X )f i), B —(0(X)S,22+ S, 2

2(0(X ) = O.

In  like m anner we shall consider va lues o f brackets [13( ") ( f 1),
B " ) ( f 2 )](, )(X )  and [B ( h) ( f i ), /3'h ) ( f 2 )]c o (X ) . Furthermore, values of
those three kinds o f  brackets for O ( X )  will be examined by
applying the similar considerations to those applied to 0)(X ), in
which, instead o f (8. 15) and (8. 17), w e sh a ll use [hX , R " ) ( f ) ]

— B(h)(((o(X)— f )  and P(A )0 ")(X )= —  AO "(X ) as will be easily
obtained, and further the Bianchi identity 1:;0(--.) ") ---- f l A  ") will play
a important rôle. Thus we obtain the following five equations.

(8. 19) hX (R122)+nh(BuA (6)(X )-110.f2), B` h )(A ))
— f2h(Lich )((co(X)— AO.f1), B c h )(f2))
—(0(X)R 1

2
2 +R , 2

2 0)(X )= O,
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(8. 20) hX(P221) +2 1 2 "h (B"(co(X)f1)), B` h ) (f2))
— 2S:2' h(B(h) ((o(X )— B ")(f , ) )

—0)(X)P 2
2, + P 2

7 )(X ) =  0,

(8. 21) hX(S 1
1

2 ) + (-) ( ") "(B"Aco(X)f2), 13 ( "(.1-1))
—H v Y (B ( 0 ((o (X )f2 ), a r ( f2)) —  6)(X)S, i =  o ,

(8. 22) hX(R 1
1
 2 ) + 6i( ") "(Bck) ((co(X )— f2), 13 ( h ) (A ))

— (B ( " ) ((co(X)— A )1;), B " (f .))2)) — co(X)R,' 2 = 0

(8. 23) hX(P 2
11 )+2(..)'" ) "h (B '' ) (a)(X).1"), 13 ( h ) (f2))

— v) vh (B - h ) ((co(X)—Ax)f2), w(X)P211= 0 .

In these equations quantities R 1
1,  and R 1

2
2 are defined in a similar

w a y  a s  fo r  S 1
1 , a n d  S1

2
2 , and further P211 =  Pe a b f2 Cf l b e a P 2 2 I

---- Pb!def2df l e  kab

The system of six equations (8. 18)-(8. 23) is  the condition of
integrability of the system (8. 5)-(8. 8). For the latter use, we
shall write down the system (8. 18)-(8. 23) in the following explicit
forms.

(8. 18') Sha. cc/ leX  F Sb a. ed,,X e  SZedXp a  S e a“-aXbt

SZ ee dX,— S a eL . , cX d  = 0  ,

(8. 19') /47,-da ' e ) +Ri,!„d „X r — Rbe.aXea +RrdXb e

+ Rb if,,d (Xc e — .71; )— Rb
a ,(X d c — 0

(8. 20') Pbizale,X ( `) +Pb a
 cd■o X e  P b e,,ciXe°  ±  e7 edX b e

Pb7 yea  r e  n c t ) ±  Pb a  reX a s  =  0

(8.21')S b
a

c ld X ' d ) + Sba  riciX a  — Sbd  eX d a  ± S d a  eX ba  — Sd a  bX,-d  = 0

(8. 22') R, dX' d ) +Rb a  rldX d — Rbd
 d a +Rd

a ,-(Xbd

Rda b (X  —  e d ) 0 ,

(8. 23') T'ba  cidX` a ) - i-  Pba  c i d X d  P b
d ,Xda  P d a  c(X b d  , d)

+ P b ad X,d =  O.

§ 9 .  Complete integrability o f  infinitesimal

affine transformations

In the last section, we derived the conditions of integrability
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(8. 18)-(8.23) of the system o f differential equations (8. 9)-(8. 12)
which were satisfied by an infinitesimal affine transformation X.
These conditions were written with use of covariant v -  and
h-differentiations. It will be noted that the v-covariant one in
these equations may be replaced, roughly speaking, by the
i-covariant one which will be defined as follows. I f  we take the
mapping f ; ' :  Q ,  p E P , defined by 777, 1(b)— (b , p), then
we have a tangent vector field II"( f )  on Q, JE F, which is defined
by B "'(f)„=7-77, 1 (pj, ( ,,,f ) ,  q ( b ,  p ) .  k '' ) ( f )  will be called the z )-
basic vector field. It will be easily seen that /P A P  is expressed by

P"' ) (f )=C ,,a,f  `F„b 13 ( f ) ,  f  = f"e a  ,

where F a b=P(g c,b). Therefore, i f  XE Q , is expressed

X = X t,'F a
b -I-X"a )f l f r  X ° 1 3 :' X b 'F a

b X ` " ) k,,v)  --F IaBW"

then we obtain

(9.1)X "  = t ° , X  a ) = X  a ) , X  b a  = ) -Cba  + t )C  b a  .

Referring to P"' ) ( f ) ,  we shall define the z)-covariant derivative .'1"
in similar manner with the r-covariant one Ar by means of /3 (f ) .
Thus, fo r  a  (1, 1)-type tensor K = K baea g e b , we shall write -i"K
= (ea® e' cc . The following equation will be easily verified.

K- b a c x ce) K - bd x d a K  d a x bd = Kb"c _  K b d  d a K  d a  b d

both hand sides of the above being of the same type. Consequently
we may replace X,,a, X ( a) , Xa and the v-covariant differentiation
( I ) in (8. 18/48. 23') by X a) , X" and the v-covariant one (I i)
respectively.

We now return to a  consideration o f an  infinitesimal linear
transformation X, which may be written in the form of sum Y-FZ,
where Y  is the induced part from a transformation of the base
manifold M , and Z  is the rotation part arising from the deviation
X . In  the following we shall first treat the induced part Y and
then the rotation part Z.

I f  we denote by (6/6x ') the infinitesimal transformation
of M , the induced Y  is expressed by
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y (71 b i

6bf 5 x j

at q=(x (, b i, po o. Hence, i f  we put

&fi = eij+ T i ike k , eoi =1-7b )

then vertical, v- and h-horizontal components Y„4 , Y 11.° of Y are

(9 2)
y b e: = p h q /  ± C a ok +C i e h p / kV ) 2

. yca , p v ,v o i y  a p,71T

or, from (9. 1), we have the following simpler equations :

(9. 2') ta _ p ;_lap b % , p i s )  y,a) , y a

Since the condition of complete integrability will be somewhat
complicated for the most general Finsler connection, in subsequent
discussion attention is confined to such a  Finsler connection that
Conditions F  and I  due to  T . Okada are satisfied. Condition F  is
that D5

1 = 0 ,  while Condition I means the homogeneity of coefficients
of the connection, and it does not seem to us that these conditions
impose upon the connection some strong restriction.

According to the note as given at the beginning o f this section,
we substitute (9. 2') into (8. 18'), and then we have

(9.3) S i "  + 511S  b 5 T s r,, +S ,f k i T i rh -ES i fr i T k rh —S j i.r k T i rh  =0
abr

as.,(9. 4) • k i — S r O k i  +Sk i.k,8 1"-i-Sifhi 8 ; "  S i fkkaim = 0abh

the first being a coefficient of e" and the second being o f eh,,„.
Since Si fid a r e  homogeneous o f  degree —2 with respect to  b',
contraction o f (9. 4) by b h  gives

(9. 5) —2//"Si ik i  ± 8 /:"Si i.,/ —  6 1m S 8 =0  ,

where the index (o )  means contraction by bi. Take quantities b,
such that bo =bib 1 -1-0 , and contract (9.5) by bi ,  and we have

(9. 6) b„,S 17 = — 2 bm ,S571,1 akn i S 81mS570k+8;" S0
0

.ki •

Further, contraction by b„, gives
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31)0S j0ki  = bk,S ; 01—  b1S; o k+ b IS L el

from  which we obtain S„,"k ,=S ; 701 = 0  immediately, an d  hence
Si !k i =0. Consequently (9. 6) gives S r k i =0 , and then the another
equation (9. 3) is reduced to be trivial.

We next consider (8. 19'), where it is to be noted that /b"=0
for the induced Y. In this case we obtain (9. 4) replaced S  by R.
Since R i ' k i  are homogeneous of degree 0, we get R i fk i =-0 immed-
iately by putting m =h and summing. By the same process (8. 20')
gives Pi l.k i = 0 .  Remaining three equations (8. 21')-(8. 23') give us
easily that torsion tensors S j i k ,  R i i k  and P i i k  vanish as well.

Consequently we conclude that

Theorem 5. L et (P", rh) be a Finsler connection in Q(B ) satis-
fy ing  th e  condition o f  homogeneity an d  Condition F: Fl =-bkFk i J .
I f  the connection admits a group o f  induced affine transformations
o f the maximum order n2 -1--n (n = dimension  of the base manifold M),
then  a ll k inds o f  curvature tensors vanish and  three kinds of
torsion tensors, namely, S j i k ,  Rik and  P/ k  vanish also.

According to this theorem, we have not any conclusion about
the torsion tensor T i ik ,  while the torsion tensor C j i k  is to be
symmetric with respect to subscripts, because S i ik =C i ik —Ck ii . It
is to be noted that the following equations have to be satisfied :

C j i (kl/ C jh rk C ili) -0 , T j h k T h i l ) = -  0  ,

— T k s i,± T k h iC  k i j  —  0

which a re  given from Bianchi identities with respect to  torsion
tensors.

The remainder o f this section will be devoted to the study
of the rotation part Z .  Since we putted ni i=(dX v i/df ),,, Z  is given
by

a .z  = +abi ap!,

from which it follows that

(9. 7) Z t,' = PT i a Phi(niI +C i ieb„k), Z  =  p 1 0 ', za  =
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Comparing (9. 7) with (9. 2) for the case of Y, we know that Z  is
of the simpler form than Y. because terms containing D i l  do not
appear, and hence we assume in this case that the connection is
imposed the condition of homogeneity only.

We are concerned with the condition of complete integrability
(8. 18)-(8. 23'). The first (8. 18') gives

(9.8) —abA7bm +(J./VI/Jai — k W / 7 v  0 .

Contraction of (9. 8) by bh gives

31"Rofkl biRi7k 1 =0  .

Take I), as used in the case of Y and contract the above by bi .

We then obtain R i fk i = —1 af i R,,h.kr immediately. Substitution of this

expression into (9. 8) shows that R h h.k i a re  functions o f 1.1 only.
Thus there exist quantities R k i (x ) such that Rifkr= 8 /R k i(x ).

Next, we have from (8. 20')

aP J 'kl
—  b m -31.13-rn = a O.1 j.kh h  j  k l j h.k1

Contraction by bh gives

(9.9)— b m P 5 i .kr ± 8 /"Rifko —  biPi n.skr ±SimP ok i 0

because P  /s ki  are homogeneous o f  degree —1. T h e  process by
means of which from (9. 5) we got S i fk ,= 0 is applied to (9. 9), and
then we obtain

b :P i 7 "  = +3;mb,+81"ib j ) P o ':  .

Substitution of this expression into (9. 9) gives the equation of the
form (- •.) P :4 0 = 0 ,  the coefficient (—) being

2  . .— b sb n ib .b ,--(3 1
, b .+8 . ,b1)

b ; '

—  —

b i  

(3,mb.+ 8 .mbi ) +8/"S i f
bo  "
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which does not vanish as will be easily seen. Therefore we obtain
=  0.
Finally we treat (8. 21'), (8. 22') and (8. 23'), which give

(9. 10)
as.i

j k  bh- - -  0abi

(9. 11) o,ab

(9.12) - 5 - b - i - b h ± 8 k h P i i i - 3 , iP ih k =  0,

respectively. Contracting these equations by b ' and noting that
S i ik , R i ik  and P i ak  are homogeneous of degree —1, 1 and 0  respec-
tively, we get

(9. 13) —  b"S i ik +S i hS„ik —8k hS,,ii — biSi hk  0

(9. 14) b"Riik— biR i hk 0 ,

(9. 15) 8khPii„—b1Pihk = 0,

respectively. It is easily deduced from (9 . 13) that S l k = 0 , and
(9. 14) and (9. 15) show that there exist quantities n ik  and P 1 such
that R i ik —biR i k  and  P- k=  k i P j • Substitution of these into (9. 11)
and (9. 12) respectively gives that both of R i k  and P i  are functions
of x ' only. Consequently we establish

Theorem 6. L et (In  l'h) be a Finsler connection in Q(B ) satis-
fying tue condition of lw m ogeneity . I f  the connection admits a group
o f  af f ine rotations of  the m ax im um  order n ' (n = dimension of the
base manifold M ), then the following equations are satisfied :

S1 1 —  P j f i a  S j i  k = 0 ,  Ri!kr — Si iR k ,(x ),
R  k  = 1 ( x ) ,  P i i  =  Ski Pi(X)

The theorem was derived under the condition of homogeneity
on ly . If certain conditions are further imposed on the connection,
it will be expected that some o f above functions R i k (x ), R i k (x)
and P i (x )  or all of them vanish, especially for a connection induced
from a  F in sle r metric under certain hypothesis. It is to be
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remarked that Bianchi identities for curvature and torsion give
following equations :

8 /(P(kii)+PhTkh r+Rki) — (8 .fi +C. i .O k r= 0
flukii)+T4kRph+re(API)=. 0  ,

/ I l i +  P r k C i 4 =  0
T ( j h  kT  1 ) h+ 8 C .I iR k 1 )= •
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Note

In equations under Theorems 5  and 6, branckets and paren-
thesisses of indices mean that, for an example,

Cfk i  j11) =  C C  i lk

T — T •A •-1- T , "h b — k  h l  
± T

 h
h

l T  k
i
J ' h • T h k •


